Wiley.com
Print this page Share

Synthesis and Applications of Inorganic Nanostructures

ISBN: 978-3-527-34027-9
560 pages
December 2017
Synthesis and Applications of Inorganic Nanostructures (3527340270) cover image

Description

Authored by a leading figure in the field, this book systematically describes all the fundamental aspects and applications of inorganic nanostructures from zero to three dimensions. It not only discusses various synthesis technologies, but also covers the physical properties of inorganic nanostructures, such as optical, electric and magnetic properties, and practical applications such as energy storage (including Li-ion and Ni-MH batteries and supercapacitors), superhydrophobic and bio-applications, etc. The focus throughout is on the synthesis-structure-application relationships, including the growth mechanisms for the nanostrucutres.
Concise yet comprehensive, this is indispensable reading for chemists and materials scientists.
See More

Table of Contents

Preface xvii

Acknowledgments xix

1 Introduction 1

1.1 Wave-Particle Duality 2

1.2 Uncertainty Principle 3

1.3 Schrödinger Equation 3

1.4 Particle in a Potential Box 4

1.5 Fermi-Dirac Distribution and Fermi Energy 5

1.6 Density of States 7

1.7 Quantum Confinement 8

1.8 Top-Down and Bottom-Up Approaches to Construct Nanostructures 10

1.9 Nanostructured Materials Based on Dimension 11

1.10 Zero-Dimensional Nanostructures 11

1.11 One-Dimensional Nanostructures 13

1.12 Two-Dimensional Nanostructures 14

1.13 Three-Dimensional Nanostructures: Superstructures and Hybrid

Structures 15

References 16

2 Synthesis, Characterization, and Applications of Zero-Dimensional (0D) Nanostructures 21

2.1 General Remarks 21

2.2 Synthesis, Characterization, and Bioapplication of Metal Ag Nanoparticles 21

2.2.1 Synthesis of GSH-Coated Ag NPs 22

2.2.1.1 Ag NPs and BSA Binding 22

2.2.1.2 SDS-PAGE of Ag NPs and BSA Binding 22

2.2.1.3 Cell Culture and Treatment 23

2.2.1.4 MTT (Thiazolyl Blue) Assay 23

2.2.1.5 Fluorescence Observation of K562 Cells Stained by Hoechst 33258 23

2.2.1.6 Flow Cytometer Measurement 23

2.2.2 Characterization 24

2.2.3 Structure 24

2.2.4 Binding of Ag NPs and BSA 25

2.2.5 Anticancer Activities of Ag NPs 29

2.3 Synthesis, Characterization, and Optical Properties of Oxide Nanoparticles 33

2.3.1 SnO2 Nanoparticles 33

2.3.1.1 Synthesis 35

2.3.1.2 Characterization 35

2.3.1.3 Photocatalytic Activity Test 35

2.3.1.4 Structure 35

2.3.2 ZrO2 Nanoparticles 45

2.3.2.1 Synthesis 45

2.3.2.2 Characterization 45

2.3.2.3 Photocatalytic Activity Test 46

2.3.2.4 Structure 46

2.3.2.5 Optical Properties of ZrO2 Nanoparticles 49

2.3.2.6 Photocatalytic Properties 51

2.3.3 In2O3 Hollow Nanocrystals 52

2.3.3.1 Synthesis 52

2.3.3.2 Characterization 53

2.3.3.3 Photocatalytic Activity Test 53

2.3.3.4 Structure 53

2.3.3.5 Growth Mechanism of the rh-In2O3 Hollow Nanocrystals 58

2.3.3.6 Photocatalytic Activity of the rh-In2O3 Hollow Nanocrystals 61

2.3.4 Fe2O3 Nanoparticles 68

2.3.4.1 Synthesis 69

2.3.4.2 Characterization 69

2.3.4.3 Measurement of Magnetic Properties 69

2.3.4.4 Structure 71

2.3.4.5 Magnetic Properties 73

2.4 Synthesis, Characterization, and Optical Properties of Sulfide Nanoparticles 74

2.4.1 CdS Nanoparticles 74

2.4.1.1 Synthesis 76

2.4.1.2 Characterization 76

2.4.1.3 Structure 76

2.4.1.4 Growth Mechanism 80

2.4.1.5 Photoluminescence Properties 82

2.4.2 ZnS Nanoparticles and Microspheres 83

2.4.2.1 Synthesis of ZnS Nanoparticles and Microspheres 84

2.4.2.2 Characterization 84

2.4.2.3 Structure 84

2.4.2.4 Optical Properties 90

2.4.3 Ag2S Nanospheres 92

2.4.3.1 Synthesis 92

2.4.3.2 Characterization 93

2.4.3.3 Structure 93

2.4.3.4 Optical Properties of Ag2S Nanospheres 95

2.4.3.5 Growth Mechanism 96

2.5 Synthesis, Characterization, and Magnetic Properties of Oxide Nanocubes 101

2.5.1 Fe2O3 Nanocubes 101

2.5.1.1 Synthesis 101

2.5.1.2 Characterization 103

2.5.1.3 Structure 104

2.5.1.4 Magnetic Properties 106

2.5.2 Fe3O4 Nanocubes 106

2.5.2.1 Synthesis 107

2.5.2.2 Characterization 107

2.5.2.3 Magnetic Behavior Measurement 107

2.5.2.4 Electrochemical Measurement 107

2.5.2.5 Structure 108

2.5.2.6 Growth Mechanism 110

2.5.2.7 Magnetic Properties 115

2.5.2.8 Applied as Anode for LIBs 117

2.6 Synthesis, Characterization, and Photocatalytic Application of Microspheres (Bi@Bi2O3 Microspheres) 119

2.6.1 Synthesis 120

2.6.2 Characterization 121

2.6.3 Photocatalytic Test 121

2.6.4 Structure 122

2.6.5 Growth Mechanism 124

2.6.6 Optical Properties 126

2.6.7 Photocatalytic Activities 127

References 133

3 Synthesis, Characterization, and Application of One-Dimensional (1D) Nanostructures 147

3.1 General Remarks 147

3.2 Synthesis, Characterization, and Magnetic/Electrical Properties of Metal Nanowires/Nanotubes 147

3.2.1 Fe Nanowire Arrays 147

3.2.1.1 Synthesis 148

3.2.1.2 Characterization 148

3.2.1.3 Structure 149

3.2.1.4 Magnetic Properties 150

3.2.2 Co Nanowire Arrays 150

3.2.2.1 Synthesis 151

3.2.2.2 Characterization 152

3.2.2.3 Structure 152

3.2.2.4 Magnetic Properties 152

3.2.3 Ni Nanowire Arrays 154

3.2.3.1 Synthesis 154

3.2.3.2 Characterization 155

3.2.3.3 Structure 155

3.2.3.4 Magnetic Properties 156

3.2.4 Cu Nanowire Arrays 156

3.2.4.1 Synthesis 156

3.2.4.2 Characterization 157

3.2.4.3 Structure 157

3.2.4.4 Electrical Properties 159

3.2.5 Growth Mechanism for 1D Metal Nanostructures 160

3.2.5.1 Synthesis 161

3.2.5.2 Characterization 161

3.2.5.3 Structure 161

3.2.5.4 Growth Mechanism 164

3.3 Synthesis, Characterization, and Optical Properties of Metal Oxide Nanowires/Nanotubes 167

3.3.1 In2O3 Nanowires 167

3.3.1.1 Synthesis 168

3.3.1.2 Characterization 168

3.3.1.3 Structure 168

3.3.1.4 Photoluminescence Properties 169

3.3.2 ZrO2 Nanowires 170

3.3.2.1 Synthesis 171

3.3.2.2 Characterization 171

3.3.2.3 Optical Properties 173

3.3.3 SnO2 Nanowires 175

3.3.3.1 Synthesis 175

3.3.3.2 Characterization 176

3.3.3.3 Optical Properties 177

3.3.4 NiO Nanowires 179

3.3.4.1 Synthesis 179

3.3.4.2 Characterization 179

3.3.4.3 Structures 179

3.3.4.4 Optical Properties 180

3.3.5 Cr2O3 Nanowires 181

3.3.5.1 Synthesis 182

3.3.5.2 Characterization 182

3.3.5.3 Structures 182

3.3.5.4 Optical Properties 183

3.4 Synthesis, Characterization, Electrochemical Properties, and Supercapacitor Applications of MoO3 Nanowires 185

3.4.1 Synthesis 186

3.4.2 Characterization 186

3.4.3 Wastewater Treatment Experiment 187

3.4.4 Electrochemical Measurement 187

3.4.5 Structure 187

3.4.6 Electrochemical Properties and Supercapacitor Applications 190

3.4.7 Adsorption Properties for Removal of RhB 192

3.5 Synthesis, Characterization, and Bioapplication of Hydroxyapatite (HAP) Nanorods 193

3.5.1 Synthesis 194

3.5.2 Characterization 194

3.5.3 Cell Culture and Treatment 195

3.5.4 MTT (Thiazolyl Blue) Assay 195

3.5.5 Fluorescence Observation of HeLa Cells Stained by Hoechst 33342 195

3.5.6 Flow Cytometer Measurement 195

3.5.7 Nanoindentation Test 196

3.5.8 Structure 196

3.5.9 Anticancer Activity 201

3.5.10 Mechanical Strength 205

3.6 Synthesis and Characterization of Sulfide (CdS) Nanowire Arrays 206

3.6.1 Synthesis 206

3.6.2 Characterization 207

3.6.3 Structure 207

3.7 Synthesis and Characterization of Fullerene (C70) Nanowires 208

3.7.1 Synthesis 209

3.7.2 Characterization 209

References 211

4 Synthesis, Characterization, and Applications of Two-Dimensional (2D) Graphene-Related Nanostructures 221

4.1 General Remarks 221

4.2 Synthesis, Characterization, and Applications of Graphene-Based

Oxide Hybrid Nanostructures 221

4.2.1 Co3O4@Reduced Graphene Oxide 221

4.2.1.1 Synthesis 222

4.2.1.2 Characterization 223

4.2.1.3 Electrochemical Behavior Measurement 223

4.2.1.4 Structure 224

4.2.1.5 Electrochemical Properties 226

4.2.2 Fe3O4@Reduced Graphene Oxide 227

4.2.2.1 Synthesis 228

4.2.2.2 Characterization 228

4.2.2.3 Electrochemical Measurement 229

4.2.2.4 Structure 229

4.2.2.5 Magnetic Properties 233

4.2.2.6 Electrochemical Properties and Application as Anode for LIBs 235

4.2.3 SnO2-Polyaniline-Reduced Graphene Oxide in LIBs 240

4.2.3.1 Synthesis 241

4.2.3.2 Characterization 242

4.2.3.3 Electrochemical Experiment 243

4.2.3.4 Structure 243

4.2.3.5 Electrochemical Properties and Applied as Anode for LIBs 246

4.2.4 TiO2@Reduced Graphene Oxide 249

4.2.4.1 Synthesis 250

4.2.4.2 Characterization 250

4.2.4.3 Electrochemical Measurement 250

4.2.4.4 Structure 251

4.2.4.5 Electrochemical Properties and Applied as Anode for LIBs 253

4.2.5 Cu2O@Reduced Graphene Oxide 259

4.2.5.1 Synthesis 259

4.2.5.2 Characterization 259

4.2.5.3 Adsorption Measurement 260

4.2.5.4 Electrochemical Measurement 260

4.2.5.5 Structure 261

4.2.5.6 Removal of RhB 265

4.2.5.7 Electrochemical Properties and Applied as Anode for LIBs 267

4.2.6 ZnO@Reduced Graphene Oxide 269

4.2.6.1 Synthesis 269

4.2.6.2 Characterization 270

4.2.6.3 Photocatalytic Property Measurement 270

4.2.6.4 Structure 271

4.2.6.5 Electrochemical Behavior 273

4.2.6.6 Photocatalytic Properties 273

4.2.7 Fe2O3@Reduced Graphene Oxide 276

4.2.7.1 Synthesis 276

4.2.7.2 Characterization 277

4.2.7.3 Structure 277

4.2.7.4 Magnetic Properties 281

4.2.7.5 Removal of Rhodamine B Dye Molecules fromWater 283

4.3 Synthesis, Characterization, and Applications of Graphene-Related Hydroxide Nanocomposites 285

4.3.1 ��-Ni(OH)2@RGO 285

4.3.1.1 Synthesis 286

4.3.1.2 Characterization 286

4.3.1.3 Electrochemical Measurement 287

4.3.1.4 Nickel–MH Battery Performance Measurement 287

4.3.1.5 LIB Performance Measurement 287

4.3.1.6 Structure 288

4.3.1.7 Electrochemical Properties and Applied in Ni-MH and LIBs 290

4.3.2 Mg(OH)2@RGO 294

4.3.2.1 Synthesis 294

4.3.2.2 Characterization 294

4.3.2.3 Adsorption of Dye fromWater 294

4.3.2.4 Structure 295

4.3.2.5 Applications 298

4.4 Synthesis, Characterization, and Applications of Graphene-Related Sulfide (SnS2@RGO) Nanocomposites 301

4.4.1 Synthesis 301

4.4.2 Characterization 302

4.4.3 Electrochemical Measurement 302

4.4.4 Structure 303

4.4.5 Applied as Anode Material for LIBs 307

4.5 Synthesis, Characterization, and Applications of Graphene-Related

Carbonate (MnCO3@RGO) Nanocomposites 314

4.5.1 Synthesis 314

4.5.2 Characterization 315

4.5.3 Structure 316

4.5.4 Applications as Anode for LIBs 320

4.6 Synthesis, Characterization, and Applications of Graphene-Related Metal (Ni@RGO) Nanocomposites 324

4.6.1 Synthesis 324

4.6.2 Characterization 325

4.6.3 Adsorption Measurement 325

4.6.4 Electrochemical Measurement 326

4.6.5 Structure 326

4.6.6 Magnetic Properties 329

4.6.7 Removal of MB 331

4.6.8 Electrical Properties and Applied as Electrode for Supercapacitors 333

4.7 Synthesis, Characterization, and Applications of Graphene-Related Organic Nanocomposites (AdenineModified Graphene, AMG) 334

4.7.1 Synthesis 335

4.7.2 Characterization 335

4.7.3 Electrochemcial Measurement 336

4.7.4 Structure 336

4.7.5 Electrical Properties 341

References 346

5 Synthesis, Characterization, and Applications of Three-Dimensional (3D) Nanostructures 363

5.1 General Remarks 363

5.2 Synthesis, Characterization, and Application of 3D Oxide Nanostructures 363

5.2.1 Boehmite Nanococoons 363

5.2.1.1 Synthesis 364

5.2.1.2 Characterization 364

5.2.1.3 Structure 364

5.2.1.4 Growth Mechanism 366

5.2.1.5 CL Properties 367

5.2.2 ZnO-CPP Nanostructures 368

5.2.2.1 Synthesis 369

5.2.2.2 Characterization 370

5.2.2.3 Photocatalysis Experiment 370

5.2.2.4 Water Contact Angle (CA) Measurement 370

5.2.2.5 Structure 370

5.2.2.7 Formation of ZnO from Zn-CPPs 376

5.2.2.8 Superhydrophobicity 377

5.2.2.9 Photocatalysis Properties 378

5.2.3 Co3O4 3D Superstructures 379

5.2.3.1 Synthesis 379

5.2.3.2 Characterization 380

5.2.3.3 Magnetic Behavior Measurement 380

5.2.3.4 Catalytic Reaction 380

5.2.3.5 Structure 381

5.2.3.6 Optical Properties 381

5.2.3.7 Growth Mechanism 384

5.2.3.8 Magnetic Properties 386

5.2.3.9 Applied as Peroxidase 388

5.2.4 Mn2O3 3D Superstructures 395

5.2.4.1 Synthesis 396

5.2.4.2 Characterization 397

5.2.4.3 Water Contact Angle (CA) Measurement 397

5.2.4.4 Measurement of Magnetic Properties 397

5.2.4.5 Structure 397

5.2.4.6 Growth Mechanism 401

5.2.4.7 Magnetic Properties 404

5.2.4.8 Superhydrophobic Properties 407

5.2.5 WO3 3D Snowflake-like Nanostructures 408

5.2.5.1 Synthesis 409

5.2.5.2 Characterization 409

5.2.5.3 Water Contact Angle Measurement 409

5.2.5.4 Photocatalytic Activity Test 409

5.2.5.5 Electrochemical Measurement 410

5.2.5.6 Growth Mechanism 410

5.2.5.7 Structure 418

5.2.5.8 Superhydrophobicity 420

5.2.5.9 Photocatalytic Activity 421

5.2.5.10 Improved Anode Performance for LIBs 425

5.3 Synthesis, Characterization, and Application of 3D Hydroxide Nanostructures 429

5.3.1 Ni(OH)2 3D Peonylike Superstructures 429

5.3.1.1 Synthesis 429

5.3.1.2 Characterization 429

5.3.1.3 Electrochemical Properties Measurement 430

5.3.1.4 Wetting Behavior Measurement 430

5.3.1.5 Structure 430

5.3.1.6 Growth Mechanism 433

5.3.1.7 Electrochemical Properties 435

5.3.1.8 Superhydrophobic Properties 437

5.3.2 Mg(OH)2 3D Nanoflowers 438

5.3.2.1 Synthesis 439

5.3.2.2 Characterization 439

5.3.2.3 Wetting Behavior Test 440

5.3.2.4 Fire Test 440

5.3.2.5 Mechanical Properties Test 440

5.3.2.6 Thermogravimetric Analysis (TGA) 440

5.3.2.7 Structure 440

5.3.2.8 Growth Mechanism 441

5.3.2.9 Hydrophobic Properties 445

5.3.2.10 Flammability 446

5.4 Synthesis, Characterization, and Application of 3D Sulfide (PbS) Nanostructures 450

5.4.1 Synthesis 451

5.4.2 Characterization 451

5.4.3 Structure 451

5.4.4 Growth Mechanism 458

5.5 Synthesis, Characterization, and Application of 3D Selenide Nanostructures 460

5.5.1 Ag2Se 3D Plate-like Nanostructures 460

5.5.1.1 Synthesis 461

5.5.1.2 Characterization 461

5.5.1.3 Photocatalytic Activity Test 461

5.5.1.4 Wetting Behavior Test 462

5.5.1.5 Structure 462

5.5.1.6 Growth Mechanism 464

5.5.1.7 Optical Properties 465

5.5.1.8 Photocatalytic Properties 466

5.5.1.9 Superhydrophobic Properties 470

5.5.2 PbSe 3D Dendrite-like Nanostructures 472

5.5.2.1 Synthesis 473

5.5.2.2 Characterization 473

5.5.2.3 Water Contact Angle (CA) Measurement 474

5.5.2.4 Structure 474

5.5.2.5 Growth Mechanism 476

5.5.2.6 PL Properties 478

5.5.2.7 Superhydrophobic Properties 478

5.6 Synthesis, Characterization, and Application of 3D Carbonate Nanostructures 481

5.6.1 CaCO3 3D Superstructures 481

5.6.1.1 Synthesis 482

5.6.1.2 Surface Modification 482

5.6.1.3 Characterization 482

5.6.1.4 Structure 482

5.6.1.5 Growth Mechanism 486

5.6.1.6 Wettability 488

5.6.2 BaCO3 3D Superstructures 490

5.6.2.1 Synthesis 490

5.6.2.2 Characterization 491

5.6.2.3 Water Contact Angle (CA) Measurement 491

5.6.2.4 Structure 491

5.6.2.5 Growth Mechanism 494

5.6.2.6 Wettability 494

5.6.3 MgCO3⋅3H2O Viburnum Opulus-Like 3D Superstructures 496

5.6.3.1 Synthesis 496

5.6.3.2 Characterization 496

5.6.3.3 Water Contact Angle (CA) Measurement 497

5.6.3.4 Water Treatment Experiment 497

5.6.3.5 Structure 497

5.6.3.6 Growth Mechanism 502

5.6.3.7 Superhydrophobic Properties 504

5.6.3.8 Adsorption Ability 504

References 505

6 Summary 521

Index 525

See More

Author Information

Huaqiang Cao obtained his Ph. D degree from Nanjing University, China, in 2001, and now is full Professor at Tsinghua University, China. His research interests are in material chemistry, focusing on the design and synthesis of inorganic nanomaterials with different dimensions, and understanding the synthesis-structure-application relationships. In 2015 he was elected as fellow of the Royal Society of Chemistry (FRSC) and fellow of the Institute of Materials, Minerals, and Mining (FIMMM).
See More

Related Titles

Back to Top