Wiley.com
Print this page Share

Markov Decision Processes: Discrete Stochastic Dynamic Programming

ISBN: 978-0-471-72782-8
684 pages
March 2005
Markov Decision Processes: Discrete Stochastic Dynamic Programming (0471727822) cover image

Description

The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists.

"This text is unique in bringing together so many results hitherto found only in part in other texts and papers. . . . The text is fairly self-contained, inclusive of some basic mathematical results needed, and provides a rich diet of examples, applications, and exercises. The bibliographical material at the end of each chapter is excellent, not only from a historical perspective, but because it is valuable for researchers in acquiring a good perspective of the MDP research potential."
—Zentralblatt fur Mathematik

". . . it is of great value to advanced-level students, researchers, and professional practitioners of this field to have now a complete volume (with more than 600 pages) devoted to this topic. . . . Markov Decision Processes: Discrete Stochastic Dynamic Programming represents an up-to-date, unified, and rigorous treatment of theoretical and computational aspects of discrete-time Markov decision processes."
—Journal of the American Statistical Association

See More

Table of Contents

Preface.

1. Introduction.

2. Model Formulation.

3. Examples.

4. Finite-Horizon Markov Decision Processes.

5. Infinite-Horizon Models: Foundations.

6. Discounted Markov Decision Problems.

7. The Expected Total-Reward. Criterion.

8. Average Reward and Related Criteria.

9. The Average Reward Criterion-Multichain and Communicating Models.

10. Sensitive Discount Optimality.

11. Continuous-Time Models.

Afterword.

Notation.

Appendix A. Markov Chains.

Appendix B. Semicontinuous Functions.

Appendix C. Normed Linear Spaces.

Appendix D. Linear Programming.

Bibliography.

Index.

See More

Author Information

Martin L. Puterman, PhD, is Advisory Board Professor of Operations and Director of the Centre for Operations Excellence at The University of British Columbia in Vancouver, Canada.
See More

Buy Both and Save 25%!

+

Markov Decision Processes: Discrete Stochastic Dynamic Programming (US $156.00)

-and- Bayesian Analysis of Stochastic Process Models (US $115.95)

Total List Price: US $271.95
Discounted Price: US $203.96 (Save: US $67.99)

Buy Both
Cannot be combined with any other offers. Learn more.

Related Titles

Back to Top