Wiley.com
Print this page Share

Flexible Pipes: Advances in Pipes and Pipelines

ISBN: 978-1-119-04126-9
640 pages
April 2017
Flexible Pipes: Advances in Pipes and Pipelines (1119041260) cover image

Description

Recent changes in the codes for building pipelines has led to a boom in the production of new materials that can be used in flexible pipes.  With the use of polymers, steel, and other new materials and variations on existing materials, the construction and, therefore, the installation and operation of flexible pipes is changing and being improved upon all over the world.  The authors of this work have written numerous books and papers on these subjects and are some of the most influential authors on flexible pipes in the world, contributing much of the literature on this subject to the industry.  This new volume is a presentation of some of the most cutting-edge technological advances in technical publishing.

This is the most comprehensive and in-depth book on this subject, covering not just the various materials and their aspects that make them different, but every process that goes into their installation, operation, and design.  The thirty-six chapters, divided up into four different parts, have had not just the authors of this text but literally dozens of other engineers who are some of the world’s leading scientists in this area contribute to the work.  This is the future of pipelines, and it is an important breakthrough.  A must-have for the veteran engineer and student alike, this volume is an important new advancement in the energy industry, a strong link in the chain of the world’s energy production.

See More

Table of Contents

Preface xxi

About the Authors xxiii

Part I Design and Analysis

1 Flexible Pipes and Limit-States Design 3

1.1 I ntroduction 3

1.2 Applications of Flexible Pipe 3

1.2.1 Metal-Based Flexible Pipes 5

1.2.2 Composite-Based Flexible Pipes 7

1.2.3 D esign Codes and Specifications 10

1.3 Comparison between Flexible Pipes and Rigid Pipes 12

1.3.1 Unbonded Flexible Riser vs. Rigid Steel Riser 12

1.3.2 Flexible Jumper vs. Rigid Steel Jumper 12

1.3.3 Flexible Composite Pipe vs. Rigid Pipe 13

1.3.3.1 Material Costs 14

1.3.3.2 I nstallation Costs 14

1.3.3.3 Operational Costs 15

1.3.3.4 Comparison Example 15

1.4 Failure Mode and Design Criteria 15

1.4.1 Unbonded Flexible Pipe 15

1.4.1.1 Failure Modes 15

1.4.1.2 D esign Criteria 17

1.4.2 Flexible Composite Pipe 20

1.4.2.1 Failure Modes 20

1.4.2.2 D esign Criteria 20

1.5 L imit State Design 24

1.5.1 L imit States 24

1.5.2 Reliability-Based Methods 25

References 26

2 Materials and Aging 29

2.1 I ntroduction 29

2.1.1 Unbonded Flexible Pipes 30

2.1.2 Flexible Composite Pipes 34

vi Contents

2.2 Metallic Material 35

2.2.1 Stainless Steel 35

2.2.2 Carbon Steel 36

2.3 Polymer Material 36

2.3.1 Annulus 36

2.3.2 Chemical Resistance 39

2.3.3 Permeation and Permeation Control Systems 41

2.3.3.1 Theory of Gas Permeation 41

2.3.3.2 Permeation Calculation 42

2.3.4 Anti H2S Layer 44

2.4 Aging 45

2.4.1 N onmetallic Material 46

2.4.2 Metallic Material 48

References 49

3 Ancillary Equipment and End Fitting Design 51

3.1 I ntroduction 51

3.1.1 D esign Criteria 51

3.2 Bend Stiffeners and Bellmouths 53

3.2.1 I ntroduction 53

3.2.2 D esign Criteria and Failure Modes 55

3.2.3 D esign Considerations 56

3.2.4 Bellmouths 57

3.3 Bend Restrictor 58

3.4 Buoyancy Modules 59

3.5 Cathodic Protection 60

3.6 Annulus Venting System 61

3.7 E nd Fittings 63

3.7.1 Unbonded Flexible Pipes 64

3.7.1.1 D esign Criteria 64

3.7.1.2 Metallic Materials 66

3.7.1.3 E nd Fittings by Different Manufacturers 66

3.7.2 Flexible Composite Pipes 68

3.7.2.1 D esign Criteria 70

3.7.2.2 Materials 70

3.7.2.3 E nd Fitting Types 71

3.7.2.4 I nstallation 72

References 74

4 Reliability-Based Design Factors 75

4.1 Introduction 75

4.2 Failure Probability 76

4.2.1 L imit State and Failure Mode 76

4.2.2 Failure Probability 76

4.3 Safety Factor Based on Reliability 77

4.3.1 Uncertainties of Resistance and Load Effect 78

4.3.2 L RFD Formulation 79

4.3.3 D esign Process 79

Contents vii

4.4 D esign Example 82

4.4.1 L imit State Function 83

4.4.1.1 Resistance Model for Inner Pressure Load 83

4.4.1.2 L imit State Function 83

4.4.2 Probability Model of Resistance 83

4.4.2.1 Probability Distribution of Resistance Parameters 83

4.4.2.2 Probability Model of Resistance 84

4.4.3 Probability Model of Load Effect 85

4.4.4 Target Reliability 85

4.4.5 Safety Factor Design Results 85

References 87

Part II Unbonded Flexible Pipes

5 Unbonded Flexible Pipe Design 91

5.1 I ntroduction 91

5.2 Applications of Flexible Pipe 92

5.2.1 Flexible Risers 92

5.2.2 Flexible Flowlines 94

5.2.3 L oading and Offloading Hoses 94

5.2.4 Jumper Lines 96

5.2.5 D rilling Risers 97

5.3 Flexible Pipe System and Components 97

5.3.1 I nterlocked Steel Carcass 98

5.3.2 I nternal Polymer Sheath 99

5.3.3 Armor Layers 99

5.3.3.1 Pressure Armor 99

5.3.3.2 Tensile Armor 100

5.3.3.3 Composite Armor 100

5.3.4 E xternal Polymer Sheath 102

5.3.5 Other Layers and Configurations 102

5.3.6 Main Ancillaries 103

5.3.6.1 E nd Fittings 103

5.3.6.2 Bend Stiffener and Bellmouths 104

5.3.6.3 Bend Restrictor 105

5.3.6.4 Buoyancy Modules 106

5.3.6.5 Annulus Venting System 106

References 106

6 Design and Analyses of Unbonded Flexible Pipe 109

6.1 I ntroduction 109

6.2 Flexible Pipe Guidelines 110

6.2.1 API Specification 17K 110

6.2.2 API Specification 17J 111

6.2.2.1 Safety Against Collapse 112

6.2.2.2 D esign Criteria 112

6.2.3 API RP 17B 112

viii Contents

6.3 Material and Mechanical Properties 113

6.3.1 Properties of Sealing Components 114

6.3.1.1 Polymer 114

6.3.1.2 Steel 114

6.3.1.3 Fibres 115

6.3.2 Properties of Armor Components 115

6.3.2.1 Submerged Weight 116

6.3.2.2 Bending Stiffness and Curvature Radius 116

6.3.2.3 Axial Stiffness and Tension Capacity 116

6.3.2.4 Torque Stiffness and Torque Capacity 117

6.4 Analytical Solutions in Flexible Pipe Design 117

6.4.1 Overview 117

6.4.2 Analytical Modeling of Flexible Pipes 117

6.4.3 Analytical Method of Unbonded Flexible Pipes 118

6.4.4 Axis-Symmetric Behavior 120

6.4.4.1 Kinematic Restraint 120

6.4.4.2 Governing Equations 121

6.4.5 Bending Behavior 122

6.5 FE Analysis of Unbonded Flexible Pipe 123

6.5.1 Static Analysis 123

6.5.2 Fatigue Analysis 124

References 126

7 Unbonded Flexible Pipe Under Internal Pressure 129

7.1 I ntroduction 129

7.2 Analytical Solution 130

7.2.1 Polymeric Layer 131

7.2.2 Helically Wound Steel Layer 132

7.2.3 Assembly of Layers 134

7.3 FE Analysis 134

7.4 Results and Discussion 137

7.4.1 General 137

7.4.2 Axial Tension and End Displacement 138

7.4.3 Hoop Stress 138

7.4.4 Axial Stress 141

7.4.4.1 Axial Stress of Model A and Model B 141

7.4.4.2 Axial Stresses of Model C and Model D_141

7.4.5 Comparison of Mises Stress 144

7.5 Conclusions 145

References 146

8 Unbonded Flexible Pipe Under External Pressure 149

8.1 I ntroduction 149

8.2 Finite Element Analysis 151

8.2.1 Simplification 152

8.2.2 Modeling Description 152

8.2.3 Models with Different Stiffness Ratios 153

8.2.4 Models with Different D/t Ratios 154

Contents ix

8.3 FEM Results and Discussion 155

8.3.1 Prediction of Confined External Pressure 155

8.3.1.1 Same D/t Ratio with Different Stiffness Ratios 155

8.3.1.2 D ifferent D/t Ratios with Different Stiffness Ratios 157

8.3.2 Confined Post-Buckling Behavior 158

8.4 Analytical Solution 158

8.5 Test Study 161

8.5.1 Material Characteristics 162

8.5.2 Confined Collapse Tests 163

8.5.3 Test Results 165

8.6 Comparison of Three Methods 167

8.7 Conclusions 168

References 169

9 Unbonded Flexible Pipe Under Tension 171

9.1 I ntroduction 171

9.2 Tension Load 172

9.2.1 Helical Layer 172

9.2.2 Tube Layer 175

9.2.3 Principle of Virtual Work 175

9.3 Results and Discussion 177

9.4 Parametric Study 180

9.4.1 L ay Angle 181

9.4.2 D iameter-to-Thickness 183

9.5 Conclusions 184

References 185

10 Unbonded Flexible Pipe Under Bending 187

10.1 I ntroduction 187

10.2 Helical Layer within No-Slip Range 188

10.2.1 Geometry of Helical Layer 188

10.2.2 Bending Stiffness of Helical Layer 191

10.3 Helical Layer within Slip Range 192

10.3.1 Critical Curvature 192

10.3.2 Axial Force in Helical Wire within Slip Range 194

10.3.3 Axial Force in Helical Wire within No-Slip Range 194

10.3.4 Bending Stiffness of Helical Layer 196

References 197

11 Unbonded Flexible Pipe Under Tension and Internal Pressure 199

11.1 I ntroduction 199

11.2 Analytical Solution 200

11.3 FE Analysis 200

11.3.1 Case 1: Tension Only 201

11.3.2 Case 2: Internal Pressure Only 202

11.3.3 Case 3: Combined Tension and Internal Pressure 202

x Contents

11.4 Results and Discussion 202

11.5 Conclusions 208

References 208

12 Cross-Sectional Design and Case Study for Unbonded Flexible Pipes 211

12.1 I ntroduction 211

12.2 Cross-Sectional Design 212

12.2.1 General Design Requirements 212

12.2.2 Manufacturing Configuration and Material Qualification 213

12.2.2.1 Carcass 213

12.2.2.2 Pressure Sheath 213

12.2.2.3 Pressure Armor 213

12.2.2.4 Tensile Armor 214

12.2.2.5 Tape 214

12.2.2.6 Shield 214

12.3 Case Study 214

12.3.1 D esign Procedure 214

12.3.2 D esign Requirement 214

12.3.3 D esign Method 215

12.3.3.1 Strength Design for Axisymmetric Loads 215

12.3.3.2 Collapse Resistance Design 216

12.3.4 D esign Results 216

12.3.5 L oad Analysis 217

12.3.6 FE Analysis 218

12.4 Conclusions 219

References 220

13 Fatigue Analysis of Unbonded Flexible Pipe 223

13.1 I ntroduction 223

13.2 Theoretical Approach 224

13.2.1 Assumptions 224

13.2.2 E nvironment Conditions 224

13.2.3 Transposition of Forces and Bending Moments 225

13.2.4 Fatigue Design Criteria 225

13.2.4.1 S-N Curves 225

13.2.4.2 Miner’s rule 225

13.3 Case Study 226

13.3.1 I ntroduction 226

13.3.2 Base Case 227

13.4 Conclusions 230

References 230

Contents xi

Part III Steel Reinforced Flexible Pipes

14 Steel Reinforced Flexible Pipe Under Internal Pressure 235

14.1 I ntroduction 235

14.2 Applications 235

14.2.1 Offshore 236

14.2.2 Onshore 236

14.2.3 Rehabilitation 237

14.3 D esign and Manufacturing 237

14.3.1 D esign Codes 237

14.3.2 Manufacturing 237

14.3.2.1 I ntroduction 237

14.3.2.2 I nner and Outer Layers 238

14.3.2.3 Steel Strip Reinforcement Layers 238

14.3.2.4 E nd Fitting 238

14.4 Analytical Solution 240

14.4.1 Mechanical Properties 240

14.4.2 Assumptions 242

14.4.3 Stress Analysis 242

14.4.3.1 L ayer Properties 244

14.4.3.2 Stress-Strain Relations of HDPE Layers 246

14.4.3.3 Stress-Strain Relations of Steel Strip Layers 247

14.4.4 Boundary Condition 248

14.4.4.1 Stress Boundary Condition 248

14.4.4.2 I nterface Condition 248

14.4.4.3 E quilibrium Equation of Axial Force 248

14.4.4.4 Torsion Balance Equation 248

14.5 FE Analysis 249

14.6 Results and Discussion 249

14.6.1 Stress Analysis on Layer 2 249

14.6.2 Stress Analysis Between Layers 252

14.7 Conclusions 253

References 254

15 Steel Reinforced Flexible Pipe Under External Pressure 255

15.1 I ntroduction 255

15.2 E xperimental Tests 256

15.2.1 Material Characteristics 256

15.2.2 Collapse Experiment 256

15.2.3 E xperimental Results 258

15.3 FE Analysis 258

15.4 Simplified Estimation for Collapse Pressure 262

15.5 Parametric Study 264

15.6 Conclusions 266

References 267

xii Contents

16 Steel Reinforced Flexible Pipe Under Pure Tension 269

16.1 I ntroduction 269

16.2 E xperimental Tests 270

16.2.1 Test Processes 270

16.2.2 Test Results and Discussions 270

16.3 FE Analysis 273

16.3.1 E lements and Interactions 273

16.3.2 L oad and Boundary Conditions 274

16.3.3 Material Properties 274

16.4 Comparison and Discussions 275

16.4.1 Comparison between Test and FE Analysis 275

16.4.2 Mechanical Response of PE Layers 276

16.4.3 Mechanical Response of Steel Strips 279

16.5 Conclusions 281

References 282

17 Steel Reinforced Flexible Pipe Under Bending 283

17.1 I ntroduction 283

17.2 FE Analysis 284

17.2.1 Model and Material Properties 284

17.2.2 L oads and Boundary Conditions 285

17.2.3 Analysis Results 285

17.3 Mechanical Behaviors and Discussions 287

17.3.1 I nner PE Layer 287

17.3.2 Outer PE Layer 289

17.3.3 Steel Strip Layers 290

17.4 Conclusions 291

References 291

18 Steel Reinforced Flexible Pipe Under Combined Internal

Pressure and Tension 293

18.1 I ntroduction 293

18.2 Analytical Solution 293

18.2.1 Strain Analysis 293

18.2.2 Stress Analysis 294

18.2.3 Boundary Conditions 297

18.3 I nner HDPE layer 297

18.3.1 Reinforcement Layers 298

18.3.2 Outer HDPE Layer 298

18.3.3 E quilibrium Equation 299

18.3.4 Solution Chart 299

18.4 Finite Element Analysis 300

18.4.1 I ntroduction 300

18.4.2 Material Properties 300

18.4.3 FE Model 301

18.4.4 Boundary Conditions 304

Contents xiii

18.5 Results and Discussion 304

18.5.1 Comparison of Methods 304

18.5.2 L oad Steps 305

18.5.3 Axial Tension Followed by Internal Pressure 306

18.5.3.1 Stress Response 306

18.5.3.2 Failure Behavior 306

18.5.4 I nternal Pressure Followed by Axial Tension 307

18.6 Conclusions 309

References 310

19 Steel Reinforced Flexible Pipe Under Combined

Internal Pressure and Bending 311

19.1 I ntroduction 311

19.2 Analytical Solution 312

19.3 FE Analysis 316

19.3.1 Finite Element Model 316

19.3.2 Boundary Conditions 316

19.3.3 Analysis Results 317

19.4 Summary 319

References 321

20 Steel Reinforced Flexible Pipe Under Combined

Bending and External Pressure 323

20.1 I ntroduction 323

20.2 E xperimental Tests 324

20.2.1 Test Procedure 324

20.2.2 Test Results and Discussions 325

20.3 FE Analysis 326

20.3.1 Finite Element Modeling 327

20.3.2 Comparison of Test and Analysis Results 327

20.4 Analysis Results and Discussions 329

20.5 Conclusions 330

References 331

21 Cross-Sectional Design and Case Study for Steel Reinforced Flexible Pipe 333

21.1 I ntroduction 333

21.2 Mechanical Behaviors 334

21.3 Cross-Sectional Design 335

21.3.1 D esign Requirement 335

21.3.2 Strength Capacity 336

21.4 Case Study 338

21.4.1 General 338

21.4.2 D esign Analysis 339

21.4.2.1 Preliminary Analysis 339

21.4.2.2 FE Analysis 339

21.5 Conclusions 340

References 340

22 Damage Assessment for Steel Reinforced Flexible Pipe 343

22.1 I ntroduction 343

22.2 D amage Analysis of Outer Layer 344

22.2.1 General 344

22.2.2 FE Analysis 344

22.2.3 Material Parameters 345

22.2.4 Modeling of Damage Analysis 346

22.2.5 Analysis Results 347

22.3 I nfluence of Different Intervals 351

22.4 E ffects of Insufficient Strength in Steel Strip 352

References 354

Part IV Bonded Flexible Pipes

23 Bonded Flexible Rubber Pipes 357

23.1 I ntroduction 357

23.1.1 Constructions of Bonded Flexible Pipe 358

23.1.2 Types of Bonded Flexible Pipe 359

23.2 D esign and Applications 360

23.2.1 I ntroduction 360

23.2.2 D esign Criteria 361

23.2.3 Hose Design Activities 361

23.2.4 Bonded Flexible Hose Design 363

23.2.5 E nd Fittings 365

23.2.6 Materials 366

23.2.7 Applications 369

23.3 Failure Modes 371

23.3.1 E arly Failures 372

23.3.2 Random Failures 373

23.3.3 Wear-Down Failures 373

23.3.4 E xamples of Hose Failures 373

23.4 I ntegrity Management 374

23.4.1 Risk Analysis 374

23.4.2 Risk Evaluation Process 374

23.4.3 Actions Following Risk Assessment 375

References 376

24 Nonmetallic Bonded Flexible Pipe Under Internal Pressure 377

24.1 I ntroduction 377

24.1.1 N omenclature 378

24.2 E xperimental Tests 379

24.2.1 Material Properties 379

24.2.2 Burst Tests 380

24.3 Analytical Solution 381

24.3.1 I ntroduction 381

24.3.2 Assumptions 381

xiv Contents

Contents xv

24.3.3 Coordinate Systems 382

24.3.4 I nner Layer and Outer Layer 383

24.3.5 Reinforced Layers 385

24.3.6 Boundary Conditions 387

24.3.7 Failure Criterion 388

24.3.8 Burst Pressure Calculation 388

24.4 Finite Element Analysis 389

24.5 Results and Comparison 391

References 392

25 Nonmetallic Bonded Flexible Pipe Under External Pressure 393

25.1 I ntroduction 393

25.2 Analytical Solution of Collapse 394

25.2.1 Kinematics 394

25.2.2 Materials of Each Layer 395

25.2.2.1 PE_395

25.2.2.2 Reinforced Layer 395

25.2.2.3 The Material Plasticity 396

25.2.3 Principle of Virtual Work 397

25.2.4 Amendment of Radius and Wall Thickness 398

25.2.5 Analytical Method 399

25.3 FE Analysis 400

25.3.1 I ntroduction 400

25.3.2 FE Modeling 401

25.4 E xample of Collapse Analysis 401

25.4.1 I ntroduction 401

25.4.2 I nput Data 401

25.4.3 Pressure-Ovality Curves 402

25.5 Sensitivity Analysis 403

25.5.1 E ffect of Initial Imperfections 404

25.5.2 E ffect of Shear Deformation 404

25.5.3 E ffect of Pre-Buckling Deformation 405

References 406

26 Nonmetallic Bonded Flexible Pipe Under Bending 407

26.1 I ntroduction 407

26.2 Analytical Solution 409

26.2.1 Assumptions 409

26.2.2 Kinematics 409

26.2.3 Models of Material 410

26.2.3.1 Mechanical Behaviors of HDPE_410

26.2.3.2 Mechanical Behaviors of Fiber Reinforced Layer 412

26.2.4 Constitutive Model for RTP 415

26.2.5 Principle of Virtual Work 415

26.3 FE Analysis 416

26.4 E xperiment Test 418

xvi Contents

26.5 Results and Discussion 419

26.6 Parametric Studies 421

26.6.1 Wall-Thickness 421

26.6.2 D iameter of Pipe 422

26.6.3 D /t Ratio 422

26.6.4 I nitial Ovality 423

26.7 Conclusions 424

References 424

Appendix 426

27 Nonmetallic Bonded Flexible Pipe Under Combined

Tension and Internal Pressure 429

27.1 I ntroduction 429

27.2 N onlinear Analytical Solution 431

27.2.1 Fundamental Assumptions 431

27.2.2 Simplification of Reinforcement Layers 432

27.2.3 Kinematics of a Single Wire 433

27.2.4 D eformation of Cross Section 434

27.2.5 E quilibrium Equation 440

27.2.6 Constitutive Model 442

27.2.7 Solution Method 442

27.3 Finite Element Model 442

27.3.1 Model Design and Meshing 443

27.3.2 Materials 444

27.3.3 Constraints 444

27.3.4 Boundary Conditions and Loadings 445

27.4 Results and Discussion 445

27.4.1 Tension-Extension Relation 445

27.4.2 Stress in Kevlar Wires 446

27.4.3 Radial Deformation 446

27.4.4 D iscussion 446

27.5 Parametric Study 448

27.5.1 I nternal Pressure 449

27.5.2 L ay Angle 450

27.5.3 D /t Ratio 450

27.5.4 Amount of Kevlar Wires 451

27.6 Conclusions 452

References 453

28 Nonmetallic Bonded Flexible Pipe Under Combined

External Pressure and Bending 455

28.1 General 455

28.2 I ntroduction 455

28.3 Analytical Solution 457

28.3.1 Kinematics 457

28.3.2 Material Simplification 458

28.3.3 Constitutive Model 462

Contents xvii

28.3.4 Principle of Virtual Work 462

28.3.5 Amendment of Radius and Wall Thickness 463

28.3.6 Solution Method 463

28.4 Finite Element Model 464

28.5 Results and Discussions 465

28.5.1 Collapse of RTP Under External Pressure 465

28.5.2 Collapse of RTP Under Pure Bending 468

28.5.3 Collapse of RTP Under Combined Bending

and External Pressure 471

28.6 Conclusions 473

References 474

29 Fibre Glass Reinforced Flexible Pipes Under Internal Pressure 475

29.1 I ntroduction 475

29.2 Analytical Solution 476

29.2.1 Assumptions 476

29.2.2 Stress Analysis 476

29.2.3 Boundary Conditions 479

29.3 Finite Element Analysis 480

29.4 Results and Discussions 481

29.5 Winding Angle 483

29.6 Conclusions 484

References 485

30 Fibre Glass Reinforced Flexible Pipe Under External Pressure 487

30.1 I ntroduction 487

30.2 FE Analysis 488

30.2.1 I ntroduction 488

30.2.2 Geometrical Parameters and Material Properties 489

30.2.3 FE Modeling 490

30.3 Results and Discussions 491

30.3.1 I ntroduction 491

30.3.2 I nitial Imperfection 491

30.3.2.1 I nitial Ovality 491

30.3.2.2 I nitial Wall Eccentricity 492

30.3.3 Geometrical Configurations 494

30.3.3.1 D iameter Over Thickness Ratio D1/t1 of

Outer PE Layer 494

30.3.3.2 N umber of Reinforced Layers 495

30.3.3.3 D iameter Over Thickness Ratio D2/t2

of Inner Layer 496

30.3.4 Material 496

30.5 Conclusions 497

References 498

xviii Contents

31 Steel Wire Bonded Flexible Pipe Under Internal Pressure 499

31.1 I ntroduction 499

31.2 Analytical Solution 501

31.2.1 General 501

31.2.2 Stress and Strain Analysis 501

31.2.3 Simplification of Reinforced Layers 503

31.3 Finite Element Analysis 504

31.3.1 General 504

31.3.2 ABAQUS Modeling 504

31.4 Analysis Results 506

31.4.1 Comparison of Strains 506

31.4.2 E ffect of Winding Angle 507

31.5 E xperimental Test 508

31.5.1 General 508

31.5.2 Test Results 508

31.6 E ngineering Burst Pressure Formula 509

References 510

32 Steel Wire Bonded Flexible Pipe Under External Pressure 513

32.1 I ntroduction 513

32.2 Analytical solution 514

32.2.1 Fundamental Assumptions 514

32.2.2 N onlinear Ring Theory 514

32.2.3 Constitutive Relation of Material 516

32.2.4 Principle of Virtual Work Equation 518

32.3 N umerical Simulations 520

32.4 E xperimental Test 523

32.5 Conclusions 525

References 525

33 Steel Wire Bonded Flexible Pipe Under Bending and Internal Pressure 527

33.1 I ntroduction 527

33.2 Analytical Solution 528

33.2.1 Principle of Virtual Work 529

33.2.2 Burst Pressure of PSP in Axial Direction 531

33.2.3 Burst Pressure of PSP in Circumferential Direction 531

33.2.4 Constitutive Model for Materials 532

33.3 N umerical Simulations 535

33.4 Pure Bending Experimental Test 535

33.4.1 Test 535

33.4.2 Results and Discussion 537

33.5 Combined Internal Pressure and Bending Experimental Test 538

33.5.1 Test Facilities 539

33.5.2 Test Procedure 539

33.5.3 Test Results 540

33.6 Comparison of Results 540

33.7 Conclusions 541

References 542

Contents xix

34 Cross-Sectional Design and Case Study for Steel Wire

Bonded Flexible Pipe 543

34.1 I ntroduction 543

34.2 Cross-Sectional Design 544

34.2.1 D esign Procedure 544

34.2.2 D esign Parameters 544

34.2.3 Properties and Capacities 546

34.3 Case Study 550

34.4 V alidation by FE Model 551

34.5 Conclusions 555

References 555

35 Damage Assessment for Steel Wire Bonded Flexible Pipes 557

35.1 I ntroduction 557

35.2 Analytical Method 558

35.2.1 Basic Assumptions 558

35.2.2 Stress-Strain Relationship 558

35.3 Finite Element Analysis 564

35.4 Comparison between Analytical Method and FEM 565

35.4.1 E ffect of Steel Wire Winding Angle 567

35.4.2 E ffects of Steel Wire Diameter 568

35.4.3 E ffects of Missing Steel Wire 568

35.4.4 E ffect of Damaged Inner and Outer PE Layers 569

35.4.5 E ffects of Layer Interfacial Peeling 569

35.5 Summary 572

References 573

36 Third-Party Damage for Steel Wire Bonded Flexible Pipe 575

36.1 I ntroduction 575

36.2 Pipeline, Soil and Tamper Parameters 576

36.3 Finite Element Model 577

36.4 L oading and Boundary Conditions 578

36.5 Analysis Results 578

36.5.1 D ynamic Response 579

36.5.2 Tamping Velocity 581

36.5.3 Buried Depth 581

36.6 Summary 583

References 583

Index 585
See More

Author Information

Qiang Bai, PhD, has more than 20 years of experience in subsea and offshore engineering. He has taught at Kyushu University in Japan, UCLA in the USA, and he has worked at OPE, JP Kenny, and Technip. He is also the coauthor of three influential books on pipelines, which are standard in the industry.

Yong Bai, PhD, is the president of Offshore Pipelines & Risers Inc. in Houston, and is a professor and the director of the Offshore Engineering Research Center at Zhejiang University. He has previously taught at Stavanger University in Norway where he was a professor of offshore structures and has also worked with ABS as manager of the Offshore Technology Department as the JIP project manager and has also worked for Shell International E & P, JP Kenny, and MCS, where he was vice president of engineering. He is the co-author of two books on pipelines and over 100 papers on the design and installation of subsea pipelines and risers.

Weidong Ruan, PhD, is the author of numerous papers in the field of flexible pipelines and has co-authored chapters of books on pipelines and risers.

See More

More in this series

Back to Top