Ebook
Introduction to Electromagnetic Compatibility, 2nd EditionISBN: 9780471758143
1016 pages
January 2006

As digital devices continue to be produced at increasingly lower costs and with higher speeds, the need for effective electromagnetic compatibility (EMC) design practices has become more critical than ever to avoid unnecessary costs in bringing products into compliance with governmental regulations. The Second Edition of this landmark text has been thoroughly updated and revised to reflect these major developments that affect both academia and the electronics industry. Readers familiar with the First Edition will find much new material, including:
* Latest U.S. and international regulatory requirements
* PSpice used throughout the textbook to simulate EMC analysis solutions
* Methods of designing for Signal Integrity
* Fortran programs for the simulation of Crosstalk supplied on a CD
* OrCAD(r) PSpice(r) Release 10.0 and Version 8 Demo Edition software supplied on a CD
* The final chapter on System Design for EMC completely rewritten
* The chapter on Crosstalk rewritten to simplify the mathematics
Detailed, workedout examples are now included throughout the text. In addition, review exercises are now included following the discussion of each important topic to help readers assess their grasp of the material. Several appendices are new to this edition including Phasor Analysis of Electric Circuits, The Electromagnetic Field Equations and Waves, Computer Codes for Calculating the PerUnitLength Parameters and Crosstalk of Multiconductor Transmission Lines, and a SPICE (PSPICE) tutorial.
Now thoroughly updated, the Second Edition of Introduction to Electromagnetic Compatibility remains the textbook of choice for university/college EMC courses as well as a reference for EMC design engineers.
An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Preface xvii
1 Introduction to Electromagnetic Compatibility (EMC) 1
1.1 Aspects of EMC 3
1.2 History of EMC 10
1.3 Examples 12
1.4 Electrical Dimensions and Waves 14
1.5 Decibels and Common EMC Units 23
1.5.1 Power Loss in Cables 32
1.5.2 Signal Source Specification 37
Problems 43
References 48
2 EMC Requirements for Electronic Systems 49
2.1 Governmental Requirements 50
2.1.1 Requirements for Commercial Products Marketed in the United States 50
2.1.2 Requirements for Commercial Products Marketed outside the United States 55
2.1.3 Requirements for Military Products Marketed in the United States 60
2.1.4 Measurement of Emissions for Verification of Compliance 62
2.1.5 Typical Product Emissions 72
2.1.6 A Simple Example to Illustrate the Difficulty in Meeting the Regulatory Limits 78
2.2 Additional Product Requirements 79
2.2.1 Radiated Susceptibility (Immunity) 81
2.2.2 Conducted Susceptibility (Immunity) 81
2.2.3 Electrostatic Discharge (ESD) 81
2.2.4 Requirements for Commercial Aircraft 82
2.2.5 Requirements for Commercial Vehicles 82
2.3 Design Constraints for Products 82
2.4 Advantages of EMC Design 84
Problems 86
References 89
3 Signal Spectra—the Relationship between the Time Domain and the Frequency Domain 91
3.1 Periodic Signals 91
3.1.1 The Fourier Series Representation of Periodic Signals 94
3.1.2 Response of Linear Systems to Periodic Input Signals 104
3.1.3 Important Computational Techniques 111
3.2 Spectra of Digital Waveforms 118
3.2.1 The Spectrum of Trapezoidal (Clock) Waveforms 118
3.2.2 Spectral Bounds for Trapezoidal Waveforms 122
3.2.3 Use of Spectral Bounds in Computing Bounds on the Output Spectrum of a Linear System 140
3.3 Spectrum Analyzers 142
3.3.1 Basic Principles 142
3.3.2 Peak versus QuasiPeak versus Average 146
3.4 Representation of Nonperiodic Waveforms 148
3.4.1 The Fourier Transform 148
3.4.2 Response of Linear Systems to Nonperiodic Inputs 151
3.5 Representation of Random (Data) Signals 151
3.6 Use of SPICE (PSPICE) In Fourier Analysis 155
Problems 167
References 175
4 Transmission Lines and Signal Integrity 177
4.1 The TransmissionLine Equations 181
4.2 The PerUnitLength Parameters 184
4.2.1 WireType Structures 186
4.2.2 Printed Circuit Board (PCB) Structures 199
4.3 The TimeDomain Solution 204
4.3.1 Graphical Solutions 204
4.3.2 The SPICE Model 218
4.4 HighSpeed Digital Interconnects and Signal Integrity 225
4.4.1 Effect of Terminations on the Line Waveforms 230
4.4.2 Matching Schemes for Signal Integrity 238
4.4.3 When Does the Line Not Matter, i.e., When is Matching Not Required? 244
4.4.4 Effects of Line Discontinuities 247
4.5 Sinusoidal Excitation of the Line and the Phasor Solution 260
4.5.1 Voltage and Current as Functions of Position 261
4.5.2 Power Flow 269
4.5.3 Inclusion of Losses 270
4.5.4 Effect of Losses on Signal Integrity 273
4.6 LumpedCircuit Approximate Models 283
Problems 287
References 297
5 Nonideal Behavior of Components 299
5.1 Wires 300
5.1.1 Resistance and Internal Inductance of Wires 304
5.1.2 External Inductance and Capacitance of Parallel Wires 308
5.1.3 Lumped Equivalent Circuits of Parallel Wires 309
5.2 Printed Circuit Board (PCB) Lands 312
5.3 Effect of Component Leads 315
5.4 Resistors 317
5.5 Capacitors 325
5.6 Inductors 336
5.7 Ferromagnetic Materials—Saturation and Frequency Response 340
5.8 Ferrite Beads 343
5.9 CommonMode Chokes 346
5.10 Electromechanical Devices 352
5.10.1 DC Motors 352
5.10.2 Stepper Motors 355
5.10.3 AC Motors 355
5.10.4 Solenoids 356
5.11 Digital Circuit Devices 357
5.12 Effect of Component Variability 358
5.13 Mechanical Switches 359
5.13.1 Arcing at Switch Contacts 360
5.13.2 The Showering Arc 363
5.13.3 Arc Suppression 364
Problems 369
References 375
6 Conducted Emissions and Susceptibility 377
6.1 Measurement of Conducted Emissions 378
6.1.1 The Line Impedance Stabilization Network (LISN) 379
6.1.2 Common and DifferentialMode Currents Again 381
6.2 Power Supply Filters 385
6.2.1 Basic Properties of Filters 385
6.2.2 A Generic Power Supply Filter Topology 388
6.2.3 Effect of Filter Elements on Common and DifferentialMode Currents 390
6.2.4 Separation of Conducted Emissions into Commonand DifferentialMode Components for Diagnostic Purposes 396
6.3 Power Supplies 401
6.3.1 Linear Power Supplies 405
6.3.2 SwitchedMode Power Supplies (SMPS) 406
6.3.3 Effect of Power Supply Components on Conducted Emissions 409
6.4 Power Supply and Filter Placement 414
6.5 Conducted Susceptibility 416
Problems 416
References 419
7 Antennas 421
7.1 Elemental Dipole Antennas 421
7.1.1 The Electric (Hertzian) Dipole 422
7.1.2 The Magnetic Dipole (Loop) 426
7.2 The HalfWave Dipole and QuarterWave Monopole Antennas 429
7.3 Antenna Arrays 440
7.4 Characterization of Antennas 448
7.4.1 Directivity and Gain 448
7.4.2 Effective Aperture 454
7.4.3 Antenna Factor 456
7.4.4 Effects of Balancing and Baluns 460
7.4.5 Impedance Matching and the Use of Pads 463
7.5 The Friis Transmission Equation 466
7.6 Effects of Reflections 470
7.6.1 The Method of Images 470
7.6.2 Normal Incidence of Uniform Plane Waves on Plane, Material Boundaries 470
7.6.3 Multipath Effects 479
7.7 Broadband Measurment Antennas 486
7.7.1 The Biconical Antenna 487
7.7.2 The LogPeriodic Antenna 490
Problems 494
References 501
8 Radiated Emissions and Susceptibility 503
8.1 Simple Emission Models for Wires and PCB Lands 504
8.1.1 DifferentialMode versus CommonMode Currents 504
8.1.2 DifferentialMode Current Emission Model 509
8.1.3 CommonMode Current Emission Model 514
8.1.4 Current Probes 518
8.1.5 Experimental Results 523
8.2 Simple Susceptibility Models for Wires and PCB Lands 533
8.2.1 Experimental Results 544
8.2.2 Shielded Cables and Surface Transfer Impedance 546
Problems 550
References 556
9 Crosstalk 559
9.1 ThreeConductor Transmission Lines and Crosstalk 560
9.2 The TransmissionLine Equations for Lossless Lines 564
9.3 The PerUnitLength Parameters 567
9.3.1 Homogeneous versus Inhomogeneous Media 568
9.3.2 WideSeparation Approximations for Wires 570
9.3.3 Numerical Methods for Other Structures 580
9.4 The Inductive–Capacitive Coupling Approximate Model 595
9.4.1 FrequencyDomain InductiveCapacitive Coupling Model 599
9.4.2 TimeDomain Inductive–Capacitive Coupling Model 612
9.5 LumpedCircuit Approximate Models 624
9.6 An Exact SPICE (PSPICE) Model for Lossless, Coupled Lines 624
9.6.1 Computed versus Experimental Results for Wires 633
9.6.2 Computed versus Experimental Results for PCBs 640
9.7 Shielded Wires 647
9.7.1 PerUnitLength Parameters 648
9.7.2 Inductive and Capacitive Coupling 651
9.7.3 Effect of Shield Grounding 658
9.7.4 Effect of Pigtails 667
9.7.5 Effects of Multiple Shields 669
9.7.6 MTL Model Predictions 675
9.8 Twisted Wires 677
9.8.1 PerUnitLength Parameters 681
9.8.2 Inductive and Capacitive Coupling 685
9.8.3 Effects of Twist 689
9.8.4 Effects of Balancing 698
Problems 701
References 710
10 Shielding 713
10.1 Shielding Effectiveness 718
10.2 Shielding Effectiveness: FarField Sources 721
10.2.1 Exact Solution 721
10.2.2 Approximate Solution 725
10.3 Shielding Effectiveness: NearField Sources 735
10.3.1 Near Field versus Far Field 736
10.3.2 Electric Sources 740
10.3.3 Magnetic Sources 740
10.4 LowFrequency, Magnetic Field Shielding 742
10.5 Effect of Apertures 745
Problems 750
References 751
11 System Design for EMC 753
11.1 Changing the Way We Think about Electrical Phenomena 758
11.1.1 Nonideal Behavior of Components and the Hidden Schematic 758
11.1.2 “Electrons Do Not Read Schematics” 763
11.1.3 What Do We Mean by the Term “Shielding”? 766
11.2 What Do We Mean by the Term “Ground”? 768
11.2.1 Safety Ground 771
11.2.2 Signal Ground 774
11.2.3 Ground Bounce and Partial Inductance 775
11.2.4 Currents Return to Their Source on the Paths of Lowest Impedance 787
11.2.5 Utilizing Mutual Inductance and Image Planes to Force Currents to Return on a Desired Path 793
11.2.6 SinglePoint Grounding, Multipoint Grounding, and Hybrid Grounding 796
11.2.7 Ground Loops and Subsystem Decoupling 802
11.3 Printed Circuit Board (PCB) Design 805
11.3.1 Component Selection 805
11.3.2 Component Speed and Placement 806
11.3.3 Cable I/O Placement and Filtering 808
11.3.4 The Important Ground Grid 810
11.3.5 Power Distribution and Decoupling Capacitors 812
11.3.6 Reduction of Loop Areas 822
11.3.7 MixedSignal PCB Partitioning 823
11.4 System Configuration and Design 827
11.4.1 System Enclosures 827
11.4.2 Power Line Filter Placement 828
11.4.3 Interconnection and Number of Printed Circuit Boards 829
11.4.4 Internal Cable Routing and Connector Placement 831
11.4.5 PCB and Subsystem Placement 832
11.4.6 PCB and Subsystem Decoupling 832
11.4.7 Motor Noise Suppression 832
11.4.8 Electrostatic Discharge (ESD) 834
11.5 Diagnostic Tools 847
11.5.1 The Concept of Dominant Effect in the Diagnosis of EMC Problems 850
Problem 856
References 857
Appendix A The Phasor Solution Method 859
A.1 Solving Differential Equations for Their Sinusoidal, SteadyState Solution 859
A.2 Solving Electric Circuits for Their Sinusoidal, SteadyState Response 863
Problems 867
References 869
Appendix B The Electromagnetic Field Equations and Waves 871
B.1 Vector Analysis 872
B.2 Maxwell’s Equations 881
B.2.1 Faraday’s Law 881
B.2.2 Ampere’s Law 892
B.2.3 Gauss’ Laws 898
B.2.4 Conservation of Charge 900
B.2.5 Constitutive Parameters of the Medium 900
B.3 Boundary Conditions 902
B.4 Sinusoidal Steady State 907
B.5 Power Flow 909
B.6 Uniform Plane Waves 909
B.6.1 Lossless Media 912
B.6.2 Lossy Media 918
B.6.3 Power Flow 922
B.6.4 Conductors versus Dielectrics 923
B.6.5 Skin Depth 925
B.7 Static (DC) Electromagnetic Field Relations—a Special Case 927
B.7.1 Maxwell’s Equations for Static (DC) Fields 927
B.7.2 TwoDimensional Fields and Laplace’s
Equation 928
Problems 930
References 939
Appendix C Computer Codes for Calculating the PerUnitLength (PUL) Parameters and Crosstalk of Multiconductor Transmission Lines 941
C.1 WIDESEP.FOR for Computing the PUL Parameter Matrices of Widely Spaced Wires 942
C.2 RIBBON.FOR for Computing the PUL Parameter Matrices of Ribbon Cables 947
C.3 PCB.FOR for Computing the PUL Parameter Matrices of Printed Circuit Boards 949
C.4 MSTRP.FOR for Computing the PUL Parameter Matrices of Coupled Microstrip Lines 951
C.5 STRPLINE.FOR for Computing the PUL Parameter Matrices of Coupled Striplines 952
C.6 SPICEMTL.FOR for Computing a SPICE (PSPICE) Subcircuit Model of a Lossless, Multiconductor Transmission Line 954
C.7 SPICELPI.FOR For Computing a SPICE (PSPICE) Subcircuit of a LumpedPi Model of a Lossless,
Multiconductor Transmission Line 956
Appendix D A SPICE (PSPICE) Tutorial 959
D.1 Creating the SPICE or PSPICE Program 960
D.2 Circuit Description 961
D.3 Execution Statements 966
D.4 Output Statements 968
D.5 Examples 970
References 974
Index 975
 A thorough revision and updating of the very successful 1992 edition
 The author has designed and introduced the first EMC courses offered in universities. These courses are now offered in all EE departments
 This edition has a wealth of worked examples and problems
 The book will be accompanied by a web site offering additional aides for students and instructors
 EMC standards are set by the government and must be followed for all electronic devices sold in the United States and worldwide
 An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.