Dear customers, please be informed that our shopping cart will be unavailable between August 21 and September 1, 2014, as we will be making some changes to serve you better. To minimise any possible delivery disruption, we encourage you to make your purchases before August 21. We appreciate your understanding and apologise for any inconvenience.

Wiley
Wiley.com
Print this page Share

Corrosion Resistance of High-Performance Materials: Titanium, Tantalum, Zirconium

Michael Schutze (Editor), Roman Bender (Editor), Karl-Gunther Schutze (Editor)
ISBN: 978-3-527-33435-3
526 pages
December 2012
Corrosion Resistance of High-Performance Materials: Titanium, Tantalum, Zirconium (3527334351) cover image
Corrosion resistance is the property of a material to resist corrosion attack in a particular aggressive environment. Although titanium, tantalum and zirconium are not noble metals, they are the best choice whenever high corrosion resistance is required. The exceptionally good corrosion resistance of these high-performance metals and their alloys results from the formation of a very stable, dense, highly adherent, and self-healing protective oxide film on the metal surface. This naturally occurring oxide layer prevents chemical attack of the underlying metal surface. This behavior also means, however, that high corrosion resistance can be expected only under neutral or oxidizing conditions. Under reducing conditions, a lower resistance must be reckoned with. Only very few inorganic and organic substances are able to attack titanium, tantalum or zirconium at ambient temperature. As the extraordinary corrosion resistance is coupled with an excellent formability and weldability these materials are very valuable for a large number of applications, such as heat exchangers, reaction vessels, funace construction, radiation shielding, implants for medical technology, and capacitor components in electronics.
See More

Preface XI

How to use the Handbook XIII

Warranty disclaimer 1

Tantalum, niobium and their alloys 3

Introduction 3

Acetates (Salts) 4
L. Hasenberg

Acetic Acid 4
G. Elsner

Acid Halides 5
G. Elsner

Aliphatic Aldehydes 5
G. Elsner

Aliphatic Amines 6
L. Hasenberg

Aliphatic Ketones 6
H. Barkholt

Alkaline Earth Chlorides 6
R. Weidemann

Alkaline Earth Hydroxides 6
A. Weser

Alkanecarboxylic Acids 7
L. Hasenberg

Alkanols 7
K. Hauffe

Aluminium Chloride 7
L. Hasenberg

Ammonia and Ammonium Hydroxide 8
P. Drodten

Ammonium Salts 8
K. Hauffe

Atmosphere 9
K. Baumann

Bromides 10
K. John

Bromine 10
K. John

Carbonic acid 12
P. Drodten

Carboxylic Acid Esters 12
L. Hasenberg

Chlorinated Hydrocarbons – Chloroethanes 13
H. G. Spilker

Chlorinated Hydrocarbons – Chloromethanes 14
H. G. Spilker

Chlorine and Chlorinated Water 15
K. Hauffe

Chlorine Dioxide 17
L. Hasenberg

Ferrous Chlorides 17
A. Werner

Fluorides 18
K. Hauffe

Fluorine, Hydrogen Fluoride, Hydrofluoric Acid 19
K. Hauffe

Formic Acid 22
H. Leyerzapf

Hot Oxidizing Gases 22
K. Hauffe

Hydrochloric Acid 29
A. Bäumel, P. Drodten

Hydrogen Chloride 43
H. Barkholt

Hypochlorites 44
L. Hasenberg

Industrial Waste Gases 45
G. Subat

Lithium Hydroxide 45
K. John

Methanol 45
H. G. Spilker

Mixed acids 49
M. B. Rockel

Nitric acid 52
K. Hauffe

Phosphoric Acid 55
L. Hasenberg

Polyols 59
G. Elsner

Potassium Chloride 59
L. Hasenberg

Potassium Hydroxide 60
P. Drodten

Seawater 61
P. Drodten

Sodium Chloride 61
M. B. Rockel

Sodium Hydroxide 62
P. Drodten

Sodium Sulfate 64
J. Küpper-Feser

Soil (Underground corrosion) 65
G. Elsner

Steam 65
H. Leyerzapf

Sulfonic Acids 65
K. Hauffe

Sulfur dioxide 66
L. Hasenberg

Sulfuric Acid 67
L. Hasenberg

Waste Water (industrial) 83
E. Heitz, G. Subat

Bibliography 84
Titanum and titanium alloys 105

Introduction 105

Acetates (Salts) 107
L. Hasenberg

Acetic Acid 107
G. Elsner

Acid Halides 113
G. Elsner

Aliphatic Aldehydes 113
G. Elsner

Aliphatic Amines 114
L. Hasenberg

Aliphatic Ketones 114
H. Barkholt

Alkaline Earth Chlorides 114
R. Weidemann

Alkaline Earth Hydroxides 116
A. Weser

Alkanecarboxylic Acids 118
L. Hasenberg

Alkanols (Monovalent Alkohols) 119
K. Hauffe

Aluminium Chloride 122
L. Hasenberg

Amine Salts 124
K. Hauffe

Ammonia and Ammonium Hydroxide 125
P. Drodten

Ammonium Salts 126
K. Hauffe

Atmosphere 136
K. Baumann

Benzene and Benzene Homologues 137
K. Hauffe

Bromides 139
K. John

Bromine 145
K. John

Carbonic Acid 146
P. Drodten

Carboxylic Acid Esters 146
L. Hasenberg

Chlorinated Hydrocarbons – Chloroethanes 148
H. G. Spilker

Chlorinated Hydrocarbons – Chloromethanes 151
H. G. Spilker

Chlorine and Chlorinated Water 155
K. Hauffe

Chlorine Dioxide 160
L. Hasenberg

Ferrous/Ferric Chloride (FeCl2, FeCl3) 163
A. Werner

Fluorides 178
K. Hauffe

Fluorine, Hydrogen Fluoride, Hydrofluoric Acid 185
K. Hauffe

Formic acid 191
H. Leyerzapf

Hot Oxidizing Gases 192
K. Hauffe

Hydrochloric Acid 201
A. Bäumel, P. Drodten

Hydrogen Chloride 218
H. Barkholt

Hypochlorites 220
L. Hasenberg

Industrial Waste Gases 222
G. Subat

Lithium Hydroxide 226
K. John

Methanol 227
H. G. Spilker

Mixed Acids 240
M. B. Rockel

Nitric Acid 246
K. Hauffe

Phosphoric Acid 261
L. Hasenberg

Polyols 266
G. Elsner

Potassium Chloride 267
L. Hasenberg

Potassium Hydroxide 271
P. Drodten

Seawater 273
P. Drodten

Sodium Chloride 280
M. B. Rockel

Sodium Hydroxide 304
P. Drodten

Sodium Sulfate 307
J. Küpper-Feser

Soil 311
G. Elsner

Steam 311
H. Leyerzapf

Sulfonic Acids 312
K. Hauffe

Sulfur Dioxide 313
L. Hasenberg

Sulfuric Acid 317
L. Hasenberg

Waste Water (industrial) 334
E. Heitz, G. Subat

Bibliography 335

Zirconium and zirconium alloys 383

Introduction 383

Acetates (Salts) 384
L. Hasenberg

Acetic Acid 384
G. Elsner

Acid Halides 386
G. Elsner

Aliphatic Aldehydes 386
G. Elsner

Aliphatic Amines 386
L. Hasenberg

Aliphatic Ketones 386
H. Barkholt

Alkaline Earth Chlorides 387
R. Weidemann

Alkaline Earth Hydroxides 388
A. Weser

Alkanecarboxylic Acids 388
L. Hasenberg

Alkanols 389
K. Hauffe

Aluminium Chloride 390
L. Hasenberg

Ammonia and Ammonium Hydroxide 390
P. Drodten

Ammonium Salts 391
K. Hauffe

Atmosphere 394
K. Baumann

Bromides 395
K. John

Bromine 396
K. John

Carbonic Acid 396
P. Drodten

Carboxylic Acid Esters 396
L. Hasenberg

Chlorinated Hydrocarbons – Chloroethanes 398
H. G. Spilker

Chlorinated Hydrocarbons – Chloromethanes 398
H. G. Spilker

Chlorine and Chlorinated Water 400
K. Hauffe

Chlorine Dioxide 401
L. Hasenberg

Ferrous Chlorides 401
A. Werner

Fluorides 411
K. Hauffe

Fluorine, Hydrogen Fluoride, Hydrofluoric Acid 416
K. Hauffe

Formic Acid 418
H. Leyerzapf

Hot Oxidizing Gases 418
K. Hauffe

Hydrochloric Acid 427
A. Bäumel, P. Drodten

Hydrogen Chloride 431
H. Barkholt

Hypochlorites 432
L. Hasenberg

Industrial Waste Gases 433
G. Subat

Lithium Hydroxide 434
K. John

Methanol 442
H. G. Spilker

Mixed Acids 445
M. B. Rockel

Nitric Acid 448
K. Hauffe

Phosphoric Acid 453
L. Hasenberg

Polyols 455
G. Elsner

Potassium Chloride 455
L. Hasenberg

Potassium Hydroxide 456
P. Drodten

Seawater 457
P. Drodten

Sodium Chloride 457
M. B. Rockel

Sodium Hydroxide 459
P. Drodten

Sodium Sulfate 460
J. Küpper-Feser

Steam 460
H. Leyerzapf

Sulfonic Acids 463
K. Hauffe

Sulfur Dioxide 463
L. Hasenberg

Sulfuric acid 468
L. Hasenberg

Bibliography 474

Index of materials 493

Subject index 501

See More
Michael Schütze, born in 1952, studied materials sciences at the University of Erlangen-Nuremberg from 1972 to 1978, and then joined the Karl Winnacker Institute of DECHEMA as a research associate. He received his doctorate in engineering sciences from the Technical University of Aachen (RWTH) in 1983, and his lecturing qualifi cation in 1991, becoming a member of the external teaching staff of the RWTH, where he has held a professorship since 1998 and has been director of the Karl Winnacker Institute since 1996. He is a recipient of the Friedrich Wilhelm Prize, the Rahmel Schwenk Medal and the Cavallaro Medal, a past chairman of the Gordon Research Conference on Corrosion, editor of the journal Materials and Corrosion, past president of the European Federation of Corrosion, and of the World Corrosion Organization, as well as chairman of the Working Party Corrosion by Hot Gases and Combustion Products of the European Federation of Corrosion.

Karl-Günther Schütze, born in 1954, studied chemistry at the University of Frankfurt (Main). He joined the Karl-Winnacker Institute of DECHEMA for the diploma thesis in 1980 and started his Ph.D. thesis at the corrosion department of the same institute. He received his doctorate in physical chemistry in 1985, and worked since 1984 as head of the corrosion laboratory of Degussa AG. Since 2002 he is head of the materials engineering group of Evonik Industries AG in Hanau-Wolfgang.

Roman Bender, born in 1971, studied chemistry at the Justus Liebig University of Giessen from 1992 to 1997. He received his doctorate in natural sciences from the Technical University of Aachen (RWTH Aachen) in 2001. After receiving his diploma he joined the Karl Winnacker Institute of the DECHEMA in Frankfurt (Main) as a research associate, where he has been head of the materials and corrosion group since 2000, and editor-in-chief of the world's largest corrosion data collection, the DECHEMA Werkstofftabelle and the Corrosion Handbook. In 2008 Dr. Bender was appointed CEO of the GfKORR - the Society for Corrosion Protection.
See More

Related Titles

Back to Top