Wiley
Wiley.com
Print this page Share
E-book

Introduction to Materials Chemistry

ISBN: 978-1-118-21098-7
452 pages
September 2011
Introduction to Materials Chemistry (1118210980) cover image
Introduction to Materials Chemistry will appeal to advanced undergraduates and graduate students in chemistry, materials science,and chemical engineering by leading them stepwise from the elementary chemistry on which materials science depends, through a discussion of the different classes of materials, and ending with a description of how materials are used in devices and general technology.
See More
PREFACE.

PART I INTRODUCTION TO MATERIAL SCIENCE.

1. What Is Materials Chemistry?

A. Different Types of Materials.

B. Uses of Materials.

C. Approaches to Producing New Materials, New Properties, and Uses.

D. Devices and Machines.

E. The Role of Chemistry in Materials Science.

F. A Broader Perspective.

G. Terminology.

H. Example Journals Where Materials Science Publications Can be Found.

I. Study Questions.

2. Fundamental Principles that Underlie Materials Chemistry.

A. Why Are Different Materials Different.

B. The Role of Different Elements.

C. Different Types of Chemical Bonds.

D. Size of Molecular Units.

E. Different Shapes of Component Molecules and Infl uence of Solid-State Structure.

F. Suggestions for Further Reading.

G. Study Questions.

3. Basic Synthesis and Reaction Chemistry.

A. Underlying Principles.

B. Starting Points for Materials Synthesis—Isolation of Elements.

C. Principles that Underlie Materials Synthesis.

D. Illustrative Chemistry of Selected Nonmetallic Elements.

E. Suggestions for Further Reading.

F. Study Questions.

4. Structure Determination and Special Techniques for Materials Characterization.

A. Purpose.

B. Analysis of Bulk Materials.

C. Surface and Thin-Film Analysis Techniques.

D. Solution Analysis Techniques.

E. Suggestions for Further Reading.

F. Study Questions.

PART II DIFFERENT TYPES OF MATERIALS.

5. Small Molecules in Solids.

A. Importance of Small-Molecule Materials.

B. Packing of Small Molecules in the Solid State.

C. Self-Assembly by Crystallization.

D. Spherical Molecules Such as Fullerenes in the Solid State.

E. Disk-Shaped Molecules and Other Flat Structures.

F. Rod-Shaped Molecules.

G. Charge Transfer Complexes.

H. Clathrates—Molecular Inclusion Adducts.

I. Suggestions for Further Reading.

J. Study Questions.

6. Polymers.

A. Overview.

B. Synthesis of Polymers.

C. Structure–Property Relationships and Polymer Design.

D. Polymers in the Solid State.

E. Fabrication of Polymers.

F. Example Polymeric Materials.

G. Future Challenges in Polymeric Materials Science.

H. Suggestions for Further Reading.

I. Study Questions.

7. Glasses and Ceramics.

A. Overview.

B. Oxide Ceramics and Glasses Obtained or Produced Directly from Mineralogical Materials.

C. Oxide Ceramics from Small-Molecule Inorganic and Organometallic Precursors.

D. Nonoxide Ceramics.

E. Fabrication of Ceramics and Glasses.

F. Future Challenges in Ceramics and Glass Science.

G. Suggestions for Further Reading.

H. Study Questions.

8. Metals.

A. Important Aspects of Metal Science and Technology.

B. Isolation of Specific Metals from Their Ores.

C. Corrosion.

D. Solid-State Structure of Metals and Alloys.

E. Electrical Conductivity.

F. The Color of Metals.

G. Thermal Conductivity of Metals.

H. Magnetic Properties of Metals.

I. Mechanical Properties of Metals.

J. Fabrication of Metals.

K. Future Challenges in Metallic Materials.

L. Suggestion for Further Reading.

M. Study Questions.

9. Alloys, Composites, and Defects.

A. Overview.

B. Pure Materials and Homogeneous Solid Solutions.

C. Heterophase Materials.

D. Suggestion for Further Reading.

E. Study Questions.

PART III MATERIALS IN ADVANCED TECHNOLOGY.

10. Semiconductors and Related Materials.

A. Importance of Semiconductors.

B. Semiconductor Theory.

C. Preparation of Semiconductor-Grade Silicon and Compound Semiconductors.

D. Organic Polymer Semiconductors.

E. Photolithography and Microlithography.

F. Photoresists.

G. Electron Beam Lithography.

H. X-Ray Lithography.

I. Circuit Wiring.

J. Semiconductor Devices.

K. Unsolved Problems in Semiconductor Materials Science.

L. Suggestions for Further Reading.

M. Study Questions.

11. Superconductors.

A. Overview.

B. Nomenclature.

C. Synthesis of High-Temperature Superconductors.

D. Solid-State Structure.

E. Theories of Superconduction.

F. Other Superconducting Systems.

G. Current and Proposed Uses for Superconductors.

H. Challenges for the Future.

I. Suggestions for Further Reading.

J. Study Questions.

12. Solid Ionic Conductors: Advanced Materials for Energy Generation and Energy Storage.

A. General Observations.

B. Fuel Cell Materials.

C. Battery Electrolyte Materials.

D. Capacitors and Supercapacitors.

E. Challenges for the Future.

F. Suggestions for Further Reading.

G. Study Questions.

13. Membranes.

A. Background.

B. Porous Membranes.

C. Membranes that Function by a Chemical Reaction.

D. Nonporous Membranes that Do Not React with Participating Molecules.

E. Specific Examples of Materials Used in Solid Polymeric Membranes.

F. Gel Membranes.

G. Testing of Membranes.

H. Sound Transducer Membranes.

I. Challenges for the Future.

J. Suggestions for Further Reading.

K. Study Questions.

14. Optical and Photonic Materials.

A. Overview.

B. Passive Optical Materials.

C. Responsive Optical Materials.

D. Challenges for the Future.

E. Final Comments.

F. Suggestions for Further Reading.

G. Study Questions.

15. Surface Science of Materials.

A. Perspective.

B. Summary of Characterization Methods.

C. Surfaces of Metals.

D. Ceramic Surfaces.

E. Polymer Surfaces.

F. Surfaces of Semiconductors.

G. Assembly of Molecules on Surfaces.

H. Adhesion and Surface Chemistry.

I. Relationship to Other Materials Topics.

J. Suggestions for Further Reading.

K. Study Questions.

16. Biomedical Materials.

A. Special Requirements for Biomedical Materials.

B. Traditional Biomedical Materials.

C. Materials for Specific Medical Applications.

E. Unsolved Problems in Biomedical Materials Science.

F. Suggestions for Further Reading.

G. Study Questions.

17. Materials in Nanoscience and Nanotechnology.

A. Background and Motivation.

B. Synthesis and Fabrication of Nanostructures.

C. Examples of Nanostructures.

D. Major Challenges in Nanoscience and Technology.

E. Suggestions for Further Reading.

F. Study Questions.

GLOSSARY.

INDEX.

See More
HARRY R. ALLCOCK, PhD, is an Evan Pugh Professor of Chemistry at The Pennsylvania State University. His research interests include applications of chemical synthesis to polymer chemistry, materials science, energy research, and biomedicine; and thecorrelation of molecular structure with properties for hybrid inorganic-organic macromolecules and materials. Dr. Allcock has received numerous awards, including four American Chemical Society Awards for his work in polymers and materials science. He has authored or coauthored 530 peer-reviewed articles and has edited, coauthored, or written eight books, including the recent Chemistry and Applicationsof Polyphosphazenes (Wiley). More than 130 graduate students and postdoctoral scientists, as well as numerous undergraduates, have received their research training under his direction.
See More
  • Leads the reader through steps of the elementary chemistry on which materials science depends by discussing the different classes of materials, and ending with a description of how materials are used in devices and general technology.

  • Shows the reader how different types of materials are produced, and why they possess specific properties.

  • Examines how different materials are used in technology.

  • Specific chapters dedicated to preparing students for careers in the design and development of devices in the medical, communications, aerospace, and other advanced technology sectors.

  • Provides an Appendix at the end of the book to explain materials-related terminology that may be unfamiliar to the student.

  • Each chapter contains questions for class discussions or essays. 

  • Provides a separate supplement to adopting professors with suggestions for leading   discussions .

  • Each chapter contains a list of references for further reading and more detailed study.

 

See More
"This book is not only informative and comprehensive for a novice reader, but also a valuable resource for a scientist and/or an industrialist for new and novel challenges." (Materials and Manufacturing Process, June 2009)

"Allcock provides a clear path by first describing basic chemical principles, then distinguishing between the various major materials groups, and finally enriching the student by offering a variety of special examples." (CHOICE, April 2009)

"Proceeding logically from the basics to materials in advanced technology, it covers the fundamentals of materials chemistry, including principles of materials synthesis and materials characterization methods." (Internationale Fachzeitschrift Metall, January 2009)

See More
Back to Top