Wiley
Wiley.com
Print this page Share

Design and Realizations of Miniaturized Fractal Microwave and RF Filters

ISBN: 978-0-470-48781-5
194 pages
November 2009
Design and Realizations of Miniaturized Fractal Microwave and RF Filters (047048781X) cover image
An in-depth survey of the design and REALIZATIONS of miniaturized fractal microwave and RF filters

Engineers are continually searching for design methods that can satisfy the ever-increasing demand for miniaturization, accuracy, reliability, and fast development time. Design and Realizations of Miniaturized Fractal RF and Microwave Filters provides RF and microwave engineers and researchers, advanced graduate students, and wireless and telecommunication engineers with the knowledge and skills to design and realize miniaturized fractal microwave and RF filters. This book is an essential resource for the realization of portable and cellular phones, WiFi, 3G and 4G, and satellite networks.

The text focuses on the synthesis and fabrication of miniaturized fractal filters with symmetrical and asymmetrical frequency characteristics in the C, X and Ku bands, though applications to other frequency bands are considered. Readers will find helpful guidance on:

  • Miniaturized filters in bilevel fashion

  • Simplified methods for the synthesis of pseudo-elliptic electrical networks

  • Methods for extracting coupling coefficients and external quality factors from simulations of the RF/microwave structure

  • Methods for matching theoretical couplings to couplings of structure

Including studies of the real-world performance of fractal resonators and sensitivity analyses of suspended substrate realizations, this is a definitive resource for both practicing engineers and students who need timely insight on fractal resonators for compact and low-power microwave and RF applications.

See More
FOREWORD.

PREFACE.

1 MICROWAVE FILTER STRUCTURES.

1.1 Background.

1.2 Cavity Filters.

1.3 Planar Filters.

1.4 Planar Filter Technology.

1.5 Active Filters.

1.6 Superconductivity or HTS Filters.

1.7 Periodic Structure Filters.

1.8 SAW Filters.

1.9 Micromachined Filters.

1.10 Summary.

References.

2 IN-LINE SYNTHESIS OF PSEUDO-ELLIPTIC FILTERS.

2.1 Introduction.

2.2 Approximation and Synthesis.

2.3 Chebyshev Filters.

2.4 Pseudo-elliptic Filters.

2.5 Prototype Synthesis Examples.

2.6 Theoretical Coupling Coefficients and External Quality Factors.

References.

3 SUSPENDED SUBSTRATE STRUCTURE.

3.1 Introduction.

3.2 Suspended Substrate Technology.

3.3 Unloaded Quality Factor of a Suspended Substrate Resonator.

3.4 Coupling Coefficients of Suspended Substrate Resonators.

3.5 Enclosure Design Considerations.

References.

4 MINIATURIZATION OF PLANAR RESONATORS USING FRACTAL ITERATIONS.

4.1 Introduction.

4.2 Miniaturization of Planar Resonators.

4.3 Fractal Iteration Applied to Planar Resonators.

4.4 Minkowski Resonators.

4.5 Hibert Resonators.

References.

5 DESIGN AND REALIZATIONS OF MEANDERED LINE FILTERS.

5.1 Introduction.

5.2 Third-order Pseudo-elliptic Filters with Transmission Zero on the Right.

5.3 Third-order Pseudo-elliptic Filters with Transmission Zero on the Left.

References.

6 DESIGN AND REALIZATIONS OF HILBERT FILTERS.

6.1 Introduction.

6.2 Design of Hilbert Filters.

6.3 Realizations and Measured Performance.

References.

7 DESIGN AND REALIZATION OF DUAL-MODE MINKOWSKI FILTERS.

7.1 Introduction.

7.2 Study of Minkowski Dual-Mode Resonators.

7.3 Design of Fourth-Order Pseudo-elliptic Filters with Two Transmission Zeros.

7.4 Realization and Measured Performance.

References.

APPENDIX 1: Equivalence Between J and K Lowpass Prototypes.

APPENDIX 2: Extraction of the Unloaded Quality Factor of Suspended Substrate Resonators.

INDEX.

See More
Pierre Jarry graduated from the University of Limoges. As a professor at University of Brest, he directed the Laboratory of Electronics and Telecommunication Systems (LEST), affiliated with the French National Center for Scientific Research (CNRS). He later joined the University of Bordeaux and the CNRS laboratory IMS. He has published 300 technical papers in microwave and RF circuit synthesis, and is a senior member of the IEEE.

Jacques Beneat received his PhD in electrical and computer engineering from Worcester Polytechnic Institute with a focus in advanced microwave structures for satellite communications, and a doctorate degree from the University of Bordeaux with Mention Très Honorable avec Félicitations du Jury. He was a research scientist at the Center for Wireless Information Network Studies at WPI and is currently Associate Professor of Electrical and Computer Engineering at Norwich University.

Pierre Jarry and Jacques Beneat are the authors of the bestselling book Advanced Design Techniques and Realizations of Microwave an RF Filters, published by Wiley-IEEE Press and available also in electronic form.

See More
  • Provides timely insight on fractal resonators for compact and low power microwave and RF filters
  • Relies on electromagnetic simulations using a commercial simulator, which does not require the great analytical and programming skills needed to develop custom RF/microwave simulators, and is thus more accessible. 
  • Covers miniaturized filters in bilevel fashion: gives method for extracting coupling coefficients and external quality factor from simulations of the RF/microwave structure
  • Provides the method for matching theoretical couplings to couplings of structure

 

See More
Buy Both and Save 25%!
+

Design and Realizations of Miniaturized Fractal Microwave and RF Filters (US $107.95)

-and- Fundamentals of RF and Microwave Transistor Amplifiers (US $179.00)

Total List Price: US $286.95
Discounted Price: US $215.21 (Save: US $71.74)

Buy Both
Cannot be combined with any other offers. Learn more.
Back to Top