Handbook of Aqueous Electrolyte Thermodynamics: Theory & ApplicationISBN: 9780816903504
878 pages
June 1986

Description
Table of Contents
II. THERMODYNAMICS OF SOLUTIONS.
Basic Thermodynamic Functions.
Solutions – Basic Definitions and Concepts.
Equilibrium – Necessary Conditions.
Activities, Activity Coefficients and Standard States.
III. EQUILIBRIUM CONSTANTS.
Ionic and/or Reaction Equilibrium in Aqueous Solutions.
Solubility Equilibria Between Crystals and Saturated Solutions.
VaporLiquid Equilibria in Aqueous Solutions.
Temperature Effects on the Equilibrium Constant.
Estimating Temperature Effects on Heat Capacity and Other Thermodynamic Properties.
Equilibrium Constants from Tabulated Data.
Pressure Effects on the Equilibrium Constant.
Appendix 3.1 – Criss and Cobble Parameters.
IV. ACTIVITY COEFFICIENTS OF SINGLE STRONG ELECTROLYTES.
History.
Bromley’s Method.
Meissner’s Method.
Pitzer’s Method.
Chen’s Method.
Temperature Effects.
Application.
Bromley’s Extended Equation.
Comparison of Temperature Effect Methods.
Appendix 4.1 – Values for Guggenheim’s β Parameter.
Table 1: β Values for Uniunivalent Electrolytes.
Table 2: β and B Values of Biunivalent and Unibivalent Electrolytes from Freezing Points.
Methods for Calculating β.
Appendix 4.2 – Bromley Interaction Parameters.
Table 1: B Values at 25°C Determined by the Method of Least Squares on Log γ to I=6.0 (or less of limited data).
Table 2: Individual Ion Values of B and δ in Aqueous Solutions at 25°C.
Table 3: Bivalent Metal Sulfates at 25°C.
Appendix 4.4 – Pitzer Parameters,
Table 1: Inorganic Acids, Bases and Salts of 11 Type.
Table 2: Salts of Carboxylic Acids (11 Type).
Table 3: Tetraalkylammonium Halides.
Table 4: Sulfonic Acids and Salts (11 Type).
Table 5: Additional 11 Type Organic Salts.
Table 6: Inorganic Compounds of 21 Type.
Table 7: Organic Electrolytes of 21 Type.
Table 8: 31 Electrolytes.
Table 9: 41 Electrolytes.
Table 10: 51 Electrolytes.
Table 11: 22 Electrolytes.
Appendix 4.5 – Pitzer Parameter Derivatives.
Table 1: Temperature Derivatives of Parameters for 11 Electrolytes Evaluated from Calorimetric Data.
Table 2: Temperature Derivatives of Parameters for 21 and 12 Electrolytes Evaluated from Calorimetric Data.
Table 3: Temperature Derivatives of Parameters for 31 and 22 Electrolytes Evaluated from Calorimetric Parameters.
Appendix 46 Chen Parameters.
Table: τ Values Fit for Molality Mean Ionic Activity Coefficient Data of Aqueous Electrolytes at 298.15 K.
V. ACTIVITY COEFFICIENTS OF MULTICOMPONET STRONG ELECTROLYTES.
Guggenheim’s Method for Multicomponent Solutions.
Bromley’s Method for Multicomponent Solutions.
Meissner’s Method for Multicomponent Solutions.
Pitzer’s Method for Multicomponent Solutions.
Application.
Phase Diagram Calculations.
Appendix 5.1 – Values for Pitzer’s θ and ψ Parameters.
Table 1: Parameters for mixed electrolytes with viral coefficient equations (at 25°C).
Table 2: Parameters for the viral coefficient equations at 25°C,
Table 3: Parameters for binary mixtures with a common ion at 25°C.
VI. ACTIVITY COEFFICIENT OF STRONGLY COMPLEXING COMPOUNDS.
Identification of Complexing Electrolytes.
Phosphoric Acid.
Sulfuric Acid.
Zinc Chloride.
Ferric Chloride.
Cuprous Chloride.
Calcium Sulfate.
Sodium Sulfate.
Other Chloride Complexes.
Activity Coefficient Methods.
Summary.
Appendix 6.1 Cuprous Chloride.
Table 1a: Interaction Parameters.
Table 1b: Three Parameter Set.
Table 2: Equilibrium Constants and Heats of Reaction.
Table 3a: Equilibrium Constants and Changes in Thermodynamic Properties for Formation of CuC1¯ and CuC1²¯ from CuC1(s) + nC1¯ = CuC1
Table 3b: Equilibrium Constants and Changes in Thermodynamic Properties for Formation of CuC1¯ and CuC1²¯ from Cu<sup>+</sup> + nC1¯ = CuC1<sub>n</sub><sub>(n1</sub>.
VII. ACTIVITY COEFFICIENTS OF WEAK ELECTROLYTES AND MOLECULAR SPECIES.
Setschénow Equation.
Pitzer Based Equations.
Predictions Based Upon Theoretical Equations.
Appendix 7.1 – Salting Out Parameters for Phenol in Aqueous Salt Solutions at 25°C Celsius.
Appendix 7.2 – Salting Out Parameters from Pawlikowski and Prausnitz for Nonpolar Gases in Common Salt Solutions at Moderate Temperatures.
Table 1: Lennard – Jones Parameters for Nonpolar Gases as Reported by Liabastre (S14).
Table 2: Salting Out Parameters for Strong Electrolytes in Equation (7.18) at 25°C.
Table 3: Temperature Dependence of the Salting Out Parameters for Equation (7.19).
Table 4: Salting Out Parameters for Individual Ions for Equation (7.20).
Table 5: Temperature Dependence of the Salting Out Constants for Individual Loss.
VIII. THERMODYNAMIC FUNCTIONS DERIVED FROM ACTIVITY COEFFICIENTS.
Density.
Enthalpy.
Excess Enthalpy.
Example.
IX. WORKED EXAMPLES.
Model Formulation.
Obtaining Coefficients.
Model Solution.
Specific Examples.
Appendix 9.1 – Parameters for Beutier and Renon’s Method.
Table 1: Temperature fit parameters for equilibrium constants.
Table 2: Temperature fit parameters for Henry’s constants.
Table 3: Pitzer ionion interaction parameters.
Table 4: Temperature fit molecule self interaction parameters.
Table 5: Dielectric effect parameters.
Appendix 9.2 Parameters for Edwards, Maurer, Newman and Prausnitz Method.
Table 1: Temperature fit parameters for equilibrium constants.
Table 2: Temperature fit parameters for Henry’s constants.
Table 3: Ionion interaction parameters.
Table 4: Temperature fit molecule self interaction parameters.
Table 5: Moleculeion interaction parameters.
Appendix 9.3  Fugacity Coefficient Calculation.
Table 1: Pure component parameters.
Table 2: Nonpolar and polar contribution to parameters α and β for four polar gases.
Table 3: Interaction parameter <sup>α</sup><sub>12</sub> for polarnonpolar mixtures.
Table 4: Parameter<sup>α</sup><sub>12</sub> for binary mixtures of nonpolar gases.
Table 5: Interaction parameter <sup>α</sup><sub>12</sub> for polarpolar mixtures.
Appendix 9.4  Brelvi and O’Connell Correlation for Partial Molar Volumes.
Table 1: Characteristic Volumes.
Appendix 9.5 – Gypsum Solubility Study Parameters at 25°C.
Table 1: Binary solution parameters for the Pitzer equations.
Table 2: Mixed electrolyte solution parameters for the Pitzer equations.
Table 3: Gypsum solubility product at 25°C.
Appendix A. Computer Programs for Solving Equilibria Problems.
Appendix B. Selected Thermodynamic Data.
Appendix C. Compiled Thermodynamic Data Sources for Aqueous and Biochemical Systems: An Annotated Bibliography (19301983).
Index.
Author Information
Diane M. Clark is presently a Senior Scientist at OLI System, Inc. Prior to this she worked for Chem Solve, Inc. She received a B.S. in Mathematics and Computer Science from Clarkson College of Technology (now Clarkson University) and is a member of AICHE.
Marshal Rafal is President and founder of OLI Systems, Inc. a world leader in computer software for simulation of aqueous chemistry. Prior to founding OLI in 1971, Dr. Rafal worked at ESSO Mathematics and Systems, Inc. for five years. He received a B.Ch.E. from the Cooper Union and an M.S. Ch.E. and Ph.D. from Northwestern University. Dr. Rafal is a member of AICHE.
Noel C. Scrivner, as a Senior Consultant at the Du Pont Company, consults on the problems of thermodynamics and kinetics companywide. His current interest is in the application of electrolyte thermodynamics to geochemistry problems. He received a B.A. and a B.S. from Rice University and an M.S. and Ph.D. from CarnegieMellon University—all in Chemical Engineering. He is currently chairman of the Design Institute for Physical Property Data (DIPPR) Aqueous Electrolyte Thermodynamic Database project. He is member of AICHE, ACS, Sigma Xi, and American Geophysical Union.