Ramsey Theory, 2nd EditionISBN: 9780471500469
208 pages
March 1990

Description
Praise for the First Edition
"Anyone interested in getting an introduction to Ramsey theory
will find this illuminating..."
—MAA Reviews
Covering all the major concepts, proofs, and theorems, the Second Edition of Ramsey Theory is the ultimate guide to understanding every aspect of Shelah’s proof, as well as the original proof of van der Waerden. The book offers a historical perspective of Ramsey’s fundamental paper from 1930 and Erdos’ and Szekeres’ article from 1935, while placing the various theorems in the context of T. S. Motzkin’s thought on the subject of “Complete Disorder is Impossible.”
Ramsey Theory, Second Edition includes new and exciting coverage of Graph Ramsey Theory and Euclidean Ramsey Theory and also relates Ramsey Theory to other areas in discrete mathematics. In addition, the book features the unprovability results of Paris and Harrington and the methods from topological dynamics pioneered by Furstenburg.
Featuring worked proofs and outside applications, Ramsey Theory, Second Edition addresses:
 Ramsey and density theorems on both broad and meticulous scales
 Extentions and implications of van der Waerden’s Theorem, the HalesJewett Theorem, Roth’s Theorem, Rado’s Theorem, Szemeredi’s Theorem, and the Shelah Proof
 Regular homogeneous and nonhomogeneous systems and equations
 Special cases and broader interdisciplinary applications of Ramsey Theory principles
An invaluable reference for professional mathematicians working in discrete mathematics, combinatorics, and algorithms, Ramsey Theory, Second Edition is the definitive work on the subject.
Table of Contents
Sets.
Progressions.
Equations.
Numbers.
Particulars.
Beyond Combinatorics.
References.
Index.