Wiley
Wiley.com
Print this page Share

Quality of Service Mechanisms in Next Generation Heterogeneous Networks

ISBN: 978-1-84821-061-5
458 pages
January 2009, Wiley-ISTE
Quality of Service Mechanisms in Next Generation Heterogeneous Networks (1848210612) cover image
A modern communication network can be described as a large, complex, distributed system composed by higher interoperating, smaller sub-systems. Today, the proliferation and convergence of different types of wired, wireless, and mobile networks are crucial for the success of the next generation networking. However, these networks can hardly meet the requirements of future integrated-service networks, and are expected to carry multimedia traffic with various Quality of Experience (QoE) and Quality of Service (QoS) requirements. Providing all relevant QoS/QoE issues in these heterogeneous networks is then an important challenge for telecommunication operators, manufacturers, and companies. The impressive emergence and the important demand of the rising generation of real-time Multi-service (such as Data, Voice VoD, Video-Conference, etc.) over communication heterogeneous networks, require scalability while considering a continuous QoS.  This book presents and explains all the techniques in new generation networks which integrate efficient global control mechanisms in two directions: (1) maintain QoS requirements in order to maximize network resources utilization, and minimize operational costs on all the types of wired-wireless-mobile networks used to transport traffic, and (2) mix the QoS associated with home, access, and core networks in order to provide Quality of Service/Quality of Experience expected by users of new services.
See More

Chapter 1. Challenges for End-to-End Quality of Service over Heterogenous Networks 1
Abdelhamid MELLOUK

1.1. Introduction 1

1.2. Research challenges in end-to-end QoS 2

1.3. Contents 4

1.3.1. Chapter 2: principles and mechanisms for Quality of Service in networks 4

1.3.2. Chapter 3: different approaches to guarantee Quality of Service 5

1.3.3. Chapter 4: Quality of Service-based adaptive routing approaches 6

1.3.4. Chapter 5: optical networks: new challenges and paradigms for Quality of Service 7

1.3.5. Chapter 6: pushing Quality of Service across interdomain boundaries 8

1.3.6. Chapter 7: Internet-based collaborative teleoperation: towards tailorable groupware for teleoperation 9

1.3.7. Chapter 8: survivability-oriented Quality of Service in optical networks 10

1.3.8. Chapter 9: MAC protocols for Quality of Service provisioning in mobile ad hoc networks10

1.3.9. Chapter 10: Quality of Service-based scheduling mechanisms in mobile networks 11

1.3.10. Chapter 11: Quality of Service in wireless ad hoc and sensor networks 12

1.3.11. Chapter 12: Quality of Service challenges in WiMAX networks 13

1.3.12. Chapter 13: Quality of Service support for MPLS-based wired-wireless domains 14

1.3.13. Chapter 14: Quality of Service control in VoIP applications 15

1.3.14. Chapter 15: towards collaborative teleoperation based on human scale networked mixed reality environments. 16

1.3.15. Chapter 16: Quality of Service driven context awareness using semantic sensors infrastructure 17

1.3.16. Chapter 17: effect of transmission delay on haptic perception in shared virtual environments 18

1.4. Conclusion 19

Chapter 2. Principles and Mechanisms for Quality of Service in Networks 21
Zoubir MAMMERI

2.1. Introduction 21

2.2. Concepts and definitions 23

2.2.1. Definitions of QoS in a networking context 23

2.2.2. End-to-end QoS 24

2.2.3. Classes (levels) of service 24

2.2.4. Differentiated classes of service 26

2.3. QoS parameters and application classification 26

2.3.1. QoS parameter types 26

2.3.2. Application classification 29

2.3.3. QoS parameter specification 32

2.3.4. Traffic models 32

2.3.5. Service level agreements 34

2.4. Mechanisms and functions for QoS provisioning 35

2.4.1. General issues 35

2.4.2. QoS establishment 36

2.4.3. Admission control 36

2.4.4. QoS negotiation and renegotiation 37

2.4.5. Resource management 38

2.4.6. QoS signaling protocols 39

2.4.7. Routing 39

2.4.8. Traffic control mechanisms 41

2.4.9. QoS control, maintenance, monitoring 45

2.4.10. QoS policy 45

2.4.11. QoS mapping and translation 46

2.5. Overview of IntServ, DiffServ and MPLS 47

2.5.1. Integrated services architecture 47

2.5.2. DiffServ architecture 48

2.5.3. MPLS 50

2.6. Conclusion 51

2.7. References 51

Chapter 3. Different Approaches to Guarantee Quality of Service 55
Pascale MINET

3.1. Introduction to QoS 55

3.1.1. Different QoS requirements 56

3.1.2. Organization of chapter 58

3.2. Means of managing an end-to-end time constraint 59

3.2.1. Components of an end-to-end response time 59

3.2.2. Different methods to ensure that D is met 61

3.2.3. Discussion 65

3.2.4. A producer/consumer scheme avoiding starvation 66

3.2.5. Example of a video-on-demand multimedia system 67

3.3. Evaluation of the end-to-end response time 68

3.3.1. The holistic approach 68

3.3.2. Network calculus 69

3.3.3. Trajectory approach 71

3.3.4. Comparison between the holistic and trajectory approaches 74

3.3.5. Flow shaping 77

3.4. Probabilistic guarantee of the end-to-end response time 79

3.4.1. Principles for a probabilistic guarantee 79

3.4.2. Examples 80

3.4.3. Probabilistic versus deterministic guarantee 81

3.5. QoS support in a mobile ad hoc network 81

3.5.1. Specificities of MANETs 81

3.5.2. The OLSR routing protocol 82

3.5.3. QoS architecture and QoS OLSR 83

3.6. Conclusion and perspectives 87

3.7. References 89

Chapter 4. Quality of Service-based Adaptive Routing Approaches 93
Abdelhamid MELLOUK and Saïd HOCEINI

4.1. Introduction 93

4.2. QoS-based routing algorithms 95

4.2.1. Classical routing algorithms 97

4.3. QoS-based routing approaches 99

4.4. Inductive approaches based on machine learning paradigms 99

4.4.1. Cognitive Packet Networks (CPN) 100

4.4.2. Swarm ant colony optimization (AntNet) 100

4.4.3. Reinforcement learning routing approaches 101

4.5. Neural net-based approach for adaptive routing policy 102

4.6. State-dependent KOQRA algorithm 105

4.6.1. First stage: constructing K optimal paths 105

4.6.2. Second stage: optimizing the end-to-end delay with the Q-learning algorithm 107

4.6.3. Third stage: adaptive probabilistic path selection 108

4.7. Conclusion 108

4.8. References 109

Chapter 5. Optical Networks: New Challenges and Paradigms for Quality of Service 115
Ken CHEN and Wisssam FAWAZ

5.1. Introduction 115

5.2. Optical communication: from transmission to networking 116

5.2.1. Fiber optic cable 116

5.2.2. WDM technology 117

5.2.3. From transmission to networking 118

5.3. Optical networks as a pillar for future network infrastructure 119

5.4. Routing and wavelength assignment 121

5.5. GMPLS 122

5.5.1. MPLS 122

5.5.2. Principle of the GMPLS extension 124

5.5.3. GMPLS components 126

5.6. Towards a new optical link-based architecture 129

5.7. Protection against link failures 130

5.8. Optical packet switch and optical burst switch 131

5.8.1. Optical packet switching 131

5.8.2. Optical burst switching 132

5.9. Conclusion 133

5.10. References 133

Chapter 6. Pushing Quality of Service Across Inter-domain Boundaries 135
Bingjie FU, Cristel PELSSER, Steve UHLIG

6.1. Introduction 135

6.2. Background 136

6.2.1. The Internet as a distributed system 137

6.2.2. Business relationships between ASs 137

6.2.3. Impact of inter-domain routing on path diversity 138

6.2.4. Inter-AS LSP requirements 142

6.3. RSVP-TE extensions to support inter-domain LSPs 143

6.3.1. Explicit routing of an LSP 143

6.3.2. RRO aggregation and the path key 144

6.3.3. Protection of inter-AS LSPs 145

6.3.4. End-to-end disjoint LSPs 146

6.4. State of the art in inter-domain PCE 146

6.4.1. PCE-based architecture 146

6.4.2. Path computation methods 147

6.4.3. Applicability of the path computation techniques 152

6.5. Towards inter-AS QoS 152

6.5.1. DistributingQoS Information for inter-AS LSPs 153

6.5.2. Computing inter-AS LSPs with end-to-end QoS constraints 155

6.6. Conclusion and perspectives 158

6.7. Acknowledgments 159

6.8. References 159

Chapter 7. Internet-based Collaborative Teleoperation: Towards Tailorable Groupware for Teleoperation 163
Samir OTMANE, Nader CHEAIB and Malik MALLEM

7.1. Introduction 163

7.2. Teleoperation via the World Wide Web 164

7.2.1. Non-collaborative teleoperation systems 166

7.2.2. Towards collaborative teleoperation systems 170

7.3. ARITI-C: a groupware for collaborative teleoperation via the Internet 172

7.3.1. Software architecture of ARITI-C 173

7.3.2. Human-machine interface of ARITI-C 177

7.4. Integrating QoS in designing tailorable collaborative teleoperation systems 185

7.4.1. Need for QoS in internet-based teleoperation185

7.4.2. Need for tailorability in internet-based collaborative teleoperation 186

7.4.3. Design of tailorable groupware for internet-based collaborative teleoperation 190

7.5. Conclusion 192

7.6. References 193

Chapter 8. Survivability-Oriented Quality of Service in Optical Networks 197
Wissam FAWAZ and Ken CHEN

8.1. Introduction 197

8.2. Optical transport network failures 198

8.2.1. Failure statistics 199

8.2.2. Causes of failure 200

8.3. Optical network survivability evolution 202

8.3.1 Survivability in traditional carrier network architecture 202

8.3.2. Protection at the IP layer? 204

8.3.3 Why optical layer survivability? 205

8.4. Optical WDM-layer survivability mechanisms 207

8.4.1. Path protection 208

8.4.2. Path restoration 209

8.4.3. Link protection 209

8.4.4. Link restoration 210

8.5. Conclusion 210

8.6. References 211

Chapter 9. MAC Protocols for Quality of Service Provisioning in Mobile Ad Hoc Networks 213
Ghalem BOUDOUR, Mahboub A. BALI and Cédric TEYSSIÉ

9.1. Introduction 213

9.2. IEEE 802.11 standard basics 216

9.3. Prioritization-oriented MAC protocols 217

9.3.1. RT-MAC protocol 217

9.3.2. DCF-PC protocol 218

9.3.3. HCF and IEEE 802.11e 219

9.3.4. DPS protocol 221

9.3.5. BB-DCF protocol 222

9.3.6. ES-DCF and DB-DCF protocols 224

9.4. Reservation-oriented protocols 226

9.4.1. Reservation protocols with synchronization 227

9.4.2. Reservation protocols without synchronization 231

9.4.3. Limitations of reservation-based protocols 235

9.5. Available bandwidth estimation methods for ad hoc networks 235

9.5.1. General issues 235

9.5.2. Methods for bandwidth estimation 237

9.6. Conclusion 244

9.7. References 245

Chapter 10. Quality of Service Scheduling Mechanisms in Mobile Networks 249
Mohamed BRAHMA, Abdelhafid ABOUAÏSSA and Pascal LORENZ

10.1. Introduction 249

10.1.1. Mobile ad hoc networks (MANETs) 250

10.1.2. Constraints 251

10.2. Quality of Service 251

10.2.1. Routing with QoS in the ad hoc network 251

10.2.2. QoS models in ad hoc networks 252

10.2.3. QoS MAC protocols 254

10.3. Buffer and energy-based scheduling 256

10.3.1. Marking MAC frames 258

10.3.2. Adjusting the weight of each class queue 258

10.3.3. Weight calculation algorithm 259

10.4. Simulations and numerical results 260

10.5. Conclusion 266

10.6. References 266

Chapter 11. Quality of Service inWireless Ad Hoc and Sensor Networks 269
Azzedine BOUKERCHE, Horacio A.B.F. OLIVEIRA, Eduardo F. NAKAMURA, Richard W.N. PAZZI and Antonio A.F. LOUREIRO

11.1. Challenges for QoS in ad hoc and sensor networks 270

11.2. QoS parameters in ad hoc and sensor networks 271

11.3. Components of a QoS system 273

11.4. MACmeasurement and reservation 274

11.4.1. Q-MAC 277

11.5. QoS routing discovery and maintenance 278

11.5.1. Ticket-based probing 278

11.5.2. QoS-based geographic routing 280

11.5.3. Core extraction distributed ad hoc routing – CEDAR281

11.5.4. EQoS 283

11.5.5. The INSIGNIA QoS framework 283

11.5.6. Ad hocQoS on-demand routing –AQOR 285

11.6. Conclusions 287

11.7. References 288

Chapter 12. Quality of Service Challenges in WiMAX Networks 291
Sahar GHAZAL and Jalel BEN-OTHMAN

12.1. Introduction 291

12.2.QoS limitations in wireless networks 293

12.3.QoS features in WiMAXnetworks 294

12.3.1. Classification process 294

12.3.2. Scheduling services 295

12.3.3. Bandwidth management policies 296

12.4. QoS parameter set and management messages 298

12.4.1. Connection establishment 299

12.4.2. Dynamic change of admitted QoS parameters 300

12.5. MAC layer and QoS architecture 301

12.6. PHY layer supports QoS 302

12.7. QoS previous proposed solutions for WiMAX 303

12.7.1. Proposed scheduling algorithms 303

12.7.2. Proposed admission policies 304

12.8. Conclusion 305

12.9. References 305

Chapter 13. Quality of Service Support for MPLS-based Wired-Wireless Domains 309
Scott FOWLER, Sherali ZEADALLY and Abdelhamid MELLOUK

13.1. Abstract 309

13.2. Introduction 310

13.3. MPLS technology 310

13.3.1. Label distribution protocol (LDP) 312

13.4. Mobility and MPLS 314

13.5. Hierarchical MIP 315

13.6. Extending MPLS from wired networks to wireless networks 317

13.6.1. Hierarchical mobile MPLS (H-MPLS) approach 317

13.6.2. Hierarchical mobile IPv6withMPLS 321

13.6.3. Micro-mobility with MPLS (MM-MPLS) approach 326

13.6.4. The label edge mobility agent (LEMA) approach 328

13.7. Multimedia support over MPLS-based networks 329

13.7.1. MPLS support in DiffServ 331

13.7.2. Resource reservation protocol traffic engineering (RSVP-TE) with MPLS 335

13.7.3. Constraint-based routed label distribution protocol (CR-LDP) 336

13.8. Emerging trends of MPLS-based networks 337

13.8.1. Label management of MPLS 338

13.8.2. MPLS support over heterogenous networks 339

13.8.3. MPLS security 339

13.8.4. QoS support over MPLS-based networks 339

13.8.5. Fast handovers across MPLS-based wired-wireless networks 340

13.9. Conclusion 340

13.10. References 342

13.11. Appendix – list of acronyms 344

Chapter 14. Quality of Service Control in Voice-over IP Applications 347
Vincent LECUIRE and Mouna BENAISSA

14.1. Introduction 347

14.2. General structure of VoIP applications 348

14.3. End-to-end delay analysis 351

14.3.1. Coding/decoding delay 352

14.3.2. Packetization delay 353

14.3.3. Network delay 353

14.3.4. Jitter compensation delay 353

14.3.5. End-to-end delay calculation 354

14.4. Quality of Service requirements for VoIP 354

14.4.1. Delay constraint 354

14.4.2. Packet loss constraint 355

14.4.3. Jitter constraint 356

14.5. Algorithms for adaptive playout buffering 357

14.5.1. Approach based on linear filtering 359

14.5.2. Approach based on adaptive filter 363

14.5.3. Approach based on statistics distribution 364

14.6. Forward error correction mechanisms for packet loss repair 367

14.6.1. Media-specific FEC 368

14.6.2. Media-independent FEC 369

14.7. Joint playout buffering and packet-level FEC algorithms 370

14.7.1. Virtual delay algorithms 371

14.7.2. Delay aware algorithm 371

14.8. Conclusion 372

14.9. References 372

Chapter 15. Towards Collaborative Teleoperation Based On Human-Scale Networked Mixed Reality Environments 377
Samir OTMANE, Nassima OURAMDANE and Malik MALLEM

15.1. Introduction 377

15.2. Teleoperation and telerobotics 378

15.2.1. Brief background 379

15.2.2. Teleoperation 379

15.2.3. Telerobotics 382

15.2.4. Some application domains 383

15.3. Augmented reality assisted teleoperation 389

15.4. Human-scale collaborative teleoperation 393

15.4.1. Collaborative working environments. 394

15.4.2. Interactions in human-scale teleoperation 395

15.4.3. Distributed software architecture for human-scale collaborative teleoperation 398

15.5. Synthesis and problematics 401

15.6. References 403

Chapter 16. QoS-driven Context Awareness Using Semantic Sensors Infrastructure 407
Abdelghani CHIBANI and Yacine AMIRAT

16.1. Introduction 407

16.2. Context-aware pervasive computing 408

16.3. Service agent middleware for decentralized context management 409

16.3.1. Context service agent 410

16.3.2. Context aggregation agent 411

16.3.3. Context services composition 413

16.4. Context service discovery 415

16.4.1. QoS-driven context directories management 416

16.4.2. Contextual knowledge modeling 416

16.4.3. Contextual service modeling419

16.4.4. Context service semantic matching 420

16.5. Semantic context sensor scenarios 422

16.5.1. Scenario 1: context-aware travel organizer service 423

16.5.2. Scenario 2: context-aware services for healthcare ubiquitous robot 425

16.5.3. Scenario 3: context sensor infrastructure for living lab services 426

16.6. Conclusion 427

16.7. References 428

Chapter 17. Effect of Transmission Delay on Haptic Perception in Shared Virtual Environments 431
Hichem ARIOUI

17.1. Introduction 431

17.2. Haptic simulation in VR applications 433

17.2.1. Haptic feedback device 433

17.2.2. Applications of haptic systems 436

17.3. Delayed force feedback systems 437

17.3.1. Automatic control law, solutions and handicaps 437

17.3.2. Remote programming, solutions and handicaps 441

17.4. The Quality of Service for a good haptic rendering 442

17.5. References 443

List of Authors 445

Index 451

See More

Related Titles

Back to Top