Wiley.com
Print this page Share
E-book

Beyond CMOS Nanodevices 1

ISBN: 978-1-118-98485-7
528 pages
June 2014, Wiley-ISTE
Beyond CMOS Nanodevices 1 (1118984854) cover image

Description

This book offers a comprehensive review of the state-of-the-art in innovative Beyond-CMOS nanodevices for developing novel functionalities, logic and memories dedicated to researchers, engineers and students.  It particularly focuses on the interest of nanostructures and nanodevices (nanowires, small slope switches, 2D layers, nanostructured materials, etc.) for advanced More than Moore (RF-nanosensors-energy harvesters, on-chip electronic cooling, etc.) and Beyond-CMOS logic and memories applications.
See More

Table of Contents

ACKNOWLEDGMENTS xiii

GENERAL INTRODUCTION xv
Francis BALESTRA

PART 1. SILION NANOWIRE BIOCHEMICAL SENSORS 1

PART 1. INTRODUCTION 3
Per-Erik HELLSTRÖM and Mikael ÖSTLING

CHAPTER 1. FABRICATION OF NANOWIRES   5
Jens BOLTEN, Per-Erik HELLSTRÖM, Mikael ÖSTLING, Céline TERNON and Pauline SERRE

1.1. Introduction 5

1.2. Silicon nanowire fabrication with electron beam lithography 6

1.2.1. Key requirements 6

1.2.2. Why electron beam lithography?   7

1.2.3. Lithographic requirements 8

1.2.4. Tools, resist materials and development processes  9

1.2.5. Exposure strategies and proximity effect correction 10

1.2.6. Technology limitations and how to circumvent them  11

1.3. Silicon nanowire fabrication with sidewall transfer lithography   14

1.4. Si nanonet fabrication 17

1.4.1. Si NWs fabrication  18

1.4.2. Si nanonet assembling 19

1.4.3. Si nanonet morphology and properties 19

1.5. Acknowledgments 21

1.6. Bibliography 21

CHAPTER 2. FUNCTIONALIZATION OF SI-BASED NW FETs FOR DNA DETECTION  25
Valérie STAMBOULI, Céline TERNON, Pauline SERRE and Louis FRADETAL

2.1. Introduction 25

2.2. Functionalization process 27

2.3. Functionalization of Si nanonets for DNA biosensing   28

2.3.1. Detection of DNA hybridization on the Si nanonet by fluorescence microscopy  31

2.3.2. Preliminary electrical characterizations of NW networks 33

2.4. Functionalization of SiC nanowire-based sensor for electrical DNA biosensing35

2.4.1. SiC nanowire-based sensor functionalization process  35

2.4.2. DNA electrical detection from SiC nanowire-based sensor 38

2.5. Acknowledgments 39

2.6. Bibliography 40

CHAPTER 3. SENSITIVITY OF SILICON NANOWIRE BIOCHEMICAL SENSORS  43
Pierpaolo PALESTRI, Mireille MOUIS, Aryan AFZALIAN, Luca SELMI, Federico PITTINO, Denis FLANDRE and Gérard GHIBAUDO

3.1. Introduction 43

3.1.1. Definitions 43

3.1.2. Main parameters affecting the sensitivity 47

3.2. Sensitivity and noise  47

3.3. Modeling the sensitivity of Si NW biosensors 50

3.3.1. Modeling the electrolyte 52

3.4. Sensitivity of random arrays of 1D nanostructures    54

3.4.1. Electrical characterization 55

3.4.2. Low-frequency noise characterization 56

3.4.3. Simulation of electron conduction in random networks of 1D nanostructures 56

3.4.4. Discussion  59

3.5. Conclusions 59

3.6. Acknowledgments 60

3.7. Bibliography 60

CHAPTER 4. INTEGRATION OF SILICON NANOWIRES WITH CMOS 65
Per-Erik HELLSTRÖM, Ganesh JAYAKUMAR and Mikael ÖSTLING

4.1. Introduction 65

4.2. Overview of CMOS process technology 66

4.3. Integration of silicon nanowire after BEOL 66

4.4. Integration of silicon nanowires in FEOL  67

4.5. Sensor architecture design 69

4.6. Conclusions 71

4.7. Bibliography 72

CHAPTER 5. PORTABLE, INTEGRATED LOCK-IN-AMPLIFIER-BASED SYSTEM FOR REAL-TIME IMPEDIMETRIC MEASUREMENTS ON NANOWIRES BIOSENSORS 73
Michele ROSSI and Marco TARTAGNI

5.1. Introduction 73

5.2. Portable stand-alone system 74

5.3. Integrated impedimetric interface 76

5.4. Impedimetric measurements on nanowire sensors  78

5.5. Bibliography 81

PART 2. NEW MATERIALS, DEVICES AND TECHNOLOGIES FOR ENERGY HARVESTING 83

PART 2. INTRODUCTION 85
Enrico SANGIORGI

CHAPTER 6. VIBRATIONAL ENERGY HARVESTING 89
Luca LARCHER, Saibal ROY, Dhiman MALLICK, Pranay PODDER, Massimo DE VITTORIO, Teresa TODARO, Francesco GUIDO, Alessandro BERTACCHINI, Ronan HINCHET, Julien KERAUDY and Gustavo ARDILA

6.1. Introduction 89

6.2. Piezoelectric energy transducer 91

6.2.1. Introduction 91

6.2.2. State-of-the-art devices and materials  92

6.2.3. MEMS piezoelectric vibration energy harvesting transducers   95

6.2.4. RMEMS prototypes characterization and discussions of experimental results 102

6.2.5. Near field characterization techniques 104

6.2.6. Dedicated electro-mechanical models for piezoelectric transducer design 106

6.3. Electromagnetic energy transducers   109

6.3.1. Introduction 109

6.3.2. State-of-the-art devices and materials  109

6.3.3. Vibration energy harvester exploiting both the piezoelectric and electromagnetic effect 122

6.3.4. Device design 125

6.4. Bibliography 128

CHAPTER 7. THERMAL ENERGY HARVESTING   135
Mireille MOUIS, Emigdio CHÁVEZ-ÁNGEL, Clivia SOTOMAYOR-TORRES, Francesc ALZINA, Marius V. COSTACHE, Androula G. NASSIOPOULOU, Katerina VALALAKI, Emmanouel HOURDAKIS, Sergio O. VALENZUELA, Bernard VIALA, Dmitry ZAKHAROV, Andrey SHCHEPETOV and Jouni AHOPELTO

7.1. Introduction 135

7.1.1. Basics of thermoelectric conversion 136

7.1.2. Strategies to increase ZT 137

7.1.3. Heavy-metal-free TE generation  140

7.1.4. Alternatives to TE harvesting for self-powered solid-state microsystems 141

7.2. Thermal transport at nanoscale 142

7.2.1. Brief review of nanoscale thermal conductivity  143

7.2.2. The effect of phonon confinement  146

7.2.3. Fabrication of ultrathin free-standing silicon membranes 153

7.2.4. Advanced methods of characterizing phonon dispersion, lifetimes and thermal conductivity    156

7.3. Porous silicon for thermal insulation on silicon wafers  172

7.3.1. Introduction 172

7.3.2. Thermal conductivity of nanostructured porous Si  172

7.3.3. Thermal isolation using thick porous Si layers    176

7.3.4. Thermoelectric generator using porous Si thermal isolation 177

7.4. Spin dependent thermoelectric effects   185

7.4.1. Physical principle and interest for thermal energy harvesting    186

7.4.2. Demonstration of the magnon drag effect 188

7.5. Composites of thermal shape memory alloy and piezoelectric materials   192

7.5.1. Introduction 192

7.5.2. Physical principle and interest for thermal energy harvesting    193

7.5.3. Novelty and realizations 194

7.5.4. Theoretical considerations 195

7.5.5. Examples of use  196

7.5.6. Summary of composite harvesting by the combination of SMA and piezoelectric materials 204

7.6. Conclusions 204

7.7. Bibliography 205

CHAPTER 8. NANOWIRE BASED SOLAR CELLS   221
Mauro ZANUCCOLI, Anne KAMINSKI-CACHOPO, Jérôme MICHALLON, Vincent CONSONNI, Igar SEMENIKHIN, Mehdi DAANOUNE, Frédérique DUCROQUET, David KOHEN, Christine MORIN and Claudio FIEGNA

8.1 Introduction   221

8.2. Design of NW-based solar cells    223

8.2.1. Geometrical optimization of NW-based solar cells by numerical simulations  223

8.2.2. TCAD simulation of NW-based solar cells 230

8.3. Fabrication and opto-electrical characterization of NW-based solar cells 235

8.3.1. Elaboration of NW-based solar cells  235

8.3.2. Opto-electrical characterization of NW-based solar cells 236

8.4 Conclusion   243

8.5 Acknowledgments 243

8.6 Bibliography 243

CHAPTER 9. SMART ENERGY MANAGEMENT AND CONVERSION 249
Wensi WANG, James F. ROHAN, Ningning WANG, Mike HAYES, Aldo ROMANI, Enrico MACRELLI, Michele DINI, Matteo FILIPPI, Marco TARTAGNI and Denis FLANDRE

9.1. Introduction 249

9.2. Power management solutions for energy harvesting devices 251

9.2.1. Ultra-low voltage thermoelectric energy harvesting 251

9.2.2. Sub-1mW photovoltaic energy harvesting 256

9.2.3. Piezoelectric and micro-electromagnetic energy harvesting 260

9.2.4. DC/DC power management for future micro-generator 262

9.3. Sub-mW energy storage solutions    266

9.4. Conclusions 270

9.5. Bibliography 271

PART 3. ON-CHIP ELECTRONIC COOLING    277

CHAPTER 10. TUNNEL JUNCTION ELECTRONIC COOLERS    279
Martin PREST, James RICHARDSON-BULLOCK, Terry WHALL, Evan PARKER and David LEADLEY

10.1. Introduction and motivation 279

10.1.1. Existing cryogenic technology   280

10.2. Tunneling junctions as coolers    281

10.2.1. The NIS junction  281

10.2.2. Cooling power 284

10.2.3. Thermometry 286

10.2.4. The superconductor-insulator-normal metal-insulator-superconductor (SINIS) structure  287

10.2.5. Double junction superconductor-silicon-superconductor (SSmS) cooler 288

10.3. Limitations to cooling  289

10.3.1. States within the superconductor gap 290

10.3.2. Joule heating 291

10.3.3. Series resistance 291

10.3.4. Quasi-particle-related heating   293

10.3.5. Andreev reflection 295

10.4. Heavy fermion-based coolers 297

10.5. Summary   299

10.6. Bibliography  300

CHAPTER 11. SILICON-BASED COOLING ELEMENTS 303
David LEADLEY, Martin PREST, Jouni AHOPELTO, Tom BRIEN, David GUNNARSSON, Phil MAUSKOPF, Juha MUHONEN, Maksym MYRONOV, Hung NGUYEN, Evan PARKER, Mika PRUNNILA, James RICHARDSON-BULLOCK, Vishal SHAH, Terry WHALL and Qing-Tai ZHAO

11.1. Introduction to semiconductor-superconductor tunnel junction coolers   303

11.2. Silicon-based Schottky barrier junctions  304

11.3. Carrier-phonon coupling in strained silicon 308

11.3.1. Measurement of electron-phonon coupling constant  312

11.4. Strained silicon Schottky barrier mK coolers 315

11.5. Silicon mK coolers with an oxide barrier [GUN 13]   318

11.5.1. Reduction of sub-gap leakage   318

11.5.2. Effects of strain 319

11.6. The silicon cold electron bolometer   321

11.7. Integration of detector and electronics  324

11.8. Summary and future prospects    325

11.9. Acknowledgments 327

11.10 Bibliography  327

CHAPTER 12. THERMAL ISOLATION THROUGH NANOSTRUCTURING. 331
David LEADLEY, Vishal SHAH, Jouni AHOPELTO, Francesc ALZINA, Emigdio CHÁVEZ-ÁNGEL, Juha MUHONEN, Maksym MYRONOV, Androula G. NASSIOPOULOU, Hung NGUYEN, Evan PARKER, Jukka PEKOLA, Martin PREST, Mika PRUNNILA, Juan Sebastian REPARAZ, Andrey SHCHEPETOV, Clivia SOTOMAYOR-TORRES, Katerina VALALAKI and Terry WHALL

12.1. Introduction 331

12.2. Lattice cooling by physical nanostructuring 331

12.3. Porous Si membranes as cryogenic thermal isolation platforms 337

12.3.1. Porous Si micro-coldplates    337

12.3.2. Porous Si thermal conductivity  339

12.4. Crystalline membrane platforms    343

12.4.1. Strained germanium membranes   343

12.4.2. Thermal conductance measurements in Si and Ge membranes    350

12.4.3. Epitaxy-compatible thermal isolation platform  355

12.5. Summary of thermal conductance measurements    355

12.6. Acknowledgments. 358

12.7. Bibliography  358

PART 4. NEW MATERIALS, DEVICES AND TECHNOLOGIES FOR RF APPLICATIONS  365

PART 4. INTRODUCTION 367
Androula G. NASSIOPOULOU

CHAPTER 13. SUBSTRATE TECHNOLOGIES FOR SILICON-INTEGRATED RF AND MM-WAVE PASSIVE DEVICES  373
Androula G. NASSIOPOULOU, Panagiotis SARAFIS, Jean-Pierre RASKIN, Hanza ISSA, Philippe FERRARI

13.1. Introduction 373

13.2. High-resistivity Si substrate for RF   374

13.2.1. Losses along coplanar waveguide transmission lines 375

13.2.2. Crosstalk  380

13.2.3. Nonlinearities along CPW lines   384

13.3. Porous Si substrate technology    385

13.3.1. General properties of porous Si   386

13.3.2. Dielectric properties of porous Si  389

13.3.3. Broadband electrical characterization of CPWT Lines on porous Si 393

13.3.4. Inductors on porous Si397

13.3.5. Antennas on porous Si399

13.4. Comparison between HR Si and local porous Si substrate technologies 400

13.4.1. Comparison of similar CPW TLines on different substrates    400

13.4.2. Comparison of inductors on different RF substrates  404

13.5. Design of slow-wave CPWs and filters on porous silicon 404

13.5.1. Slow-wave CPW TLines on porous Si 405

13.5.2. Simulation results for S-CPW TLines 406

13.5.3. Stepped impedance low-pass filter on porous silicon 408

13.5.4. Simulation results for filters    409

13.6. Conclusion 411

13.7. Acknowledgments 411

13.8. Bibliography  411

CHAPTER 14. METAL NANOLINES AND ANTENNAS FOR RF AND MM-WAVE APPLICATIONS 419
Philippe BENECH, Chuan-Lun HSU, Gustavo ARDILA, Panagiotis SARAFIS and Androula G. NASSIOPOULOU

14.1. Introduction 419

14.2. Metal nanowires (nanolines) 420

14.2.1. General properties  420

14.2.2. Transmission nanolines in microstrip configuration: characterization and modeling 426

14.2.3. Transmission nanolines in CPW configuration: fabrication, characterization and modeling 430

14.2.4. Characterization up to 200 GHz   440

14.3. Antennas   441

14.3.1. On-chip antennas: general    441

14.3.2. On-chip antenna characterization method 443

14.3.3. Measurement results 444

14.3.4. Discussion on antenna results   451

14.4. Conclusion 451

14.5. Acknowledgments 452

14.6. Bibliography  452

CHAPTER 15. NANOSTRUCTURED MAGNETIC MATERIALS FOR HIGH-FREQUENCY APPLICATIONS 457
Saibal ROY, Jeffrey GODSELL and Tuhin MAITY

15.1. Introduction 457

15.2. Power conversion and integration   457

15.3. Materials and integration 459

15.4. Controlling the magnetic properties   463

15.5. Magnetic properties of nanocomposite materials    467

15.6. Magnetic properties of nanomodulated continuous films  470

15.7. Conclusion 478

15.8. Bibliography  479

LIST OF AUTHORS  485

INDEX 493

See More

More in this series

Back to Top