Dear customers, please be informed that our shopping cart will be unavailable between August 21 and September 1, 2014, as we will be making some changes to serve you better. To minimise any possible delivery disruption, we encourage you to make your purchases before August 21. We appreciate your understanding and apologise for any inconvenience.

Wiley
Wiley.com
Print this page Share

Cable-Stayed Bridges: 40 Years of Experience Worldwide

ISBN: 978-3-433-02992-3
458 pages
July 2012
Cable-Stayed Bridges: 40 Years of Experience Worldwide (343302992X) cover image
The need for large-scale bridges is constantly growing due to the enormous infrastructure development around the world. Since the 1970s many of them have been cable-stayed bridges. In 1975 the largest span length was 404 m, in 1995 it increased to 856 m, and today it is 1104 m. Thus the economically efficient range of cable-stayed bridges is tending to move towards even larger spans, and cable-stayed bridges are increasingly the focus of interest worldwide.
This book describes the fundamentals of design analysis, fabrication and construction, in which the author refers to 250 built examples to illustrate all aspects. International or national codes and technical regulations are referred to only as examples, such as bridges that were designed to German DIN, Eurocode, AASHTO, British Standards. The chapters on cables and erection are a major focus of this work as they represent the most important difference from other types of bridges.
The examples were chosen from the bridges in which the author was personally involved, or where the consulting engineers, Leonhardt, Andrä and Partners (LAP), participated significantly. Other bridges are included for their special structural characteristics or their record span lengths. The most important design engineers are also presented.
See More

1 Introduction  16

1.1 Design fundamentals  17

1.1.1 General  17

1.1.2 Overall system  19

1.1.2.1 Cable arrangement  19

1.1.2.2 Cable stiffness  20

1.1.2.3 Geometry  21

1.1.2.4 Support conditions  21

1.1.3 Tower shapes  23

1.1.3.1 Two outer cable planes  23

1.1.3.2 One central cable plane  23

1.1.3.3 Spread central cable planes  24

1.1.4 Beam cross-sections  24

1.1.4.1 Steel cross-sections  24

1.1.4.2 Concrete cross-sections  25

1.1.4.3 Composite cross-sections  25

1.1.4.4 Hybrid beams (steel/concrete)  26

1.1.4.5 Double deck cross-section  26

1.1.5 Stay cables  26

1.1.5.1 Systems  26

1.1.5.2 Cable anchorages  26

1.2 Aesthetic guidelines for bridge design  30

1.2.1 Introduction  30

1.2.2 Aesthetic guidelines  30

1.2.2.1 Guideline 1: Clear structural system  30

1.2.2.2 Guideline 2: Good proportions  31

1.2.2.3 Guideline 3: Good order  33

1.2.2.4 Guideline 4: Integration into the environment  34

1.2.2.5 Guideline 5: Choice of material  35

1.2.2.6 Guideline 6: Coloring  36

1.2.2.7 Guideline 7: Space above the bridge  38

1.2.2.8 Guideline 8: Recognizable flow of forces  38

1.2.2.9 Guideline 9: Lighting  41

1.2.2.10 Guideline 10: Simplicity  41

1.2.3 Collaboration  42

2 The development of cable-stayed bridges  46

2.1 The precursors of cable-stayed bridges  47

2.1.1 Introduction  47

2.1.2 Historical development  47

2.1.2.1 Historical designs  47

2.1.2.2 First examples and failures  48

2.1.2.3 John Roebling and stiffened suspension bridges  51

2.1.2.4 Transporter bridges  52

2.1.2.5 Approaching the modern form  55

2.2 Steel cable-stayed bridges  58

2.2.1 Introduction  58

2.2.2 Beginnings  58

2.2.3 The Düsseldorf Bridge Family  59

2.2.4 Further Rhine river bridges  62

2.2.5 Special steel cable-stayed bridges  70

2.2.6 Cable-stayed bridges with record spans  76

2.3 Concrete cable-stayed bridges  80

2.3.1 General  80

2.3.2 Development of concrete cable-stayed bridges  81

2.3.3 Bridges with concrete stays  92

2.3.3.1 Riccardo Morandi’s bridges  92

2.3.3.2 Later examples  92

2.3.3.3 Bridges with concrete walls  94

2.3.4 Cable-stayed bridges with thin concrete beams  94

2.3.5 Record spans  98

2.4 Composite cable-stayed bridges  101

2.4.1 General  101

2.4.2 Cross-sections  101

2.4.3 Special details  104

2.4.4 Economic span lengths  104

2.4.5 Beginnings  105

2.4.6 Record spans  105

2.4.7 Latest examples  111

2.5 Special systems of cable-stayed bridges  118

2.5.1 Series of cable-stayed bridges  118

2.5.1.1 Load transfer  118

2.5.1.2 Intermediate piers  118

2.5.1.3 Stiff towers  118

2.5.1.4 Stayed towers  118

2.5.1.5 Frames  121

2.5.1.6 Accommodation of longitudinal deformations  121

2.5.1.7 Examples  123

2.5.2 Stayed beams  130

2.5.2.1 Stayed from underneath  130

2.5.2.2 Stayed from above (extradosed)  130

2.5.3 Cable-stayed pedestrian bridges  133

3 Stay cables  140

3.1 General  141

3.2 Locked coil ropes  141

3.2.1 System  141

3.2.2 Fabrication  142

3.2.3 Modern corrosion protection systems  142

3.2.3.1 General  142

3.2.3.2 Galvanizing of the wires  142

3.2.3.3 Filling  142

3.2.3.4 Paint  143

3.2.4 Inspection and maintenance  143

3.2.5 Damage  143

3.2.5.1 Köhlbrand Bridge  143

3.2.5.2 Maracaibo Bridge, Venezuela  145

3.2.5.3 Flehe Rhine River Bridge  146

3.2.5.4 Lessons from the damage  146

3.3 Parallel bar cables  146

3.4 Parallel wire cables  147

3.4.1 System  147

3.4.2 Corrosion protection  148

3.4.2.1 Polyethylene (PE) pipes  148

3.4.2.2 Wrappings  150

3.4.2.3 Grouting  150

3.4.2.4 Damage  151

3.4.2.5 Petroleum wax  151

3.4.3 Fabrication  152

3.5 Parallel strand cables  153

3.5.1 General  153

3.5.2 System  153

3.5.3 Corrosion protection  153

3.5.3.1 Traditional  153

3.5.3.2 With dry air  153

3.5.4 Fabrication  154

3.5.5 Durability tests  154

3.5.5.1 Tensile strength and fatigue strength  154

3.5.5.2 Water tightness  154

3.5.5.3 Sustainability  154

3.5.6 Monitoring  154

3.6 Cable anchorages  156

3.6.1 General  156

3.6.2 Support of anchor heads  156

3.6.3 Anchorage at the tower  158

3.6.3.1 Continuous  158

3.6.3.2 Composite cable anchorages at tower head  158

3.6.3.3 Cable anchorage in concrete  158

3.7 Cable sizing  160

3.7.1 General  160

3.7.2 Sizing by permissible stresses  160

3.7.2.1 Permissible stresses for static loads  160

3.7.2.2 Permissible fatigue range  160

3.7.2.3 Permissible stresses during cable exchange  161

3.7.3 Sizing in ultimate limit state  161

3.7.3.1 Ultimate limit state  161

3.7.3.2 Fatigue  161

3.7.3.3 Cable exchange  162

3.7.3.4 Service limit state  162

3.7.4 Summary  162

3.8 Cable dynamics  163

3.8.1 General  163

3.8.2 Fundamental parameters  164

3.8.2.1 Static wind load  164

3.8.2.2 Natural frequencies  165

3.8.3 Dynamic excitation  165

3.8.3.1 Galloping oscillations  165

3.8.3.2 Anchorage excitation  166

3.8.3.3 Parametric resonance  168

3.8.3.4 Buffeting  168

3.8.3.5 Vortex-induced vibrations  169

3.8.4 Countermeasures  169

3.8.4.1 Dampers  169

3.8.4.2 Surface profiling  174

3.8.4.3 Cross ties  174

3.9 Cable installation  175

3.9.1 General  175

3.9.2 Locked coil ropes  175

3.9.2.1 General  175

3.9.2.2 Example  175

3.9.3 Parallel wire cables  178

3.9.3.1 General  178

3.9.3.2 Example  178

3.9.4 Parallel strand cables  179

3.9.4.1 General  179

3.9.4.2 Example  179

3.9.5 Cable calculations  184

3.9.5.1 Cable deformations  184

3.9.5.2 Measuring of cable forces  184

4 Preliminary design of cable-stayed bridges 186

4.1 Action forces for equivalent systems  187

4.1.1 General  187

4.1.2 System geometry  187

4.1.3 Normal forces of articulated system  188

4.1.4 Live loads on elastic foundation  189

4.1.4.1 Beam on elastic foundation  189

4.1.4.2 Buckling – non-linear theory  190

4.1.5 Permanent loads on rigid supports  192

4.1.5.1 Dead load  192

4.1.5.2 Post-tensioning  193

4.1.5.3 Shrinkage and creep  193

4.1.6 Towers  195

4.1.6.1 In the longitudinal direction  195

4.1.6.2 In the transverse direction  195

4.1.7 Stay cables  197

4.2 Action forces of actual systems  197

4.2.1 Permanent loads  197

4.2.1.1 General  197

4.2.1.2 Concrete bridges  198

4.2.1.3 Steel bridges  199

4.2.1.4 Towers  202

4.2.2 Live loads  202

4.2.3 Kern point moments  204

4.2.4 Non-linear theory (second order theory)  206

4.2.5 Superposition  208

4.2.6 Temperature  208

4.2.7 Eigenfrequencies  210

4.3 Bridge dynamics  211

4.3.1 General  211

4.3.2 Overview of wind effects  213

4.3.3 Wind profile, turbulence and turbulence-induced oscillations  214

4.3.3.1 Wind parameters  214

4.3.3.2 Natural modes of vibration of structures  216

4.3.3.3 Section forces under turbulent excitation  218

4.3.4 Vortex-induced vibrations  222

4.3.5 Self-excitation and other motion-induced effects 224

4.3.5.1 General description, background  224

4.3.5.2 Practical examples of bending-type galloping  226

4.3.5.3 Practical examples of torsional galloping  228

4.3.5.4 Flutter  232

4.3.6 Damping measures  236

4.3.7 Wind tunnel testing  240

4.3.7.1 General  240

4.3.7.2 Overview of important types of wind tunnel testing  240

4.3.8 Earthquake  244

4.4 Protection of bridges against ship collision  248

4.4.1 Introduction  248

4.4.2 Collision forces  248

4.4.3 Protective structures  252

4.4.3.1 General  252

4.4.3.2 Out of reach  252

4.4.3.3 Artificial islands  253

4.4.3.4 Guide structures  253

4.4.3.5 Independent protective structures  258

4.4.3.6 Strong piers  261

4.5 Preliminary design calculations  266

4.5.1 General  266

4.5.2 Typical cable-stayed concrete bridge  266

4.5.2.1 System and loads  266

4.5.2.2 Normal forces for articulated system  267

4.5.2.3 Bending moments  269

4.5.3 Typical cable-stayed steel bridge  270

4.5.3.1 General  270

4.5.3.2 System  270

4.5.3.3 Section properties and loads  270

4.5.3.4 Beam moments from live load  270

4.5.3.5 Permissible beam moments  271

4.5.3.6 Moments from dead load for articulated system  271

4.5.4 Cable-stayed bridge with side spans on piers  272

4.5.4.1 System and loads  272

4.5.4.2 Cable forces of articulated system  273

4.5.4.3 Bending moments for beam  274

4.5.5 Cable-stayed bridge with harp arrangement  275

4.5.5.1 With regular side spans  275

4.5.5.2 With side spans on piers  276

4.5.6 Cable-stayed bridge with longitudinal A-tower  276

4.5.6.1 System and loads  277

4.5.6.2 Normal forces for articulated system  277

4.5.6.3 Cable sizing  278

4.5.6.4 Bending moments for beam  278

4.5.6.5 Post-tensioning  278

4.5.7 Slender cable-stayed concrete bridge  279

4.5.7.1 System and loads  279

4.5.7.2 Stay cables  280

4.5.7.3 Beam moments  283

4.5.7.4 Aerodynamic stability  286

4.5.7.5 Towers  287

5 Construction of cable-stayed bridges  290

5.1 Examples  291

5.1.1 General  291

5.1.2 Tower construction  291

5.1.2.1 Steel towers  291

5.1.2.2 Concrete towers  291

5.1.2.3 Composite towers  291

5.1.3 Beam construction  292

5.1.3.1 General  292

5.1.3.2 Concrete beam  293

Free cantilevering  293

Launching  299

Rotating  299

Rotating on scaffolding  302

5.1.3.3 Steel beams  304

Free cantilevering  304

Launching  304

Transverse shifting  305

5.1.3.4 Composite beam  305

Free cantilevering  305

Launching  309

5.2 Construction engineering  312

5.2.1 General  312

5.2.2 Construction engineering by dismantling  312

5.2.2.1 General  312

5.2.2.2 Dismantling from t = ∞ to t = 1  313

5.2.2.3 Dismantling of bridge  313

With floating crane  313

Dismantling with derrick  314

5.2.2.4 Aerodynamic stability  315

5.2.3 Example for construction engineering  316

5.2.3.1 Forward construction  316

5.2.3.2 Construction engineering  316

5.2.3.3 Construction manual  316

5.2.3.4 Control measurements  316

5.2.4 Design of auxiliary stays  320

5.2.4.1 Symmetrical auxiliary stays for towers  320

5.2.4.2 One-sided auxiliary stays for towers  321

5.2.4.3 Auxiliary stays for beam  321

5.2.4.4 Without auxiliary stays for beam  321

5.2.5 Auxiliary tie-backs for travelers  323

6 Examples for typical cable-stayed bridges 326

6.1 Cable-stayed concrete bridges with precast beams  327

6.1.1 General  327

6.1.2 Pasco-Kennewick Bridge  327

6.1.2.1 General layout  327

6.1.2.2 Construction engineering  332

6.1.2.3 Completed bridge  344

6.1.3 East Huntington Bridge  346

6.1.3.1 General design considerations  346

6.1.3.2 Construction  346

6.1.3.3 Completed bridge  349

6.2 CIP concrete cable-stayed bridge Helgeland Bridge  352

6.2.1 General layout  352

6.2.1.1 Introduction  352

6.2.1.2 Bridge system  353

6.2.2 Construction  358

6.2.2.1 Climate  358

6.2.2.2 Towers  358

6.2.2.3 Beam  360

6.2.2.4 Stay cables  362

6.2.2.5 Instrumentation  366

6.2.2.6 Completed bridge  367

6.2.3 Summary  367

6.3 Cable-stayed steel bridge Strelasund Crossing  369

6.3.1 Design considerations  369

6.3.1.1 Bridge alternates  369

6.3.1.2 Optimizing the cable-stayed solution  371

6.3.1.3 Structural details  371

6.3.2 The cable-stayed bridge  371

6.3.2.1 Span lengths  371

6.3.2.2 Beam cross-section  371

6.3.2.3 Wind barriers  372

6.3.2.4 Tower  372

6.3.2.5 Stay cables  373

6.3.2.6 Aerodynamic investigation  373

6.3.3 Construction  375

6.3.3.1 Construction engineering  375

6.3.3.2 Construction of the main bridge  376

6.3.3.3 Completed bridge  386

6.4 Composite cable-stayed bridge Baytown Bridge  387

6.4.1 General layout  387

6.4.1.1 Bridge system  387

6.4.1.2 Composite beam  388

6.4.1.3 Towers  390

6.4.1.4 Stay cables  390

6.4.1.5 Aerodynamic stability  391

6.4.2 Construction  391

6.4.2.1 Foundations  391

6.4.2.2 Towers  391

6.4.2.3 Beam  392

6.4.2.4 Stay cables  398

6.4.2.5 Completed bridge  398

6.4.3 Summary  401

6.5 Hybrid cable-stayed bridge Normandy Bridge  402

6.5.1 Design considerations  402

6.5.1.1 Structural design  402

6.5.1.2 Cable dynamics  404

6.5.2 Construction  404

6.5.2.1 Tower  404

6.5.2.2 Concrete approach bridges  406

6.5.2.3 Steel main span  408

6.5.2.4 Cable installation  408

6.5.2.5 Completed bridge  410

6.6 Series of cable-stayed bridges  411

6.6.1 Millau Bridge  411

6.6.1.1 General  411

6.6.1.2 Design  412

6.6.1.3 Construction  412

6.6.1.4 Completed bridge  416

6.6.2 Rion-Antirion Bridge  418

6.6.2.1 General  418

6.6.2.2 Design  418

6.6.2.3 Construction  421

6.6.2.4 Completed bridge  425

7 Future development  426

Index  428

Bridge Index  428

References  431

Figure Origins  439

List of Advertisers  441

Appendix: 40 years of experience with major bridges all over the world  443

Beginnings  443

Bridges in Germany  443

Cable-stayed bridges abroad  445

New developments by competition  446

Checking of bridges  449

Participation in Code Commissions  452

Current projects  452

Summary  453

References  454

Lectures on cable-stayed bridges on DVD  458

See More
Holger Svensson's name stands for 40 years of large-scale bridge construction the world over. He obtained his diploma from Stuttgart University and, since 1972, has worked with the world-famous Fritz Leonhardt. At LAP, Prof. Dipl.-Ing. Holger Svensson, PE, CEng, FIStructE, has been active as structural engineer, project manager and chief engineer, and from 1992 to 2010 as managing director and chairman of the board. He has been responsible for the design analysis, construction engineering and checking of cable-stayed bridges around the world, such as the Pasco-Kennewick Bridge over the Columbia River, USA, and the Helgeland Bridge over Leirfjord, Norway.
Since 2009 he has been a lecturer and since 2012 is a professor at Dresden University where he teaches all aspects of the design and construction of cable-stayed bridges.
Holger Svensson was for eight years a vice-president of the International Association for Bridge and Structural Engineering (IABSE) and is currently an independent consulting engineer and a member of the juries for German bridge and structural engineering prizes.

See More

“A welcome addition to the book is a chapter on construction engineering . . .This is a useful reference source for the design of both temporary and permanent works.”  (Structural Engineer, 1 September 2012)

This great work has been the best academic
book in cable-stayed bridges since construction
and design of cable-stayed bridges authored
by W. Podolny and J. B. Scalzi published in 1976 (Steel Construction 3/2012)
See More
Buy Both and Save 25%!
+

Cable-Stayed Bridges: 40 Years of Experience Worldwide (US $185.00)

-and- Fire Design of Steel Structures: Eurocode 1: Actions on structures; Part 1-2: General actions -- Actions on structures exposed to fire; Eurocode 3: Design of steel structures; Part 1-2: General rules -- Structural fire design (US $90.00)

Total List Price: US $275.00
Discounted Price: US $206.25 (Save: US $68.75)

Buy Both
Cannot be combined with any other offers. Learn more.

Related Titles

Back to Top