Thank you for visiting us. We are currently updating our shopping cart and regret to advise that it will be unavailable until September 1, 2014. We apologise for any inconvenience and look forward to serving you again.

Print this page Share

Linear and Nonlinear Structural Mechanics

ISBN: 978-0-471-59356-0
763 pages
July 2004
Linear and Nonlinear Structural Mechanics (0471593567) cover image
* Explains the physical meaning of linear and nonlinear structural mechanics.
* Shows how to perform nonlinear structural analysis.
* Points out important nonlinear structural dynamics behaviors.
* Provides ready-to-use governing equations.
See More

1. Introduction.

1.1 Structural Elements.

1.2 Nonlinearities.

1.3 Composite Materials.

1.4 Damping.

1.5 Dynamic Characteristics of Linear Discrete Systems.

1.6 Dynamic Characteristics of Nonlinear Discrete Systems

1.7 Analyses of Linear Continuous Systems.

1.8 Analyses of Nonlinear Continuous Systems.

2. Elasticity.

2.1 Principles of Dynamics.

2.2 Strain-Displacement Relations.

2.3 Transformation of Strains and Stresses.

2.4 Stress-Strain Relations.

2.5 Governing Equations.

3. Strings and Cables.

3.1 Modeling of Taut Strings.

3.2 Reduction of String Model to Two Equations.

3.3 Nonlinear Response of Strings.

3.4 Modeling of Cables.

3.5 Reduction of Cable Model to Two Equations.

3.6 Natural Frequencies and Modes of Cables.

3.7 Discretization of the Cable Equations.

3.8 Single-Mode Response with Direct Approach.

3.9 Single-Mode Response with Discretization Approach.

3.10 Extensional Bars.

4. Beams.

4.1 Introduction.

4.2 Linear Euler-Bernoulli Beam Theory.

4.3 Linear Shear-Deformable Beam Theories.

4.4 Mathematics for Nonlinear Modeling.

4.5 Nonlinear 2-D Euler-Bernoulli Beam Theory.

4.6 Nonlinear 3-D Euler-Bernoulli Beam Theory.

4.7 Nonlinear 3-D Curved Beam Theory Accounting for Warpings.

5. Dynamics of Beams.

5.1 Parametrically Excited Cantilever Beams.

5.2 Transversely Excited Cantilever Beams.

5.3 Clamped-Clamped Buckled Beams.

5.4 Microbeams.

6. Surface Analysis.

6.1 Initial Curvatures.

6.2 Inplane Strains and Deformed Curvatures.

6.3 Orthogonal Virtual Rotations.

6.4 Variation of Curvatures.

6.5 Local Displacements and Jaumann Strains.

7. Plates.

7.1 Introduction.

7.2 Linear Classical Plate Theory.

7.3 Linear Shear-Deformable Plate Theories.

7.4 Nonlinear Classical Plate Theory.

7.5 Nonlinear Modeling of Rectangular Surfaces.

7.6 General Nonlinear Classical Plate Theory.

7.7 Nonlinear Shear-Deformable Plate Theory.

7.8 Nonlinear Layerwise Shear-Deformable Plate Theory.

8. Dynamics of Plates.

8.1 Linear Vibrations of Rectangular Plates.

8.2 Linear Vibrations of Membranes.

8.3 Linear Vibrations of Circular and Annular Plates.

8.4 Nonlinear Vibrations of Circular and Annular Plates.

8.5 Nonlinear Vibrations of Rotating Disks.

8.6 Nonlinear Vibrations of Near-Square Plates.

8.7 Micropumps.

8.8 Thermally Loaded Plates.

9. Shells.

9.1 Introduction.

9.2 Linear Classical Shell Theory.

9.3 Linear Shear-Deformable Shell Theories.

9.4 Nonlinear Classical Theory for Double-Curved Shells.

9.5 Nonlinear Shear-Deformable Theories for Circular Cylindrical Shells.

9.6 Nonlinear Layerwise Shear-Deformable Shell Theory.

9.7 Nonlinear Dynamics of Infinitely Long Circular Cylindrical Shells.

9.8 Nonlinear Dynamics of Axisymmetric Motion of Closed Spherical Shells.


Subject Index.

See More
ALI H. NAYFEH received his BS in engineering science and his MS and PhD in aeronautics and astronautics from Stanford University. He holds honorary doctorates from Marine Technical University, Russia, Technical University of Munich, Germany, and Politechnika Szczecinska, Poland. He is currently University Distinguished Professor of Engineering at Virginia Tech. He is the Editor of the Wiley Series in Nonlinear Science and Editor in Chief of Nonlinear Dynamics and the Journal of Vibration and Control.
PERNGJIN FRANK PAI received his PhD in engineering mechanics from Virginia Polytechnic Institute and State University. He is the C. W. LaPierre Professor of Mechanical and Aerospace Engineering at the University of Missouri-Columbia. His research concentrates on highly flexible deployable/inflatable structures, structural damage detection, and nonlinear finite elements (
See More
"…useful as a graduate level textbook as well as a functional handbook for the professional engineer." (E-STREAMS, February 2005)
See More
Buy Both and Save 25%!

Linear and Nonlinear Structural Mechanics (US $148.00)

-and- The Method of Normal Forms, 2nd, Updated and Enlarged Edition (US $150.00)

Total List Price: US $298.00
Discounted Price: US $223.50 (Save: US $74.50)

Buy Both
Cannot be combined with any other offers. Learn more.
Back to Top