Wiley.com
Print this page Share

Digital Electronics 2: Sequential and Arithmetic Logic Circuits

ISBN: 978-1-84821-985-4
328 pages
August 2016, Wiley-ISTE
Digital Electronics 2: Sequential and Arithmetic Logic Circuits (1848219857) cover image

Description

As electronic devices become increasingly prevalent in everyday life, digital circuits are becoming even more complex and smaller in size. This book presents the basic principles of digital electronics in an accessible manner, allowing the reader to grasp the principles of combinational and sequential logic and the underlying techniques for the analysis and design of digital circuits. Providing a hands-on approach, this work introduces techniques and methods for establishing logic equations and designing and analyzing digital circuits. Each chapter is supplemented with practical examples and well-designed exercises with worked solutions.

This second of three volumes focuses on sequential and arithmetic logic circuits. It covers various aspects related to the following topics: latch and flip-flop; binary counters; shift registers; arithmetic and logic circuits; digital integrated circuit technology; semiconductor memory; programmable logic circuits.

Along with the two accompanying volumes, this book is an indispensable tool for students at a bachelors or masters level seeking to improve their understanding of digital electronics, and is detailed enough to serve as a reference for electronic, automation and computer engineers.

See More

Table of Contents

Preface ix

Chapter 1. Latch and Flip-Flop 1

1.1. Introduction  1

1.2. General overview 1

1.2.1. SR latch 6

1.2.2. S R latch  9

1.2.3. Application: switch debouncing 11

1.3. Gated SR latch 11

1.3.1. Implementation based on an SR latch  12

1.3.2. Implementation based on an S R latch 14

1.4. Gated D latch  15

1.5. Basic JK flip-flop 16

1.6. T flip-flop  18

1.7. Master-slave and edge-triggered flip-flop  20

1.7.1. Master-slave flip-flop 20

1.7.2. Edge-triggered flip-flop  24

1.8. Flip-flops with asynchronous inputs 30

1.9. Operational characteristics of flip-flops 33

1.10. Exercises 34

1.11. Solutions 39

Chapter 2. Binary Counters  51

2.1. Introduction  51

2.2. Modulo 4 counter 52

2.3. Modulo 8 counter 53

2.4. Modulo 16 counter  55

2.4.1. Modulo 10 counter  57

2.5. Counter with parallel load  60

2.6. Down counter 62

2.7. Synchronous reversible counter 64

2.8. Decoding a down counter 65

2.9. Exercises  66

2.10. Solutions 73

Chapter 3. Shift Register 85

3.1. Introduction  85

3.2. Serial-in shift register 85

3.3. Parallel-in shift register  85

3.4. Bidirectional shift register  88

3.5. Register file 90

3.6. Shift register based counter  91

3.6.1. Ring counter  92

3.6.2. Johnson counter  93

3.6.3. Linear feedback counter 94

3.7. Exercises  101

3.8. Solutions  107

Chapter 4. Arithmetic and Logic Circuits 117

4.1. Introduction  117

4.2. Adder  117

4.2.1. Half adder 117

4.2.2. Full adder  119

4.2.3. Ripple-carry adder 120

4.2.4. Carry-lookahead adder  122

4.2.5. Carry-select adder 124

4.2.6. Carry-skip adder  125

4.3. Comparator 127

4.4. Arithmetic and logic unit 129

4.5. Multiplier  136

4.5.1. Multiplier of 2-bit unsigned numbers  136

4.5.2. Multiplier of 4-bit unsigned numbers  137

4.5.3. Multiplier for signed numbers  138

4.6. Divider 143

4.7. Exercises  149

4.8. Solutions  158

Chapter 5. Digital Integrated Circuit Technology  177

5.1. Introduction 177

5.2. Characteristics of the technologies  177

5.2.1. Supply voltage 177

5.2.2. Logic levels  178

5.2.3. Immunity to noise 178

5.2.4. Propagation delay 179

5.2.5. Electric power consumption 179

5.2.6. Fan-out or load factor 179

5.3. TTL logic family  180

5.3.1. Bipolar junction transistor  180

5.3.2. TTL NAND gate  181

5.3.3. Integrated TTL circuit 182

5.4. CMOS logic family  183

5.4.1. MOSFET transistor  183

5.4.2. CMOS logic gates 184

5.5. Open drain logic gates 185

5.5.1. Three-state buffer 187

5.5.2. CMOS integrated circuit 188

5.6. Other logic families  189

5.7. Interfacing circuits of different technologies  189

5.8. Exercises  190

5.9. Solutions  193

Chapter 6. Semiconductor Memory  195

6.1. Introduction  195

6.2. Memory organization 195

6.3. Operation of a memory  197

6.4. Types of memory 199

6.4.1. Non-volatile memory 199

6.4.2. Volatile memories 202

6.4.3. Characteristics of the different memory types 207

6.5. Applications  207

6.5.1. Memory organization 208

6.5.2. Applications  209

6.6. Other types of memory  218

6.6.1. Ferromagnetic RAM 220

6.6.2. Content-addressable memory 222

6.6.3. Sequential access memory  223

6.7. Exercises  226

6.8. Solutions  230

Chapter 7. Programmable Logic Circuits 245

7.1. General overview 245

7.2. Programmable logic device  246

7.3. Applications  255

7.3.1. Implementation of logic functions  255

7.3.2. Two-bit adder 257

7.3.3. Binary-to-BCD and BCD-to-binary converters 263

7.4. Programmable logic circuits (CPLD and FPGA)  263

7.4.1. Principle and technology 264

7.4.2. CPLD  268

7.4.3. FPGA  270

7.5. References 274

7.6. Exercises  275

7.7. Solutions  284

Appendix  307

Bibliography 309

Index  311

See More

Author Information

Tertulien Ndjountche received a PhD degree in electrical engineering from Erlangen-Nuremberg University in Germany. He has worked as a professor and researcher at universities in Germany and Canada. He has published numerous technical papers and books in his fields of interest.

See More

More in this series

Back to Top