Optical Signal ProcessingISBN: 9780471745327
632 pages
June 2005

This introduction to optical signal processing offers an unparalleled look at its underlying theory and selected processing applications. Designed as both a seniorlevel undergraduate or firstyear graduatelevel textbook and a reference for professionals working in the field, Optical Signal Processing begins with a clear, methodical look at the fundamentals of optical signal processing, forming a firm foundation for a discussion of the field's everevolving technological breadth. Beginning with the second half of the book, special emphasis is given to processing wide bandwidth signals in real time by using acoustooptic technology.
Complete with detailed study problems that test the limits of students' knowledge, this comprehensive text forms a complete onevolume account of the theory and applications of optical signal processing. Professional engineers and physicists will find the sheer breadth of uptodate coverage and detail of Optical Signal Processing provides them with an indispensable treatment of this influential technology.
1.1 Introduction.
1.2 Characterization of a General Signal.
1.3 The Sample Function.
1.4 Examples of Signals.
1.5 Spatial Signals.
Chapter 2. Geometrical Optics.
2.1 Introduction.
2.2 Refractive Index and Optical Path.
2.3 Basic Laws of Geometrical Optics.
2.4 Refraction by Prisms.
2.5 The Lens Formulas.
2.6 The General Imaging Condition.
2.7 The Optical Invariant.
2.8 Classification of Lenses and Systems.
2.9 Aberrations.
Chapter 3. Physical Optics.
3.1 Introduction.
3.2 The Fresnel Transform.
3.3 The Fourier Transform.
3.4 Examples of Fourier Transforms.
3.5 The Inverse Fourier Transform.
3.6 Extended FourierTransform Analysis.
3.7 Maximum Information Capacity and Optimum.
3.8 System Coherence.
Chapter 4. Spectrum Analysis.
4.1 Introduction.
4.2 Light Sources.
4.3 Spatial Light Modulators.
4.4 The Detection Process in the Fourier Domain.
4.5 System Performance Parameters.
4.6 Dynamic Range.
4.7 RasterFormat Spectrum Analyzer.
4.8 Summary of the Main Design Concepts.
Chapter 5. Spatial Filtering.
5.1 Introduction.
5.2 Some Fundamentals of Signal Processing.
5.3 Spatial Filters.
5.4 Binary Spatial Filters.
5.5 Magnitude Spatial Filters.
5.6 Phase Spatial Filters.
5.7 RealValued Spatial Filters.
5.8 Experimental Examples.
5.9 The Spatial Carrier Frequency Filter.
5.10 Interferometric Methods for Constructing Filters.
5.11 Information Processing.
5.12 Arbitrary Reference Function.
5.13 Bandwidth Considerations.
5.14 Multiplexed Filters.
5.15 Computer Generated Filters.
5.16 Reference Function Optical Processors.
Chapter 6. Spatial Filtering Systems.
6.1 Introduction.
6.2 Optical Signal Processor and Filter Generator.
6.3 The Readout Module.
6.4 The ReferencetoSignalBeam Ratio.
6.5 Orientation and ScaleSearching Operations.
6.6 Methods for Handling Nonuniform Noise Spectral Densities.
6.7 Other Applications for Optical Spatial Filtering.
6.8 The Effects of Small Displacements of Spatial Filters.
Chapter 7. AcoustoOptic Devices.
7.1 Introduction.
7.2 AcoustoOptic Cell Spatial Light Modulators.
7.3 Dynamic Transfer Relationships.
7.4 Time Delays and Notation.
7.5 PhaseModulation Notation.
7.6 Sign Notation.
7.7 Conjugate Relationships.
7.8 Visualization of the AcoustoOptic Interaction.
7.9 Applications of AcoustoOptic Devices.
Chapter 8. AcoustoOptic Power Spectrum Analyzers.
8.1 Introduction.
8.2 A Basic Spectrum Analyzer.
8.3 Aperture Weighting for Sidelobe Control.
8.4 Resolution.
8.5 Dynamic Range and SignaltoNoise Ratio.
8.6 SpurFree Dynamic Range.
8.7 Photodetector Geometric Considerations.
8.8 Example.
8.9 The SignaltoNoise Ratio.
8.10 Radiometers.
8.11 Summary of the Main Design Concepts.
Chapter 9. Heterodyne Systems.
9.1 Introduction.
9.2 The Interference Between Two Waves.
9.3 Overlapping Waves and Photodetector Size.
9.4 The Optical Radio.
9.5 A Generalized Heterodyne System.
Chapter 10. Heterodyne Spectrum Analysis.
10.1 Introduction.
10.2 Basic Theory.
10.3 Spatial and Temporal Frequencies: The Mixed Transform.
10.4 The Distributed Local Oscillator.
10.5 Photodetector Geometry and Bandwidth.
10.6 Temporal Frequencies of the Reference Bias Term.
10.7 Dynamic Range.
10.8 Comparison of the Heterodyne and Power Spectrum.
10.9 Hybrid Heterodyne Spectrum Analyzer.
Chapter 11. Decimated Arrays and CrossSpectrum Analysis.
11.1 Introduction.
11.2 Background for the Heterodyne Spectrum Analyzer.
11.3 Photodetector Geometry and Detection Scheme.
11.4 The Reference and Scanning Functions.
11.5 SignaltoNoise Radio and Dynamic Range.
11.6 Improved Reference Waveform.
11.7 The CrossSpectrum Analyzer.
Chapter 12. The Heterodyne Transform and Signal Excision.
12.1 Introduction.
12.2 The Heterodyne Transform.
12.3 The Temporal Frequency Range of the Baseband Terms.
12.4 Probing Arbitrary ThreeDimensional Fields.
12.5 Signal Excision.
12.6 Arbitrary Filter Function.
Chapter 13. SpaceIntegrating Correlators.
13.1 Introduction.
13.2 ReferenceFunction Correlators.
13.3 Multichannel Operation.
13.4 Heterodyne/Homodyne Detection.
13.5 Homodyne Detection in the Fourier Domain.
13.6 Heterodyne Detection.
13.7 Carrier Frequency Requirements.
13.8 Illumination Requirements.
13.9 Integrate and Dump.
13.10 Some More Configurations.
Chapter 14. TimeIntegrating Systems.
14.1 Introduction.
14.2 Spectrum Analysis.
14.3 TimeIntegrating Correlation.
14.4 Electronic Reference Correlator.
14.5 Comparison of Features.
14.6 Integrated Optical Systems.
Chapter 15. TwoDimensional Processing.
15.1 Introduction.
15.2 TripleProduct Processing.
15.3 Crossed AcoustoOptic Cell Geometry.
15.4 The Bispectrum.
15.5 Spectrum Analysis.
15.6 Ambiguity Function Generation.
15.7 WignerVille Distributions.
15.8 Range and Doppler Signal Processing.
15.9 Optical Transversal Processor for Notch Filtering.
15.10 Phased Array Processing.
Appendix I.
Appendix II.
References.
Bibliography.
Index.