Print this page Share

Kinetics and Thermodynamics of Multistep Nucleation and Self-Assembly in Nanoscale Materials, Volume 151

Gregoire Nicolis (Editor), Dominique Maes (Editor), Stuart A. Rice (Series Editor), Aaron R. Dinner (Series Editor)
ISBN: 978-1-118-30948-3
320 pages
April 2012
Kinetics and Thermodynamics of Multistep Nucleation and Self-Assembly in Nanoscale Materials, Volume 151 (1118309480) cover image


The Advances in Chemical Physics series—the cutting edge of research in chemical physics

The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series presents contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.

This volume explores:

  • Kinetics and thermodynamics of fluctuation-induced transitions in multistable systems (G. Nicolis and C. Nicolis)

  • Dynamical rare event simulation techniques for equilibrium and nonequilibrium systems (Titus S. van Erp)

  • Confocal depolarized dynamic light scattering (M. Potenza, T. Sanvito, V. Degiorgio, and M. Giglio)

  • The two-step mechanism and the solution-crystal spinodal for nucleation of crystals in solution (Peter G. Vekilov)

  • Experimental studies of two-step nucleation during two-dimensional crystallization of colloidal particles with short-range attraction (John R. Savage, Liquan Pei, and Anthony D. Dinsmore)

  • On the role of metastable intermediate states in the homogeneous nucleation of solids from solution (James F. Lutsko)

  • Effects of protein size on the high-concentration/low-concentration phase transition (Patrick Grosfils)

  • Geometric constraints in the self-assembly of mineral dendrites and platelets (John J. Kozak)

  • What can mesoscopic level in situ observations teach us about kinetics and thermodynamics of protein crystallization? (Mike Sleutel, Dominique Maes, and Alexander Van Driessche)

  • The ability of silica to induce biomimetic crystallization of calcium carbonate (Matthias Kellermeier, Emilio Melero-GarcÍa, Werner Kunz, and Juan Manuel GarcÍa-Ruiz)

See More

Table of Contents

Kinetics and Thermodynamics of Fluctuation-Induced Transitions in Multistable Systems 1
By Gregoire Nicolis and Catherine Nicolis

Dynamical Rare Event Simulation Techniques for Equilibrium and Nonequilibrium Systems 27
By Titus S. Van Erp

Confocal Depolarized Dynamic Light Scattering 61
By M. Potenza, T. Sanvito, V. Degiorgio, and M. Giglio

The Two-Step Mechanism and The Solution-Crystal Spinodal for Nucleation of Crystals in Solution 79
By Peter G. Vekilov

Experimental Studies of Two-Step Nucleation During Two-Dimensional Crystallization of Colloidal Particles with Short-Range Attraction 111
By John R. Savage, Liquan Pei, and Anthony D. Dinsmore

On the Role of Metastable Intermediate States in the Homogeneous Nucleation of Solids from Solution 137
By James F. Lutsko

Effects of Protein Size on the High-Concentration/Low-Concentration Phase Transition 173
By Patrick Grosfils

Geometric Constraints in the Self-Assembly of Mineral Dendrites and Platelets 193
By John J. Kozak

What can Mesoscopic Level IN SITU Observations Teach us About Kinetics and Thermodynamics of Protein Crystallization? 223
By Mike Sleutel, Dominique Maes, and Alexander Van Driessche

The Ability of Silica to Induce Biomimetic Crystallization of Calcium Carbonate 277
By Matthias Kellermeier, Emilio Melero-García, Werner Kunz, and Juan Manuel García-Ruiz

Author Index 309

Subject Index 325

See More

Author Information

Gregoire Nicolis studied engineering at the Technical University of Athens and received his doctorate in physics from the Université libre de Bruxelles, where he is currently Professor Emeritus at the Center for Nonlinear Phenomena and Complex Systems. His research focuses on the theory of irreversible processes, nonlinear phenomena, and complex systems.

Dominique Maes is a Professor at the Institute of Molecular Biology and Biotechnology, Vrije Universiteit Brussel. Her research focuses on microgravity and the crystallization of proteins in space.

Series Editors
Stuart A. Rice
received his master's and doctorate from Harvard University and was a junior fellow at Harvard for two years before joining the faculty of The University of Chicago in 1957, where he is currently the Frank P. Hixon Distinguished Service Professor Emeritus.

Aaron R. Dinner received his bachelor's degree and doctorate from Harvard University, after which he conducted postdoctoral research at the University of Oxford and the University of California, Berkeley. He joined the faculty at The University of Chicago in 2003.

See More

Related Titles

Back to Top