Applied Mathematics And Modeling For Chemical Engineers, 2nd EditionISBN: 9781118024720
400 pages
October 2012

Enables chemical engineers to use mathematics to solve common onthejob problems
With its clear explanations, examples, and problem sets, Applied Mathematics and Modeling for Chemical Engineers has enabled thousands of chemical engineers to apply mathematical principles to successfully solve practical problems. The book introduces traditional techniques to solve ordinary differential equations as well as analytical methods to deal with important classes of finitedifference equations. It then explores techniques for solving partial differential equations from classical methods to finitetransforms, culminating with??numerical methods??including orthogonal collocation.
This Second Edition demonstrates how classical mathematics solves a broad range of new applications that have arisen since the publication of the acclaimed first edition. Readers will find new materials and problems dealing with such topics as:
 Brain implant drug delivery
 Carbon dioxide storage
 Chemical reactions in nanotubes
 Dissolution of pills and pharmaceutical capsules
 Honeycomb reactors used in catalytic converters
 New models of physical phenomena such as bubble coalescence
Like the first edition, this Second Edition provides plenty of worked examples that explain each step on the way to finding a problem's solution. Homework problems at the end of each chapter are designed to encourage readers to more deeply examine the underlying logic of the mathematical techniques used to arrive at the answers. Readers can refer to the references, also at the end of each chapter, to explore individual topics in greater depth. Finally, the text's appendices provide additional information on numerical methods for solving algebraic equations as well as a detailed explanation of numerical integration algorithms.
Applied Mathematics and Modeling for Chemical Engineers is recommended for all students in chemical engineering as well as professional chemical engineers who want to improve their ability to use mathematics to solve common onthejob problems.
Preface to the Second Edition xi
Part I. 1
1. Formulation of Physicochemical Problems 3
1.1 Introduction 3
1.2 Illustration of the Formulation Process (Cooling of Fluids) 3
1.3 Combining Rate and Equilibrium Concepts (Packed Bed Adsorber) 7
1.4 Boundary Conditions and Sign Conventions 8
1.5 Models with Many Variables: Vectors and Matrices 10
1.6 Matrix Definition 10
1.7 Types of Matrices 11
1.8 Matrix Algebra 12
1.9 Useful Row Operations 13
1.10 Direct Elimination Methods 14
1.11 Iterative Methods 18
1.12 Summary of the Model Building Process 19
1.13 Model Hierarchy and its Importance in Analysis 19
Problems 25
2. Solution Techniques for Models Yielding Ordinary Differential Equations 31
2.1 Geometric Basis and Functionality 31
2.2 Classification of ODE 32
2.3 FirstOrder Equations 32
2.4 Solution Methods for SecondOrder Nonlinear Equations 37
2.5 Linear Equations of Higher Order 42
2.6 Coupled Simultaneous ODE 55
2.7 Eigenproblems 59
2.8 Coupled Linear Differential Equations 59
2.9 Summary of Solution Methods for ODE 60
Problems 60
References 73
3. Series Solution Methods and Special Functions 75
3.1 Introduction to Series Methods 75
3.2 Properties of Infinite Series 76
3.3 Method of Frobenius 77
3.4 Summary of the Frobenius Method 85
3.5 Special Functions 86
Problems 93
References 95
4. Integral Functions 97
4.1 Introduction 97
4.2 The Error Function 97
4.3 The Gamma and Beta Functions 98
4.4 The Elliptic Integrals 99
4.5 The Exponential and Trigonometric Integrals 101
Problems 102
References 104
5. StagedProcess Models: The Calculus of Finite Differences 105
5.1 Introduction 105
5.2 Solution Methods for Linear Finite Difference Equations 106
5.3 Particular Solution Methods 109
5.4 Nonlinear Equations (Riccati Equations) 111
Problems 112
References 115
6. Approximate Solution Methods for ODE: Perturbation Methods 117
6.1 Perturbation Methods 117
6.2 The Basic Concepts 120
6.3 The Method of Matched Asymptotic Expansion 122
6.4 Matched Asymptotic Expansions for Coupled Equations 125
Problems 128
References 136
Part II. 137
7. Numerical Solution Methods (Initial Value Problems) 139
7.1 Introduction 139
7.2 Type of Method 142
7.3 Stability 142
7.4 Stiffness 147
7.5 Interpolation and Quadrature 149
7.6 Explicit Integration Methods 150
7.7 Implicit Integration Methods 152
7.8 PredictorCorrector Methods and RungeKutta Methods 152
7.9 RungeKutta Methods 153
7.10 Extrapolation 155
7.11 Step Size Control 155
7.12 Higher Order Integration Methods 156
Problems 156
References 159
8. Approximate Methods for Boundary Value Problems: Weighted Residuals 161
8.1 The Method of Weighted Residuals 161
8.2 Jacobi Polynomials 179
8.3 Lagrange Interpolation Polynomials 172
8.4 Orthogonal Collocation Method 172
8.5 Linear Boundary Value Problem: Dirichlet Boundary Condition 175
8.6 Linear Boundary Value Problem: Robin Boundary Condition 177
8.7 Nonlinear Boundary Value Problem: Dirichlet Boundary Condition 179
8.8 OnePoint Collocation 181
8.9 Summary of Collocation Methods 182
8.10 Concluding Remarks 183
Problems 184
References 192
9. Introduction to Complex Variables and Laplace Transforms 193
9.1 Introduction 193
9.2 Elements of Complex Variables 193
9.3 Elementary Functions of Complex Variables 194
9.4 Multivalued Functions 195
9.5 Continuity Properties for Complex Variables: Analyticity 196
9.6 Integration: Cauchy’s Theorem 198
9.7 Cauchy’s Theory of Residues 201
9.8 Inversion of Laplace Transforms by Contour Integration 202
9.9 Laplace Transformations: Building Blocks 204
9.10 Practical Inversion Methods 209
9.11 Applications of Laplace Transforms for Solutions of ODE 211
9.12 Inversion Theory for Multivalued Functions: the Second Bromwich Path 215
9.13 Numerical Inversion Techniques 218
Problems 221
References 225
10. Solution Techniques for Models Producing PDEs 227
10.1 Introduction 227
10.2 Particular Solutions for PDES 231
10.3 Combination of Variables Method 233
10.4 Separation of Variables Method 238
10.5 Orthogonal Functions and SturmLiouville Conditions 241
10.6 Inhomogeneous Equations 245
10.7 Applications of Laplace Transforms for Solutions of PDES 248
Problems 254
References 271
11. Transform Methods for Linear PDEs 273
11.1 Introduction 273
11.2 Transforms in Finite Domain: SturmLiouville Transforms 273
11.3 Generalized SturmLiouville Integral Transforms 289
Problems 297
References 301
12. Approximate and Numerical Solution Methods for PDEs 303
12.1 Polynomial Approximation 303
12.2 Singular Perturbation 310
12.3 Finite Difference 315
12.4 Orthogonal Collocation for Solving PDEs 324
12.5 Orthogonal Collocation on Finite Elements 330
Problems 335
References 342
Appendix A. Review of Methods for Nonlinear Algebraic Equations 343
Appendix B. Derivation of the FourierMellin Inversion Theorem 351
Appendix C. Table of Laplace Transforms 357
Appendix D. Numerical Integration 363
References 372
Appendix E. Nomenclature 373
Postface 377
Index 379