Print this page Share

Discovering the Solar System, 2nd Edition

ISBN: 978-0-470-01831-6
470 pages
July 2007
Discovering the Solar System, 2nd Edition (0470018313) cover image


Discovering the Solar System, Second Edition covers the Sun, the planets, their satellites and the host of smaller bodies that orbit the Sun. This book offers a comprehensive introduction to the subject for science students, and examines the discovery, investigation and modelling of these bodies. Following a thematic approach, chapters cover interiors, surfaces and the atmospheres of major bodies, including the Earth. The book starts with an overview of the Solar System and its origin, and then takes a look at small bodies, such as asteroids, comets and meteorites.

Carefully balancing breadth of coverage with depth, Discovering the Solar System, Second Edition:

  • Offers a comprehensive introduction, assuming little prior knowledge
  • Includes full coverage of each planet, as well as the moon, Europa and Titan. The Second Edition includes new material on exoplanetary systems, and a general update throughout.
  • Presents latest results from the Mars Rover and Cassini-Huygens missions
  • Includes a colour plate section
  • Contains ‘stop and think’ questions embedded in the text to aid understanding, along with questions at the end of major sections. Answers are provided at the end of the book.
  • Provides summaries at the end of each chapter, and a glossary at the end of the book

Praise for the First Edition:

"(...) essential reading for all undergraduate students (...) and for those at a more advanced level approaching the subject for the first time." THE SCIENCE BOOK BOARD BOOK REVIEW

“One of the best books on the solar system I have seen. The general accuracy and quality of the content is excellent.” JOURNAL OF THE BRITISH ASTRONOMICAL ASSOCIATION

See More

Table of Contents

List of Tables.

Preface and Study Guide to the First Edition.

Preface to the Second Edition.

1 The Sun and its Family.

1.1 The Sun.

1.1.1 The Solar Photosphere.

1.1.2 The Solar Atmosphere.

1.1.3 The Solar Interior.

1.1.4 The Solar Neutrino Problem.

1.2 The Sun’s Family – A Brief Introduction.

1.2.1 The Terrestrial Planets and the Asteroids.

1.2.2 The Giant Planets.

1.2.3 Pluto and Beyond.

1.3 Chemical Elements in the Solar System.

1.4 Orbits of Solar System Bodies.

1.4.1 Kepler’s Laws of Planetary Motion.

1.4.2 Orbital Elements.

1.4.3 Asteroids and the Titius–Bode Rule.

1.4.4 A Theory of Orbits.

1.4.5 Orbital Complications.

1.4.6 Orbital Resonances.

1.4.7 The Orbit of Mercury.

1.5 Planetary Rotation.

1.5.1 Precession of the Rotation Axis.

1.6 The View from the Earth.

1.6.1 The Other Planets.

1.6.2 Solar and Lunar Eclipses.

1.7 Summary of Chapter 1.

2 The Origin of the Solar System.

2.1 The Observational Basis.

2.1.1 The Solar System.

2.1.2 Exoplanetary Systems.

2.1.3 Star Formation.

2.1.4 Circumstellar Discs.

2.2 Solar Nebular Theories.

2.2.1 Angular Momentum in the Solar System.

2.2.2 The Evaporation and Condensation of Dust in the Solar Nebula.

2.2.3 From Dust to Planetesimals.

2.2.4 From Planetesimals to Planets in the Inner Solar System.

2.2.5 From Planetesimals to Planets in the Outer Solar System.

2.2.6 The Origin of the Oort Cloud, the E–K Belt, and Pluto.

2.3 Formation of the Satellites and Rings of the Giant Planets.

2.3.1 Formation of the Satellites of the Giant Planets.

2.3.2 Formation and Evolution of the Rings of the Giant Planets.

2.4 Successes and Shortcomings of Solar Nebular Theories.

2.5 Summary of Chapter 2.

3 Small Bodies in the Solar System.

3.1 Asteroids.

3.1.1 Asteroid Orbits in the Asteroid Belt.

3.1.2 Asteroid Orbits Outside the Asteroid Belt.

3.1.3 Asteroid Sizes.

3.1.4 Asteroid Shapes and Surface Features.

3.1.5 Asteroid Masses, Densities, and Overall Composition.

3.1.6 Asteroid Classes and Surface Composition.

3.2 Comets and Their Sources.

3.2.1 The Orbits of Comets.

3.2.2 The Coma, Hydrogen Cloud, and Tails of a Comet.

3.2.3 The Cometary Nucleus.

3.2.4 The Death of Comets.

3.2.5 The Sources of Comets.

3.2.6 The Oort Cloud.

3.2.7 The E–K Belt.

3.3 Meteorites.

3.3.1 Meteors, Meteorites, and Micrometeorites.

3.3.2 The Structure and Composition of Meteorites.

3.3.3 Dating Meteorites.

3.3.4 The Sources of Meteorites.

3.3.5 The Sources of Micrometeorites.

3.4 Summary of Chapter 3.

4 Interiors of Planets and Satellites: The Observational and Theoretical Basis.

4.1 Gravitational Field Data.

4.1.1 Mean Density.

4.1.2 Radial Variations of Density: Gravitational Coefficients.

4.1.3 Radial Variations of Density: The Polar Moment of Inertia.

4.1.4 Love Numbers.

4.1.5 Local Mass Distribution, and Isostasy.

4.2 Magnetic Field Data.

4.3 Seismic Wave Data.

4.3.1 Seismic Waves.

4.3.2 Planetary Seismic Wave Data.

4.4 Composition and Properties of Accessible Materials.

4.4.1 Surface Materials.

4.4.2 Elements, Compounds, Affinities.

4.4.3 Equations of State, and Phase Diagrams.

4.5 Energy Sources, Energy Losses, and Interior Temperatures.

4.5.1 Energy Sources.

4.5.2 Energy Losses and Transfers.

4.5.3 Observational Indicators of Interior Temperatures.

4.5.4 Interior Temperatures.

4.6 Summary of Chapter 4.

5 Interiors of Planets and Satellites: Models of Individual Bodies.

5.1 The Terrestrial Planets.

5.1.1 The Earth.

5.1.2 Venus.

5.1.3 Mercury.

5.1.4 Mars.

5.2 Planetary Satellites, Pluto, EKOs.

5.2.1 The Moon.

5.2.2 Large Icy-Rocky Bodies: Titan, Triton, Pluto, and EKOs.

5.2.3 The Galilean Satellites of Jupiter.

5.2.4 Small Satellites.

5.3 The Giant Planets.

5.3.1 Jupiter and Saturn.

5.3.2 Uranus and Neptune.

5.4 Magnetospheres.

5.4.1 An Idealised Magnetosphere.

5.4.2 Real Magnetospheres.

5.5 Summary of Chapter 5.

6 Surfaces of Planets and Satellites: Methods and Processes.

6.1 Some Methods of Investigating Surfaces.

6.1.1 Surface Mapping in Two and Three Dimensions.

6.1.2 Analysis of Electromagnetic Radiation Reflected or Emitted by a Surface.

6.1.3 Sample Analysis.

6.2 Processes that Produce the Surfaces of Planetary Bodies.

6.2.1 Differentiation, Melting, Fractional Crystallisation, and Partial Melting.

6.2.2 Volcanism and Magmatic Processes.

6.2.3 Tectonic Processes.

6.2.4 Impact Cratering.

6.2.5 Craters as Chronometers.

6.2.6 Gradation.

6.2.7 Formation of Sedimentary Rocks.

6.2.8 Formation of Metamorphic Rocks.

6.3 Summary of Chapter 6.

7 Surfaces of Planets and Satellites: Weakly Active Surfaces.

7.1 The Moon.

7.1.1 Impact Basins and Maria.

7.1.2 The Nature of the Mare Infill.

7.1.3 Two Contrasting Hemispheres.

7.1.4 Tectonic Features; Gradation and Weathering.

7.1.5 Localised Water Ice?

7.1.6 Crustal and Mantle Materials.

7.1.7 Radiometric Dating of Lunar Events.

7.1.8 Lunar Evolution.

.2 Mercury.

7.2.1 Mercurian Craters.

7.2.2 The Highlands and Plains of Mercury.

7.2.3 Surface Composition.

7.2.4 Other Surface Features on Mercury.

7.2.5 The Evolution of Mercury.

7.3 Mars.

7.3.1 Albedo Features.

7.3.2 The Global View.

7.3.3 The Northerly Hemisphere.

7.3.4 The Southerly Hemisphere.

7.3.5 The Polar Regions.

7.3.6 Water-related Features.

7.3.7 Observations at the Martian Surface.

7.3.8 Martian Meteorites.

7.3.9 The Evolution of Mars.

7.4 Icy Surfaces.

7.4.1 Pluto and Charon.

7.4.2 Ganymede and Callisto.

7.5 Summary of Chapter 7.

8 Surfaces of Planets and Satellites: Active Surfaces.

8.1 The Earth.

8.1.1 The Earth’s Lithosphere.

8.1.2 Plate Tectonics.

8.1.3 The Success of Plate Tectonics.

8.1.4 The Causes of Plate Motion.

8.1.5 The Evolution of the Earth.

8.2 Venus.

8.2.1 Topological Overview.

8.2.2 Radar Reflectivity.

8.2.3 Impact Craters and Possible Global Resurfacing.

8.2.4 Volcanic Features.

8.2.5 Surface Analyses and Surface Images.

8.2.6 Tectonic Features.

8.2.7 Tectonic and Volcanic Processes.

8.2.8 Internal Energy Loss.

8.2.9 The Evolution of Venus.

8.3 Io.

8.4 Icy Surfaces: Europa, Titan, Enceladus, Triton.

8.4.1 Europa.

8.4.2 Titan.

8.4.3 Enceladus.

8.4.4 Triton.

8.5 Summary of Chapter 8.

9 Atmospheres of Planets and Satellites: General Considerations.

9.1 Methods of Studying Atmospheres.

9.2 General Properties and Processes in Planetary Atmospheres.

9.2.1 Global Energy Gains and Losses.

9.2.2 Pressure, Density, and Temperature Versus Altitude.

9.2.3 Cloud Formation and Precipitation.

9.2.4 The Greenhouse Effect.

9.2.5 Atmospheric Reservoirs, Gains, and Losses.

9.2.6 Atmospheric Circulation.

9.2.7 Climate.

9.3 Summary of Chapter 9.

10 Atmospheres of Rocky and Icy–Rocky Bodies.

10.1 The Atmosphere of the Earth.

10.1.1 Vertical Structure; Heating and Cooling.

10.1.2 Atmospheric Reservoirs, Gains, and Losses.

10.1.3 Atmospheric Circulation.

10.1.4 Climate Change.

10.2 The Atmosphere of Mars.

10.2.1 Vertical structure; heating and cooling.

10.2.2 Atmospheric Reservoirs, Gains, and Losses.

10.2.3 Atmospheric Circulation.

10.2.4 Climate Change.

10.3 The Atmosphere of Venus.

10.3.1 Vertical structure; heating and cooling.

10.3.2 Atmospheric Reservoirs, Gains, and Losses.

10.3.3 Atmospheric Circulation.

10.4 Volatile Inventories for Venus, the Earth, and Mars.

10.5 The Origin of Terrestrial Atmospheres.

10.5.1 Inert Gas Evidence.

10.5.2 Volatile Acquisition During Planet Formation.

10.5.3 Early Massive Losses.

10.5.4 Late Veneers.

10.5.5 Outgassing.

10.6 Evolution of Terrestrial Atmospheres, and Climate Change.

10.6.1 Venus.

10.6.2 The Earth.

10.6.3 Mars.

10.6.4 Life on Mars?

10.7 Mercury and the Moon.

10.8 Icy-Rocky Body Atmospheres.

10.8.1 Titan.

10.8.2 Triton and Pluto.

10.8.3 The Origin and Evolution of the Atmospheres of Icy-Rocky Bodies.

10.9 Summary of Chapter 10.

11 Atmospheres of the Giant Planets.

11.1 The Atmospheres of Jupiter and Saturn Today.

11.1.1 Vertical Structure.

11.1.2 Composition.

11.1.3 Circulation.

11.1.4 Coloration.

11.2 The Atmospheres of Uranus and Neptune Today.

11.2.1 Vertical Structure.

11.2.2 Composition.

11.2.3 Circulation.

11.3 The Origin of the Giant Planets—A Second Look.

11.4 Summary of Chapter 11.

11.5 The End.

Question Answers and Comments.


Electronic Media.

Further Reading.


Plate Section.

See More

New to This Edition

  • Fuller coverage of each planet, as well as the moon, europa and titan.
  • Includes new material on exoplanetary systems
  • Latest results from the Mars Rover and Cassini-Huygens missions are also presented
See More

The Wiley Advantage

  • Aimed at science undergraduates, including the necessary maths
  • Includes problems, summary sections at the end of each chapter, glossary and answers to problems
  • Comprehensive introduction, building on strengths of first edition
  • Latest results integrated throughout
  • Balance between breadth and depth
See More


"A thorough book for two-semester college-level courses…it also serves astronomers…a suitable book for any college library." (CHOICE, January 2008)

"...is strongly recommended both for its coverage and its style of presentation..." (Spaceflight)

"...certainly qualifies as an authoritative text.... The author clearly has an encyclopaedic knowledge of the subject..." (Meteoritics and Planetary Science)

"...liberally doused with relevant graphs, tables, and black and white figures of good quality..." (EOS, Transactions of the American Geophysical Union)

"...one of the best books on the Solar System.... The general accuracy and quality of the content is excellent..." (Journal of the British Astronomical Association)

See More

Buy Both and Save 25%!


Discovering the Solar System, 2nd Edition (US $90.00)

-and- Astrophysics: Decoding the Cosmos (US $85.00)

Total List Price: US $175.00
Discounted Price: US $131.25 (Save: US $43.75)

Buy Both
Cannot be combined with any other offers. Learn more.

Related Titles

Back to Top