Wiley.com
Print this page Share

Fundamentals of Polymer Science for Engineers

ISBN: 978-3-527-34131-3
408 pages
October 2017
Fundamentals of Polymer Science for Engineers (3527341315) cover image

Description

Filling a gap in the market, this textbook provides a concise, yet thorough introduction to polymer science for advanced engineering students and practitioners, focusing on the chemical, physical and materials science aspects that are most relevant for engineering applications.
After covering polymer synthesis and properties, the major section of the book is devoted to polymeric materials, such as thermoplastics and polymer composites, polymer processing such as injection molding and extrusion, and methods for large-scale polymer characterization. The text concludes with an overview of engineering plastics. The emphasis throughout is on application-relevant topics, and the author focuses on real-life, industry-relevant polymeric materials.
See More

Table of Contents

Preface    xv

Acknowledgments xvii

Part One Introduction    1

1 Introduction 3

1.1 Milestones in the Development of Polymer Science 3

1.2 Basic Terms and Definitions in Polymer Science 11

1.2.1 Polymer 11

1.2.2 Monomer 12

1.2.3 End Groups 13

1.2.4 Degree of Polymerization 13

1.2.5 Copolymers 13

1.2.6 Average Molecular Weights and Distributions 14

1.2.7 Molecular Weight and Molar Mass 16

1.2.8 Polymer Morphology 17

1.2.9 Thermoplastics 17

1.2.10 Elastomers 18

1.2.11 Plastics 19

1.2.12 Thermosetting  Resin 19

1.2.13 Polymer Blends 19

1.2.14 Tacticity 20

1.2.15 Polymerization and Functionality 20

1.2.16 Polymerization Processes 20

1.2.17 Addition or Chain Polymerization 21

1.2.18 Step Polymerization 23

1.2.19 Molecular  Architecture 27

1.2.20 Phase 27

1.3 Bonding Opportunities in Chemistry 31

1.3.1 Primary Bonds 31

1.3.2 Typical Primary Bond Distances and  Energies 32

1.3.3 Secondary Bond Forces 32

1.3.3.1 Dipole Forces 33

1.3.3.2 Hydrogen Bonds 33

1.3.3.3 Interrelation of Intermolecular Forces    34  General  Encyclopedias and Dictionaries 36 References  and  Literature Recommendations 36

Part Two Physical Properties of Polymers      41

2 Flexibility of Polymer Chains and Its Origin 43

2.1 Conformational  Stereoisomerism  of Macromolecules 43

2.2 Conformational Statistics  of  Chain Models 49

2.3 Types of Flexibility and Their Quantitative Treatment 53

3 Amorphous State of Polymers 59

3.1 Characterization of State of   Matter 59

3.2 State of Matter and Phase Transitions of Condensed Substances. Glass Transition 61

3.3 Deformation of Polymers. Three Deformational (Relaxational) States of Polymers 64

3.4 Relaxation Phenomena 71

3.4.1 Relaxation Phenomena in Low Molecular Weight   Substances 71

3.4.2 Relaxation Phenomena in High Molecular Weight    Substances 72

3.4.3 Time–Temperature Superposition (WLF Equation) 77

3.5 Glassy State of Polymers 79

3.5.1 Dependence of Glass Transition Temperature on Chemical Composition and Structure of the Polymer 79

3.5.2 Peculiarities of Polymer Glasses 83

3.6 High Elastic State of Polymers 85

3.6.1 Molecular Kinetic Interpretation of High   Elasticity 86

3.6.2 Thermodynamic Interpretation of High Elasticity 87

3.7 Viscous Liquid State of Polymers 88

3.7.1 Molecular Mechanism of Flow. Rheology of Molten  Polymers 88

3.7.2 Mechanical Glassifying of Polymer Melts. Importance of Viscous Liquid State for Polymer Processing 91

3.8 Mechanical Models of Linear Polymers 93

3.9 Structure and Morphology of Amorphous Polymers, Polymer Melts, and Solutions 95

3.10 Liquid Crystalline Polymers 98

References 101

4 Crystalline Polymers 103

4.1 Peculiarities of Crystalline Polymers. Degree of Crystallinity 103

4.2 Prerequisites  for  Polymer Crystallization 106

4.3 Kinetics and Mechanisms of Crystallization 112

4.3.1 Thermodynamics  of  Nuclei Formation 112

4.3.2 Nuclei Formation in Polymer Systems 113

4.3.3 Dependence of the Rate of Nuclei Formation on Temperature 114

4.4 Growth of Nuclei (Crystals) 116

4.4.1 Crystal Growth Theories 116

4.4.2 Dependence of Crystal Growth Rate on Temperature 118

4.5 Total Crystallization Rate 119

4.5.1 Mathematical Description of Phase Transition Kinetics 119

4.5.2 Basic Factors of the Total Crystallization Rate of Polymers 121

4.6 Melting and Recrystallization 124

4.6.1 Melting and Partial Melting 124

4.6.2 Thermodynamic Description of Melting Process and Melting Interval 125

4.6.3 Recrystallization 126

4.7 Morphology and Molecular Structure of Crystalline   Polymers 127

4.7.1 Development of Ideas About the Morphology and Structure of Polymers 128

4.7.1.1 Structure of Crystalline Polymers in an Isotropic   State 128

4.7.1.2 Structure of Crystalline Polymers in an Oriented    State 131

4.7.2 Polymer Single Crystals 134

4.7.3 Spherulites 136

4.7.4 Crystalline Fibrils 138

5 Mechanics of Polymers 141

5.1 Basic Terms and Definitions 141

5.2 Nature of Neck Formation 147

5.3 Strength  of Polymers and Long-term  Strength 149

5.4 Polymer Failure – Mechanism and Theories 151

Reference 155

6 Polymer Solutions 157

6.1 Development of Ideas Regarding the Nature of Polymer Solutions 157

6.2 Thermodynamics  of  Polymer Solutions 159

6.3 Flory–Huggins Theory 162

6.4 Concentrated Polymer Solutions. Plasticizing 164

References   165

7 Polymer  Molecular Weights 167

7.1 Types of Molecular  Weights 167

7.1.1 Number-Average Molecular Weight 167

7.1.2 Weight-Average  Molecular Weight 168

7.1.3 z-Average  Molecular Weight 169

7.2 Polydispersity and Molecular Weight Distribution 170

7.3 Methods for Determining the Weight and Sizes of Macromolecules 172

7.3.1 Types of Methods for Molecular Weight Determination 172

7.3.2 Osmometric Determination of Molecular Weight 174

7.3.3 Molecular Weight Determination via Light Scattering 174

7.3.4 Diffusion Method for Molecular Weight Determination 177

7.3.6 Sedimentation Methods for the Determination of Molecular Weight and its Distribution  178

7.3.8 Determination of Molecular Weight and its Distribution via the Method of Gel Permeation Chromatography 182

Other Methods for Determining Molecular Weight 185

7.4 Methods for Determining the Shape and Size of Macromolecules      186

8 Methods for the Characterization and Investigation of Polymers        189

8.1 Diffraction Methods 189

8.1.1 Wide- and Small-Angle X-Ray Diffraction    190

8.1.2 Electron Diffraction   195

8.1.3 Light Diffraction   196

8.1.4 Neutron Diffraction    196

8.2 Microscopic  Methods 197

8.2.1 Light Microscopy with Common and Polarized   Light 198

8.2.2 Electron Microscopy (Transmission and Scanning)     199

8.2.3 Atomic Force Microscopy    203

8.3 Thermal  Methods 205

8.3.2 Calorimetric Techniques for the Investigation of Polymer Structure and Transitions    205

Fast Scanning Calorimeter  (Chip  Calorimeter) 209

8.5 Spectroscopic Techniques for the Investigation of Polymer Structure and Conformational Studies of Macromolecules 210

Static and Dynamic-Mechanical Techniques     212

8.5.1 Static Techniques    212

8.5.2 Dynamic  Techniques 214

8.5.3 Density Measurements    214

References and Sources used for Part   Two 217

Part Three     Synthesis of Polymers     219

9 Polycondensation (Condensation Polymerization) 221

9.1 Introduction 221

9.2 Equilibrium  Polycondensation 225

9.2.1 Formation  of Polymer Chain 225

9.2.2 Molecular  Weight  Distribution in Equilibrium  Polycondensation 225

9.2.3 Destructive Reactions in Equilibrium   Polycondensation 227

9.2.4 Termination of Polymer Chain Growth 229

9.2.4.1 Chemical Changes in Functional Groups 230

9.2.4.2 Stoichiometric  Imbalance  of Monomers 231

9.2.4.3 Equilibrium Establishment Between the Polycondensation and Low Molecular Weight Products 232

9.2.5 Kinetics of Equilibrium  Polycondensation 233

9.2.6 Equilibrium  Copolycondensation 234

9.3 Non-equilibrium Polycondensation 235

9.3.1 General  Characteristics  of  Non-equilibrium Polycondensation 235

9.3.2 Ways of Performing Non-equilibrium Polycondensation 236

9.3.2.1 Interphase Polycondensation     237

9.4 Polycondensation in Three Dimensions 239

Reference 240

10 Chain Polymerization 241

10.1 Introduction 241

10.1.1 “Living” Polymerization 243

10.2 Radical Polymerization 244

10.2.1 Initiation of Radical  Polymerization 244

10.2.2 Propagation (Chain Growth) 246

10.2.2.1 Bonding Types of Monomer Units 246

10.2.3 Termination of Chain Growth 249

10.2.3.1 Inactivation at a Favorable Meeting of Two Macroradicals 249

10.2.3.2 Chain  Transfer 249

10.2.4 Kinetics of Radical Polymerization 251

10.2.4.1 General Kinetic Scheme of Radical  Polymerization 252

10.2.4.2 Thermodynamics of Polymerization 254

10.3 Radical Copolymerization 255

10.3.1 Basic Equation of  Copolymerization 256

10.3.2 Methods for  Performing Radical Polymerization 258

10.3.2.1 Bulk Polymerization 259

10.3.2.2 Polymerization in Solution 259

10.3.2.3 Emulsion Polymerization 259

10.3.2.4 Suspension (Beads) Polymerization 260

10.4 Ionic Polymerization 261

10.4.1 Introduction 261

10.4.2 Cationic Polymerization 262

10.4.2.1 Initiation  of  Cationic Polymerization 262

10.4.2.2 Propagation (Polymer Chain Growth) 263

10.4.2.3 Termination of Polymer Chain Growth 264

10.4.2.4 Kinetics of Cationic  Polymerization 265

10.4.3 Anionic Polymerization 267

10.4.3.1 Initiation  of  Anionic Polymerization 267

10.4.3.2 Polymer Chain Growth 268

10.4.3.3 Termination of Polymer Chain Growth 270

10.4.3.4 Kinetics of Anionic  Polymerization 270

10.4.3.5 Coordination  Anionic Polymerization 272

10.4.4 Ionic  Copolymerization 274

10.4.4.1 Peculiarities of Ionic  Copolymerization 274

10.4.5 Ring-opening Polymerization 275

References   27

11 Synthesis of Polymers With Special Molecular Arrangements 279 (in bold)

11.1 Block and Graft Copolymers 279

11.1.1 Block Copolymers 279

11.1.1.1 Synthesis of Block Copolymers via  Condensation 279 

11.1.1.2 Synthesis of Block Copolymers via Radical Polymerization    280 

11.1.1.3 Synthesis of Block Copolymers via  Anionic   Polymerization   281 

11.2 Graft Copolymers 282

11.3 Stereoregular Polymers    283 

11.3.1 Constitutional and Configurational Isomerism  283 

11.3.2 Geometrical Isomerism    283 

11.3.3 Stereoisomerism 283

11.3.4 Energy of Regular Polymer Chain  Growth 285

11.3.5 Properties of Stereoregular Polymers    286 

 References 287

12 Chemical Reactions with Macromolecules. New Non-traditional   Methods  for  Polymer Synthesis 289

12.1 Introduction 289

12.2 Polymer-analogous Reactions    289 

12.2.1 Solvent Effect   290 

12.2.2 Effect of Neighboring Functional Groups    290 

12.2.3 Effect of Molecular and Supermolecular   Structure 291

12.2.4 Examples of  Important  Polymer-analogous Reactions 291

12.3 Polymer Destruction 293

12.3.1 Mechanical  Destruction 294

12.3.2 Radio-chemical  Destruction 294

12.3.3 Thermal Destruction 295

12.4 New Non-traditional Methods for Polymer Synthesis 296 

12.4.1 Introduction 296

12.4.2 Atom  Transfer  Radical Polymerization 297

12.4.3 Reversible Addition/Fragmentation Chain Transfer 298

12.4.4 Polymer Synthesis by Click Chemistry    301 

References and Sources used for Part Three     304 

Part Four   Polymer Materials and Their Processing   307

13 Polymer Materials and Their Processing      309

13.1 Introduction 309

13.2 Environmental  Impact Assessment 312

13.2.1 Ecological Footprint   312

13.2.2 Life Cycle Assessment 312

13.2.3 Polymer Processing   313

13.3 Fibers 313

13.3.1 Melt Spinning   313

13.3.2 Gel Spinning   314

13.4 Elastomers 315

13.4.1 Vulcanized Rubber   315

13.4.2 Thermoplastic Elastomers    316

13.5 Polymer Blends 321

13.6 Films and Sheets 322

13.6.1 Solution Casting 322

13.6.2 Melt Pressing of Film 323

13.6.3 Sinter Fabrication of Film 324

13.6.4 Melt Extrusion of Films 324

13.6.5 Bubble Blown Films 324

13.6.6 Films by Calendaring 325

13.7 Polymer Composites 325

13.7.1 Types of Composites 327

13.7.2 Long Fiber Composites: Some Theoretical Considerations 328

13.7.3 Matrices 330

13.7.4 Long Fiber Composites: Applications 332

13.8 Nanomaterials  and  Polymer Nanocomposites 334

13.9 Basic Problems in Polymer Science and Technology: Environmental Impact, Interfacial Adhesion Quality, Aspect  Ratio 337

13.10 Polymer–Polymer and Single Polymer Composites: Definitions, Nomenclature,  Advantages,  and Disadvantages 338

13.11 Processing  of  Fiber-reinforced Composites 341

13.12 Fabrication of Shaped Objects from  Polymers 342

13.12.1 Casting 342

13.12.2 Compression  Molding 343

13.12.3 Injection Molding 344

13.12.4 Rotational Molding 344

13.12.5 Bag Molding 344

13.12.6 Tube Fabrication 345

References   345

14 Polymers for Special Applications 347

14.1 Electrically Conductive Polymers 347

14.1.1 Ionic Conduction in Solid  Polymers 348

14.1.2 Proton Conductors 349

14.1.3 Electronically  Conducting Polymers 350

14.1.4 Optical and Electro-optical  Devices 351

14.1.5 “Linear” Optical Materials 351

14.1.6 Non-linear  Optical Polymers 352

14.1.7 Photovoltaic Cells 352

14.2 High-performance   Thermoplastics 353

14.3 Polymers for Hydrogen Storage 355

14.4 Smart Materials 357

14.4.1 Introduction 357

14.4.2 Self-healing Polymers 358

14.4.3 Shape-memory Polymers 360

14.5 Uses of Polymers in Biomedicine 362

14.5.1 Cardiovascular Applications 363

14.5.2 Stents and Stenting 365

14.5.3 Tissue Adhesives and Artificial  Skin 367

14.5.4 Bones, Joints, and Teeth 368

14.5.5 Contact Lenses and Intraocular Lenses 368

14.6 Tissue Engineering 369

14.7 Controlled Release of Drugs 372

References and Sources for Part Four 373

Index 375

See More

Author Information

Stoyko Fakirov is currently visiting professor in the Centre for Advanced Composite Materials at the University of Auckland, New Zealand. He studied chemistry at the University of Sofia, Bulgaria, and received his PhD from the Lomonossov State University in Moscow. Stoyko Fakirov is member of the editorial board of 12 international journals on polymers and advanced materials. He has published more than 300 peer-reviewed papers, edited or co-edited and always contributed to 15 books on polymer science and holds nine US patents.
See More

Related Titles

Back to Top