Wiley
Wiley.com
Print this page Share

Advances in Chemical Physics, Volume 93, New Methods in Computational Quantum Mechanics

I. Prigogine (Editor), Stuart A. Rice (Editor)
ISBN: 978-0-471-14321-5
812 pages
April 1996
Advances in Chemical Physics, Volume 93, New Methods in Computational Quantum Mechanics (0471143219) cover image
The use of quantum chemistry for the quantitative prediction of molecular properties has long been frustrated by the technical difficulty of carrying out the needed computations. In the last decade there have been substantial advances in the formalism and computer hardware needed to carry out accurate calculations of molecular properties efficiently. These advances have been sufficient to make quantum chemical calculations a reliable tool for the quantitative interpretation of chemical phenomena and a guide to laboratory experiments. However, the success of these recent developments in computational quantum chemistry is not well known outside the community of practitioners. In order to make the larger community of chemical physicists aware of the current state of the subject, this self-contained volume of Advances in Chemical Physics surveys a number of the recent accomplishments in computational quantum chemistry.

This stand-alone work presents the cutting edge of research in computational quantum mechanics. Supplemented with more than 150 illustrations, it provides evaluations of a broad range of methods, including:
* Quantum Monte Carlo methods in chemistry
* Monte Carlo methods for real-time path integration
* The Redfield equation in condensed-phase quantum dynamics
* Path-integral centroid methods in quantum statistical mechanics and dynamics
* Multiconfigurational perturbation theory-applications in electronic spectroscopy
* Electronic structure calculations for molecules containing transition metals
* And more

Contributors to New Methods in Computational Quantum Mechanics

KERSTIN ANDERSSON, Department of Theoretical Chemistry, Chemical Center, Sweden

DAVID M. CEPERLEY, National Center for Supercomputing Applications and Department of Physics, University of Illinois at Urbana-Champaign, Illinois

MICHAEL A. COLLINS, Research School of Chemistry, Australian National University, Canberra, Australia

REINHOLD EGGER, Fakultät für Physik, Universität Freiburg, Freiburg, Germany

ANTHONY K. FELTS, Department of Chemistry, Columbia University, New York

RICHARD A. FRIESNER, Department of Chemistry, Columbia University, New York

MARKUS P. FÜLSCHER, Department of Theoretical Chemistry, Chemical Center, Sweden

K. M. HO, Ames Laboratory and Department of Physics, Iowa State University, Ames, Iowa

C. H. MAK, Department of Chemistry, University of Southern California, Los Angeles, California

PER-ÅKE Malmqvist, Department of Theoretical Chemistry, Chemical Center, Sweden

MANUELA MERCHán, Departamento de Química Física, Universitat de Valéncia, Spain

LUBOS MITAS, National Center for Supercomputing Applications and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Illinois

STEFANO OSS, Dipartimento di Fisica, Università di Trento and Istituto Nazionale di Fisica della Materia, Unità di Trento, Italy

KRISTINE PIERLOOT, Department of Chemistry, University of Leuven, Belgium

W. THOMAS POLLARD, Department of Chemistry, Columbia University, New York

BJÖRN O. ROOS, Department of Theoretical Chemistry, Chemical Center, Sweden

LUIS SERRANO-ANDRÉS, Department of Theoretical Chemistry, Chemical Center, Sweden

PER E. M. SIEGBAHN, Department of Physics, University of Stockholm, Stockholm, Sweden

WALTER THIEL, Institut für Organische Chemie, Universität Zürich, Zürich, Switzerland

GREGORY A. VOTH, Department of Chemistry, University of Pennsylvania, Pennsylvania

C. Z. Wang, Ames Laboratory and Department of Physics, Iowa State University, Ames, Iowa
See More
Quantum Monte Carlo Methods in Chemistry (D. Ceperley & L. Mitas).

Monte Carlo Methods for Real-Time Path Integration (C. Mak & R. Egger).

The Redfield Equation in Condensed-Phase Quantum Dynamics (W. Pollard, et al.).

Path-Integral Centroid Methods in Quantum Statistical Mechanics and Dynamics (G. Voth).

Multiconfigurational Perturbation Theory: Applications in Electronic Spectroscopy (B. Roos, et al.).

Electronic Structure Calculations for Molecules Containing Transition Metals (P. Siegbahn).

The Interface Between Electronic Structure Theory and Reaction Dynamics by Reaction Path Methods (M. Collins).

Algebraic Models in Molecular Spectroscopy (S. Oss).

Tight-Binding Molecular Dynamics Studies of Covalent Systems (C. Wang & K. Ho).

Perspectives on Semiempirical Molecular Orbital Theory (W. Thiel).

Indexes.
See More

Related Titles

Back to Top