Dear customers, please be informed that our shopping cart will be unavailable between August 21 and September 1, 2014, as we will be making some changes to serve you better. To minimise any possible delivery disruption, we encourage you to make your purchases before August 21. We appreciate your understanding and apologise for any inconvenience.

Wiley
Wiley.com
Print this page Share

Wastewater Sludge Processing

ISBN: 978-0-471-70054-8
354 pages
June 2006
Wastewater Sludge Processing (0471700541) cover image
Reap the benefits of sludge

The processing of wastewater sludge for use or disposal has been a continuing challenge for municipal agencies. Yet, whensludge is properly processed, the resulting nutrient-rich product--biosolids--can be a valuable resource for agriculture and other uses. Wastewater Sludge Processing brings together a wide body of knowledge from the field to examine how to effectively process sludge to reap its benefits, yet protect public health.

Presented in a format useful as both a reference for practicing environmental engineers and a textbook for graduatestudents, this book discusses unit operations used for processing sludge and the available methods for final disposition of the processed product. Topics discussed include sludge quantities and characteristics, thickening and dewatering, aerobicand anaerobic digestion, alkaline stabilization, composting, thermal drying and incineration, energy consumption, and the beneficial use of biosolids.

COMPREHENSIVE IN ITS COVERAGE, THE TEXT:
* Describes new and emerging technologies as well as international methods
* Compares different types of sludge processing methods
* Explains both municipal and industrial treatment technologies

Written by authors with decades of experience in the field, Wastewater Sludge Processing is an invaluable tool for anyone planning, designing, and implementing municipal wastewater sludge management projects.
See More
Chapter 1. Introduction.

1.1 Introduction.

1.2 40 CFR Part 503 Regulation.

1.2.1 General Provisions.

1.2.2 Land Application.

1.2.3 Surface Disposal.

1.2.4 Pathogen and Vector Attraction Reduction.

1.2.5 Incineration.

Chapter 2. Sludge Quantities and Characteristics.

2.1 Types of Sludge.

2.1.1 Primary Sludge.

2.1.2 Secondary Sludge.

2.1.3 Chemical Sludge.

2.1.4 Other Wastewater Residuals.

2.2 Sludge Quantity.

2.2.1 Primary Sludge.

2.2.2 Secondary Sludge.

2.2.3 Activated Sludge.

2.2.4 Attached Growth System Sludge.

2.2.5 Chemical sludge.

2.3 Sludge Characteristics.

2.3.1 Primary Sludge.

2.3.2 Activated Sludge.

2.3.3 Physical and Biological Properties.

2.4 Mass Balance.

Chapter 3. Thickening and Dewatering.

3.1 Introduction.

3.2 Conditioning.

3.2.1 Factors Affecting Conditioning.

3.2.2 Chemical Conditioning.

3.2.3 Other Conditioning Methods.

3.3 Thickening.

3.3.1 Gravity Thickening.

3.3.2 Dissolved Air Flotation Thickening.

3.3.3 Centrifugal Thickening.

3.3.4 Gravity Belt Thickening.

3.3.5 Rotary Drum Thickening.

3.3.6 Miscellaneous Thickening Methods.

3.4 Dewatering.

3.4.1 Centrifugal Dewatering.

3.4.2 Belt Filter Press.

3.4.3 Pressure Filter Press.

3.4.4 Drying Beds.

3.4.5 Other Dewatering Methods.

Chapter 4. Aerobic Digestion.

4.1 Introduction.

4.1.1 Process Theory.

4.2 Conventional Aerobic Digestion.

4.2.1 Process Design Considerations.

4.2.2 System Design Considerations.

4.2.3 Operational Considerations.

4.3 Process Variations.

4.3.1 High-Purity Oxygen Digestion.

4.3.2 Low Temperature Aerobic Digestion.

4.3.3 Dual Digestion.

4.3.4 Mesophilic Aerobic Digestion.

4.3.5 Autothermal Thermophilic Aerobic Digestion.

4.3.6 Technological Improvements.

Chapter 5. Anaerobic Digestion.

5.1 Introduction.

5.1.1 Advantages and Disadvantages.

5.1.2 Theory of Anaerobic Digestion.

5.2 Environmental Factors.

5.2.1 Solids and Hydraulic Retention Times.

5.2.2 Temperature.

5.2.3 pH and Alkalinity.

5.2.4 Toxic Materials.

5.3 Process Variations.

5.3.1 Low-Rate Digestion.

5.3.2 High-Rate Digestion.

5.3.3 Thermophilic Digestion.

5.3.4 Two-Stage Digestion.

5.3.5 Two-Phase Digestion.

5.4 Process Design.

5.4.1 Per Capita Basis.

5.4.2 Solids Loading.

5.4.3 Solids Retention Time.

5.4.4 Volatile Solids Reduction.

5.4.5 Gas Production.

5.5 System Component Design.

5.5.1 Tank Design.

5.5.2 Digester Covers.

5.5.3 .

5.5.4 Heating.

5.5.5 Gas Usage.

5.5.6 Design Example 5-1.

5.6 Operational Considerations.

5.6.1 Reactor Performance.

5.6.2 Odor Control.

5.6.3 Supernatant.

5.6.4 Struvite.

5.6.5 Digester Cleaning.

Chapter 6. Alkaline Stabilization.

6.1 Introduction.

6.1.1 Advantages and Disadvantages.

6.1.2 Process Theory.

6.2 Process Application.

6.2.1 Liquid Lime Stabilization.

6.2.2 Dry Lime Stabilization.

6.2.3 Advanced Alkaline Stabilization Technologies.

6.3 Process Design.

6.3.1 Sludge Characteristics.

6.3.2 Contact Time and pH.

6.3.3 Lime Dosage.

6.3.4 Alkaline Material Storage.

6.3.5 Lime Feeding.

6.3.6 Liquid Lime Mixing.

6.3.7 Dry Lime Mixing.

6.3.8 Design Example 6-1.

6.4 Process Performance.

6.4.1 Odor Reduction.

6.4.2 Pathogen reduction.

6.4.3 Dewatering Characteristics.

Chapter 7. Composting.

7.1 Introduction.

7.1.1 Composting Process.

7.1.2 Composting Methods.

7.1.3 Advantages and Disadvantages of Composting.

7.1.4 Zoological Characteristics of Compost.

7.2 Process Description.

7.2.1 Factors Influencing Composting.

7.2.2 Windrow Process.

7.2.3 Aerated Static Pile process.

7.2.4 In-Vessel Process.

7.2.5 Design Considerations.

7.3 Theoretical Aspects of Composting.

7.3.1Design Example 7-1.

7.4 New Technology in Composting.

7.4.1 Organic Content.

7.4.2 Odor.

7.4.3 Temperature and Moisture.

7.4.4 Composting Mixture.

7.4.5 Composting Process Control.

7.4.6 Design Example 7-2.

7.4.7 pH.

7.5 Examples of Composting in Europe.

7.6 Examples of Composting in the United States.

Chapter 8. Thermal Drying and Incineration.

8.1 Introduction.

8.2 Thermal Drying.

8.2.1 Methods of Thermal Drying.

8.2.2 Design Considerations.

8.3 Incineration.

8.3.1Methods of Incineration.

8.3.2 Design Considerations.

Chapter 9. Comparison of Energy Consumption.

9.1 Introduction.

9.1.1 Anaerobic Digestion.

9.1.2 Incineration.

9.1.3 Composting.

9.1.4 Comparison of Thermal Drying and Composting.

9.1.5 Conclusion.

Chapter 10. Beneficial Use of Biosolids.

10.1 Introduction.

10.2 Requirements for Beneficial Use.

10.2.1 Pollutant Limits.

10.2.2 Pathogen Reduction.

10.2.3 Vector Attraction Reduction.

10.2.4 Management Practices.

10.2.5 Surface Disposal.

10.3 Land Application.

10.3.1 Site Evaluation and Selection.

10.3.2 Design Application Rates.

10.3.3 Application Methods.

10.3.4 Application to Dedicated Lands.

10.3.5 Conveyance and Storage of Biosolids.

10.4 Beneficial Use of Biosolids in Russia.

10.4.1 Pathogens.

10.4.2 Heavy Metals.

A-1 Abbreviations for SI Units.

A-2 Abbreviations for U.S. Customary Units.

A-3 Conversion from SI Units to U.S. Customary Units.

A-4 Conversion from U.S. Customary Units to SI Units.

See More
IZRAIL S. TUROVSKIY is a wastewater and biosolids consultant in Jacksonville, Florida. He received a BS degree in civil engineering from Civil Engineering Institute, St. Petersburg, Russia; an MS degree in sanitary engineeringfrom Civil Engineering Institute, Moscow, Russia; and a DSc degree in environmental engineering from Municipal Academy,Moscow. He has more than fifty years of experience in environmental engineering, including time as head of the All-UnionResearch Institute of Water Supply, Sewage Systems, and Hydrotechnical Structures in Moscow. Dr. Turovskiy has patentsin Russia, France, Germany, Italy, Finland, and the United States. He has also authored or coauthored more than 200technical publications including eight books.

P. K. MATHAI is a senior project manager and Associate Fellow in environmental engineering with Jacobs Civil, Inc. in St. Louis, Missouri. He received a BS degree in civil engineering from University of Kerala, India, and an MS degree in environmental engineering from University of Dayton, Ohio. He has over thirty years of wide-ranging experience in environmental engineering and has been involved in the planning, design, and technical review of over sixty wastewater treatment plants and sludge processing facilities. He is a registered professional engineer in Missouri, Illinois, Ohio, Kentucky, and Maryland.

See More
"...the best-written, most comprehensive and well-illustrated text I have recently reviewed." (Journal of Hazardous Materials, January 2007)

"An important addition to the literature in this specialized field." (CHOICE, December 2006)

"…brings together a wide body of knowledge…useful as both a reference for practicing environmental engineers and a textbook for graduate students…" (Journal of the American Water Resources Association, August 2006)

See More
Buy Both and Save 25%!
+

Wastewater Sludge Processing (US $107.95)

-and- Practical Wastewater Treatment (US $139.00)

Total List Price: US $246.95
Discounted Price: US $185.21 (Save: US $61.74)

Buy Both
Cannot be combined with any other offers. Learn more.

Related Titles

Back to Top