Thank you for visiting us. We are currently updating our shopping cart and regret to advise that it will be unavailable until September 1, 2014. We apologise for any inconvenience and look forward to serving you again.

Wiley
Wiley.com
Print this page Share

Independent Component Analysis

ISBN: 978-0-471-40540-5
504 pages
June 2001
Independent Component Analysis (047140540X) cover image
A comprehensive introduction to ICA for students and practitioners
Independent Component Analysis (ICA) is one of the most exciting new topics in fields such as neural networks, advanced statistics, and signal processing. This is the first book to provide a comprehensive introduction to this new technique complete with the fundamental mathematical background needed to understand and utilize it. It offers a general overview of the basics of ICA, important solutions and algorithms, and in-depth coverage of new applications in image processing, telecommunications, audio signal processing, and more.
Independent Component Analysis is divided into four sections that cover:
* General mathematical concepts utilized in the book
* The basic ICA model and its solution
* Various extensions of the basic ICA model
* Real-world applications for ICA models
Authors Hyvarinen, Karhunen, and Oja are well known for their contributions to the development of ICA and here cover all the relevant theory, new algorithms, and applications in various fields. Researchers, students, and practitioners from a variety of disciplines will find this accessible volume both helpful and informative.
See More
Preface.

Introduction.

MATHEMATICAL PRELIMINARIES.

Random Vectors and Independence.

Gradients and Optimization Methods.

Estimation Theory.

Information Theory.

Principal Component Analysis and Whitening.

BASIC INDEPENDENT COMPONENT ANALYSIS.

What is Independent Component Analysis?

ICA by Maximization of Nongaussianity.

ICA by Maximum Likelihood Estimation.

ICA by Minimization of Mutual Information.

ICA by Tensorial Methods.

ICA by Nonlinear Decorrelation and Nonlinear PCA.

Practical Considerations.

Overview and Comparison of Basic ICA Methods.

EXTENSIONS AND RELATED METHODS.

Noisy ICA.

ICA with Overcomplete Bases.

Nonlinear ICA.

Methods using Time Structure.

Convolutive Mixtures and Blind Deconvolution.

Other Extensions.

APPLICATIONS OF ICA.

Feature Extraction by ICA.

Brain Imaging Applications.

Telecommunications.

Other Applications.

References.

Index.
See More
AAPO HYVÄRINEN, PhD, is Senior Fellow of the Academy of Finland and works at the Neural Networks Research Center of Helsinki University of Technology in Finland.
JUHA KARHUNEN and ERKKI OJA are professors at the Neural Networks Research Center of Helsinki University of Technology in Finland.
See More
"...researchers...introduce independent component analysis as a statistical and computational technique for revealing hidden factors that underlie sets of random variables, measurements, or signals." (SciTech Book News, Vol. 25, No. 4, December 2001)
See More
Buy Both and Save 25%!
+

Independent Component Analysis (US $182.00)

-and- Neural-Based Orthogonal Data Fitting: The EXIN Neural Networks (US $101.95)

Total List Price: US $283.95
Discounted Price: US $212.96 (Save: US $70.99)

Buy Both
Cannot be combined with any other offers. Learn more.
Back to Top