Thank you for visiting us. We are currently updating our shopping cart and regret to advise that it will be unavailable until September 1, 2014. We apologise for any inconvenience and look forward to serving you again.

Wiley
Wiley.com
Print this page Share

The Finite Element Method for Electromagnetic Modeling

Gérard Meunier (Editor)
ISBN: 978-1-84821-030-1
832 pages
November 2008, Wiley-ISTE
The Finite Element Method for Electromagnetic Modeling (1848210302) cover image
Written by specialists of modeling in electromagnetism, this book provides a comprehensive review of the finite element method for low frequency applications. Fundamentals of the method as well as new advances in the field are described in detail.
Chapters 1 to 4 present general 2D and 3D static and dynamic formulations by the use of scalar and vector unknowns and adapted interpolations for the fields (nodal, edge, face or volume).
Chapter 5 is dedicated to the presentation of different macroscopic behavior laws of materials and their implementation in a finite element context: anisotropy and hysteretic properties for magnetic sheets, iron losses, non-linear permanent magnets and superconductors.
More specific formulations are then proposed: the modeling of thin regions when finite elements become misfit (Chapter 6), infinite domains by using geometrical transformations (Chapter 7), the coupling of 2D and 3D formulations with circuit equations (Chapter 8), taking into account the movement, particularly in the presence of Eddy currents (Chapter 9) and an original approach for the treatment of geometrical symmetries when the sources are not symmetric (Chapter 10).
Chapters 11 to 13 are devoted to coupled problems: magneto-thermal coupling for induction heating, magneto-mechanical coupling by introducing the notion of strong and weak coupling and magneto-hydrodynamical coupling focusing on electromagnetic instabilities in fluid conductors.
Chapter 14 presents different meshing methods in the context of electromagnetism (presence of air) and introduces self-adaptive mesh refinement procedures. Optimization techniques are then covered in Chapter 15, with the adaptation of deterministic and probabilistic methods to the numerical finite element environment.
Chapter 16 presents a variational approach of electromagnetism, showing how Maxwell equations are derived from thermodynamic principles.
See More

Chapter 1. Introduction to Nodal Finite Elements. 1
Jean-Louis COULOMB

1.1. Introduction 1

1.1.1. The finite element method 1

1.2. The 1D finite element method 2

1.2.1. A simple electrostatics problem 2

1.2.2. Differential approach 3

1.2.3. Variational approach 4

1.2.4. First-order finite elements 6

1.2.5. Second-order finite elements 9

1.3. The finite element method in two dimensions 10

1.3.1. The problem of the condenser with square section 10

1.3.2. Differential approach 12

1.3.3. Variational approach 14

1.3.4. Meshing in first-order triangular finite elements 15

1.3.5. Finite element interpolation 17

1.3.6. Construction of the system of equations by the Ritz method 19

1.3.7. Calculation of the matrix coefficients 21

1.3.8. Analysis of the results 25

1.3.9. Dual formations, framing and convergence 42

1.3.10. Resolution of the nonlinear problems 44

1.3.11. Alternative to the variational method: the weighted residues method 45

1.4. The reference elements 47

1.4.1. Linear reference elements 48

1.4.2. Surface reference elements 49

1.4.3. Volume reference elements 52

1.4.4. Properties of the shape functions 53

1.4.5. Transformation from reference coordinates to domain coordinates 54

1.4.6. Approximation of the physical variable 56

1.4.7. Numerical integrations on the reference elements 60

1.4.8. Local Jacobian derivative method 63

1.5. Conclusion 66

1.6. References 66

Chapter 2. Static Formulations: Electrostatic, Electrokinetic, Magnetostatics 69
Patrick DULAR and Francis PIRIOU

2.1. Problems to solve 70

2.1.1. Maxwell’s equations 70

2.1.2. Behavior laws of materials 71

2.1.3. Boundary conditions 71

2.1.4. Complete static models 74

2.1.5. The formulations in potentials 75

2.2. Function spaces in the fields and weak formulations 82

2.2.1. Integral expressions: introduction 82

2.2.2. Definitions of function spaces 82

2.2.3. Tonti diagram: synthesis scheme of a problem 84

2.2.4. Weak formulations 86

2.3. Discretization of function spaces and weak formulations 91

2.3.1. Finite elements 91

2.3.2. Sequence of discrete spaces 93

2.3.3. Gauge conditions and source terms in discrete spaces 106

2.3.4. Weak discrete formulations 109

2.3.5. Expression of global variables 114

2.4. References 115

Chapter 3. Magnetodynamic Formulations 117
Zhuoxiang REN and Frédéric BOUILLAULT

3.1. Introduction 117

3.2. Electric formulations 119

3.2.1. Formulation in electric field 119

3.2.2. Formulation in combined potentials a - �� 120

3.2.3. Comparison of the formulations in field and in combined potentials 121

3.3. Magnetic formulations 123

3.3.1. Formulation in magnetic field 123

3.3.2. Formulation in combined potentials t - ɸ 124

3.3.3. Numerical example 125

3.4. Hybrid formulation 127

3.5. Electric and magnetic formulation complementarities 128

3.5.1. Complementary features 128

3.5.2. Concerning the energy bounds 129

3.5.3. Numerical example 129

3.6. Conclusion 133

3.7. References 134

Chapter 4. Mixed Finite Element Methods in Electromagnetism 139
Bernard BANDELIER and Françoise RIOUX-DAMIDAU

4.1. Introduction 139

4.2. Mixed formulations in magnetostatics 140

4.2.1. Magnetic induction oriented formulation 141

4.2.2. Formulation oriented magnetic field 144

4.2.3. Formulation in induction and field 146

4.2.4. Alternate case 147

4.3. Energy approach: minimization problems, searching for a saddle-point 147

4.3.1. Minimization of a functional calculus related to energy 147

4.3.2. Variational principle of magnetic energy 149

4.3.3. Searching for a saddle-point 151

4.3.4. Functional calculus related to the constitutive relationship 154

4.4. Hybrid formulations 154

4.4.1. Magnetic induction oriented hybrid formulation 154

4.4.2. Hybrid formulation oriented magnetic field 156

4.4.3. Mixed hybrid method 157

4.5. Compatibility of approximation spaces – inf-sup condition 157

4.5.1. Mixed magnetic induction oriented formulation 158

4.5.2. Mixed formulation oriented magnetic field 160

4.5.3. General case 160

4.6. Mixed finite elements, Whitney elements 161

4.6.1. Magnetic induction oriented formulation 162

4.6.2. Magnetic field oriented formulation 163

4.7. Mixed formulations in magnetodynamics 164

4.7.1. Magnetic field oriented formulation 164

4.7.2. Formulation oriented electric field 167

4.8. Solving techniques 167

4.8.1. Penalization methods 168

4.8.2. Algorithm using the Schur complement 171

4.9. References 174

Chapter 5. Behavior Laws of Materials 177
Frédéric BOUILLAULT, Afef KEDOUS-LEBOUC, Gérard MEUNIER, Florence OSSART and Francis PIRIOU

5.1. Introduction 177

5.2. Behavior law of ferromagnetic materials 178

5.2.1. Definitions 178

5.2.2. Hysteresis and anisotropy 179

5.2.3. Classificiation of models dealing with the behavior law 180

5.3. Implementation of nonlinear behavior models 183

5.3.1. Newton method 183

5.3.2. Fixed point method 187

5.3.3. Particular case of a behavior with hysteresis 191

5.4. Modeling of magnetic sheets 192

5.4.1. Some words about magnetic sheets 192

5.4.2. Example of stress in the electric machines 192

5.4.3. Anisotropy of sheets with oriented grains 194

5.4.4. Hysteresis and dynamic behavior under uniaxial stress 200

5.4.5. Determination of iron losses in electric machines: nonlinear isotropic finite element modeling and calculation of the losses a posteriori 209

5.4.6. Conclusion 215

5.5. Modeling of permanent magnets 216

5.5.1. Introduction. 216

5.5.2. Magnets obtained by powder metallurgy 216

5.5.3. Study of linear anisotropic behavior 218

5.5.4. Study of nonlinear behavior 220

5.5.5. Implementation of the model in finite element software 223

5.5.6. Validation: the experiment by Joel Chavanne 224

5.5.7. Conductive magnet subjected to an AC field 225

5.6. Modeling of superconductors 226

5.6.1. Introduction 226

5.6.2. Behavior of superconductors 227

5.6.3. Modeling of electric behavior of superconductors 230

5.6.4. Particular case of the Bean model 232

5.6.5. Examples of modeling 237

5.7. Conclusion 240

5.8. References 241

Chapter 6. Modeling on Thin and Line Regions 245
Christophe GUÉRIN

6.1. Introduction 245

6.2. Different special elements and their interest 245

6.3. Method for taking into account thin regions without potential jump 249

6.4. Method for taking into account thin regions with potential jump 250

6.4.1. Analytical integration method 251

6.4.2. Numerical integration method 252

6.5. Method for taking thin regions into account 255

6.6. Thin and line regions in magnetostatics 256

6.6.1. Thin and line regions in magnetic scalar potential formulations 256

6.6.2. Thin and line regions in magnetic vector potential formulations 257

6.7. Thin and line regions in magnetoharmonics 257

6.7.1. Solid conducting regions presenting a strong skin effect 258

6.7.2. Thin conducting regions 265

6.8. Thin regions in electrostatic problems: “electric harmonic problems” and electric conduction problems 272

6.9. Thin thermal regions 272

6.10. References 273

Chapter 7. Coupling with Circuit Equations 277
Gérard MEUNIER, Yvan LEFEVRE, Patrick LOMBARD and Yann LE FLOCH

7.1. Introduction 277

7.2. Review of the various methods of setting up electric circuit equations 278

7.2.1. Circuit equations with nodal potentials 278

7.2.2. Circuit equations with mesh currents 279

7.2.3. Circuit equations with time integrated nodal potentials 280

7.2.4. Formulation of circuit equations in the form of state equations 281

7.2.5. Conclusion on the methods of setting up electric equations 283

7.3. Different types of coupling 284

7.3.1. Indirect coupling 285

7.3.2. Integro-differential formulation 285

7.3.3. Simultaneous resolution 285

7.3.4. Conclusion 285

7.4. Establishment of the “current-voltage” relations 286

7.4.1. Insulated massive conductor with two ends: basic assumptions and preliminary relations 286

7.4.2. Current-voltage relations using the magnetic vector potential 287

7.4.3. Current-voltage relations using magnetic induction 288

7.4.4. Wound conductors 290

7.4.5. Losses in the wound conductors 291

7.5. Establishment of the coupled field and circuit equations 292

7.5.1. Coupling with a vector potential formulation in 2D 292

7.5.2. Coupling with a vector potential formulation in 3D 303

7.5.3. Coupling with a scalar potential formulation in 3D 310

7.6. General conclusion 317

7.7. References 318

Chapter 8. Modeling of Motion: Accounting for Movement in the Modeling of Magnetic Phenomena 321
Vincent LECONTE

8.1. Introduction 321

8.2. Formulation of an electromagnetic problem with motion 322

8.2.1. Definition of motion 322

8.2.2. Maxwell equations and motion 325

8.2.3. Formulations in potentials 329

8.2.4. Eulerian approach 335

8.2.5. Lagrangian approach 338

8.2.6. Example application 342

8.3. Methods for taking the movement into account 346

8.3.1. Introduction. 346

8.3.2. Methods for rotating machines 346

8.3.3. Coupling methods without meshing and with the finite element method 348

8.3.4. Coupling of boundary integrals with the finite element method 350

8.3.5. Automatic remeshing methods for large distortions 355

8.4. Conclusion 362

8.5. References 363

Chapter 9. Symmetric Components and Numerical Modeling 369
Jacques LOBRY, Eric NENS and Christian BROCHE

9.1. Introduction 369

9.2. Representation of group theory 371

9.2.1. Finite groups 371

9.2.2. Symmetric functions and irreducible representations 374

9.2.3. Orthogonal decomposition of a function 378

9.2.4. Symmetries and vector fields 379

9.3. Poisson’s problem and geometric symmetries 384

9.3.1. Differential and integral formulations 384

9.3.2. Numerical processing 387

9.4. Applications 388

9.4.1. 2D magnetostatics 388

9.4.2. 3D magnetodynamics 394

9.5. Conclusions and future work 403

9.6. References 404

Chapter 10. Magneto-thermal Coupling 405
Mouloud FÉLIACHI and Javad FOULADGAR

10.1. Introduction 405

10.2. Magneto-thermal phenomena and fundamental equations 406

10.2.1. Electromagentism 406

10.2.2. Thermal 408

10.2.3. Flow 408

10.3. Behavior laws and couplings 409

10.3.1. Electrmagnetic phenomena 409

10.3.2. Thermal phenomena 409

10.3.3. Flow phenomena 409

10.4. Resolution methods 409

10.4.1. Numerical methods 409

10.4.2. Semi-analytical methods 410

10.4.3. Analytical-numerical methods 411

10.4.4. Magneto-thermal coupling models 411

10.5. Heating of a moving work piece 413

10.6. Induction plasma 417

10.6.1. Introduction 417

10.6.2. Inductive plasma installation 418

10.6.3. Mathematical models 418

10.6.4. Results 426

10.6.5. Conclusion 427

10.7. References 428

Chapter 11. Magneto-mechanical Modeling 431
Yvan LEFEVRE and Gilbert REYNE

11.1. Introduction 431

11.2. Modeling of coupled magneto-mechancial phenomena 432

11.2.1. Modeling of mechanical structure 433

11.2.2. Coupled magneto-mechanical modeling 437

11.2.3. Conclusion 442

11.3. Numerical modeling of electromechancial conversion in conventional actuators 442

11.3.1. General simulation procedure 443

11.3.2. Global magnetic force calculation method 444

11.3.3. Conclusion 447

11.4. Numerical modeling of electromagnetic vibrations 447

11.4.1. Magnetostriction vs. magnetic forces 447

11.4.2. Procedure for simulating vibrations of magnetic origin 449

11.4.3. Magnetic forces density 449

11.4.4. Case of rotating machine teeth 452

11.4.5. Magnetic response modeling 453

11.4.6. Model superposition method 455

11.4.7. Conclusion 458

11.5. Modeling strongly coupled phenomena 459

11.5.1. Weak coupling and strong coupling from a physical viewpoint 459

11.5.2. Weak coupling or strong coupling problem from a numerical modeling analysis 460

11.5.3. Weak coupling and intelligent use of software tools 461

11.5.4. Displacement and deformation of a magnetic system 463

11.5.5. Structural modeling based on magnetostrictive materials 465

11.5.6. Electromagnetic induction launchers 469

11.6. Conclusion 470

11.7. References 471

Chapter 12. Magnetohydrodynamics: Modeling of a Kinematic Dynamo 477
Franck PLUNIAN and Philippe MASSÉ

12.1. Introduction 477

12.1.1. Generalities 477

12.1.2. Maxwell’s equations and Ohm’s law 481

12.1.3. The induction equation 482

12.1.4. The dimensionless equation 483

12.2. Modeling the induction equation using finite elements 485

12.2.1. Potential (A,ɸ) quadric-vector formulation 485

12.2.2. 2D1/2 quadri-vector potential formulation 488

12.3. Some simulation examples 491

12.3.1. Screw dynamo (Ponomarenko dynamo) 491

12.3.2. Two-scale dynamo without walls (Roberts dynamo) 495

12.3.3. Two-scale dynamo with walls 498

12.3.4. A dynamo at the industrial scale 502

12.4. Modeling of the dynamic problem 503

12.5. References 504

Chapter 13. Mesh Generation 509
Yves DU TERRAIL COUVAT, François-Xavier ZGAINSKI and Yves MARÉCHAL

13.1. Introduction 509

13.2. General definition 510

13.3. A short history 512

13.4. Mesh algorithms 512

13.4.1. The basic algorithms 512

13.4.2. General mesh algorithms 518

13.5. Mesh regularization 526

13.5.1. Regularization by displacement of nodes 526

13.5.2. Regularization by bubbles 528

13.5.3. Adaptation of nodes population 530

13.5.4. Insertion in meshing algorithms 530

13.5.5. Value of bubble regularization 531

13.6. Mesh processer and modeling environment 533

13.6.1. Some typical criteria 533

13.6.2. Electromagnetism and meshing constraints 534

13.7. Conclusion 541

13.8. References 541

Chapter 14. Optimization 547
Jean-Louis COULOMB

14.1. Introduction 547

14.1.1. Optimization: who, why, how? 547

14.1.2. Optimization by numerical simulation: is this reasonable? 548

14.1.3. Optimization by numerical simulation: difficulties 549

14.1.4. Numerical design of experiments (DOE) method: an elegant solution 549

14.1.5. Sensitivity analysis: an “added value” accessible by simulation 550

14.1.6. Organization of this chapter 551

14.2. Optimization methods 551

14.2.1. Optimization problems: some definitions 551

14.2.2. Optimization problems without constraints 553

14.2.3. Constrained optimization problems 559

14.2.4. Multi-objective optimization 560

14.3. Design of experiments (DOE) method 562

14.3.1. The direct control of the simulation tool by an optimization algorithm: principle and disadvantages 562

14.3.2. The response surface: an approximation enabling indirect optimization 563

14.3.3. DOE method: a short history 565

14.3.4. DOE method: a simple example 565

14.4. Response surfaces 572

14.4.1. Basic principles 572

14.4.2. Polynomial surfaces of degree 1 without interaction: simple but sometimes useful 573

14.4.3. Polynomial surfaces of degree 1 with interactions: quite useful for screening 573

14.4.4. Polynomial surfaces of degree 2: a first approach for nonlinearities 574

14.4.5. Response surfaces of degrees 1 and 2: interests and limits 576

14.4.6. Response surfaces by combination of radial functions 576

14.4.7. Response surfaces using diffuse elements 577

14.4.8. Adaptive response surfaces 579

14.5. Sensitivity analysis 579

14.5.1. Finite difference method 579

14.5.2. Method for local derivation of the Jacobian matrix 580

14.5.3. Steadiness of state variables: steadiness of state equations 581

14.5.4. Sensitivity of the objective function: the adjoint state method 583

14.5.5. Higher order derivative 583

14.6. A complete example of optimization 584

14.6.1. The problem of optimization 584

14.6.2. Determination of the influential parameters by the DOE method 585

14.6.3. Approximation of the objective function by a response surface 587

14.6.4. Search for the optimum on the response surface 587

14.6.5. Verification of the solution by simulation 587

14.7. Conclusion 588

14.8. References 588

List of Authors 595

Index 599

See More
Buy Both and Save 25%!
+

The Finite Element Method for Electromagnetic Modeling (US $285.00)

-and- Digital Color: Acquisition, Perception, Coding and Rendering (US $149.95)

Total List Price: US $434.95
Discounted Price: US $326.21 (Save: US $108.74)

Buy Both
Cannot be combined with any other offers. Learn more.

Related Titles

Back to Top