Print this page Share

What is What in the Nanoworld: A Handbook on Nanoscience and Nanotechnology

ISBN: 978-3-527-61861-3
347 pages
July 2008
What is What in the Nanoworld: A Handbook on Nanoscience and Nanotechnology (3527618619) cover image


This introductory, reference handbook summarizes the terms and definitions, most important phenomena, and regulations discovered in the physics, chemistry, technology, and application of nanostructures. These nanostructures are typically inorganic and organic structures at the atomic scale. Fast progressing nanoelectronics and optoelectronics, molecular electronics and spintronics, nanotechnology and quantum processing of information, are of strategic importance for the information society of the 21st century.
The short form of information taken from textbooks, special encyclopedias, recent original books and papers provides fast support in understanding "old" and new terms of nanoscience and technology widely used in scientific literature on recent developments. Such support is indeed important when one reads a scientific paper presenting new results in nanoscience. A representative collection of fundamental terms and definitions from quantum physics, and quantum chemistry, special mathematics, organic and inorganic chemistry, solid state physics, material science and technology accompanies recommended second sources (books, reviews, websites) for an extended study of a subject.
Each entry interprets the term or definition under consideration and briefly presents main features of the phenomena behind it. Additional information in the form of notes ("First described in: ", "Recognition: ", "More details in: ") supplements entries and gives a historical retrospective of the subject with reference to further sources.
Ideal for answering questions related to unknown terms and definitions of undergraduate and Ph.D. students studying the physics of low-dimensional structures, nanoelectronics, nanotechnology.
The handbook provides fast support, when one likes to know or to remind the essence of a scientific term, especially when it contains a personal name in its title, like in terms "Anderson localization", "Aharonov-Bohm effect", "Bose-Einstein condensate", e.t.c
More than 1000 entries, from a few sentences to a page in length.
See More

Table of Contents


Sources of Information.

Fundamental Constants Used in Formulas.

Key Words.

A: From Abbe’s principle to Azbel’–Kaner Cyclotron Resonance.

B: From B92 Protocol to Burstein–Moss Shift.

C: From Caldeira–Leggett Model to Cyclotron Resonance.

D: From D’Alambert Equation to Dynamics.

E: From (e,2e) Reaction to Eyring Equation.

F: From Fabry–Pérot Resonator to FWHM (Full Width at Half Maximum).

G: From Galvanoluminescence to Gyromagnetic Frequency.

H: From Habit Plane to Hyperelastic Scattering.

I: From Image Force to Isotropy (of Matter).

J: From Jahn–Teller Effect to Joule’s Law of Electric Heating.

K: From Kane Model to Kuhn–Thomas–Reiche Sum Rule.

L: From Lagrange Equation of Motion to Lyman Series.

M: From Macroscopic Long-range Quantum Interference to Multiquantum Well.

N: From NAA (Neutron Activation Analysis) to Nyquist–Shannon Sampling Theorem.

O: From Octet Rule to Oxide.

P: From Paraffins to Pyrolysis.

Q: From Q-control to Qubit.

R: From Rabi Flopping to Rydberg Gas.

S: From Saha Equation to Symmetry Group.

T: From Talbot’s Law to Type II Superconductors.

U: From Ultraviolet Photoelectron Spectroscopy (UPS) to Urbach Rule.

V: From Vacancy to von Neumann Machine.

W: From Waidner–Burgess Standard to Wyckoff Notation.

X: From XPS (X-ray Photoelectron Spectroscopy) to XRD (X-ray Diffraction).

Y: From Young’s Modulus to Yukawa Potential.

Z: From Zeeman Effect to Zone Law of Weiss.


A: Main Properties of Intrinsic (or Lightly Doped) Semiconductors.

See More

Author Information

Victor E. Borisenko graduated in 1973 from the Belarusian State university of Informatics and Radioelectronics (BSUIR) as an engineer in semiconductor electronics. he received his first doctorate in physics and mathematics in 1980, his second one in 1988. Since 1990, he has held positions as an invited visiting professor in many universities worldwide, including the University of Salford in England, the University of Wuppertal in Germany, the University of Electro-Communications in Tokyo, Japan, and the Mediterranean University. Marsaille, France. He now holds a chair as professor and vice-rector of BSUIR and acts as supervisor of the Interuniversity Center of Nanoelectronics and Novel Materials. Since 1995, Professor Borisenko organizes the international conference on physics, chemistry and applications of nanostructures 'Nanomeeting'.

Stefano Ossicini is Full Professor or general physics at the Faculty of Engineering II of the University of Modena and Reggio Emilia (Italy). He also works as a researcher within the National Institute for the Physics of Matter (INFM) at the INFM National Center S3 "nanoStructures biosystems at Surfaces". He graduated in physics in 1976 at the University of Rome. From 1978 to 1982 he was action as post-doc and assistant at the department of Theoretical Physics of the Free University in Berlin (Germany) and from 1982 to 1984 as researcher at the University of Calabria (Italy). 1984 he went to the university of Modena and Reggio Emilia (Italy).
His research activity has mainly focused on the theory of low-dimensional systems. In recent years the central topic of his research has been the investigation of the structural, electronic and optical properties of semiconductor nanostructures.

See More

New to This Edition

About 100 new entries will be added in the new edition, summarized more than 1,400 entries.
See More


"…a useful and readable resource, especially for undergraduate students and those elements in the general public interested in nanotechnology." (American Reference Books Annual, 2006)

"...useful to advanced graduate students beginning research projects, or to scientists and engineers reaching outside the bounds of their disciplines for work in nanotechnology." (CHOICE, September 2005)

"This is a very useful handbook for the professional. It has useful definitions for terms ranging from simple to very complex." —L. Wilson (Chromatographia, Vol. 61, No. 5/6, March 2005)

“…very useful…a valuable addition to any bookshelf of the interested reader…” (Journal of Material Technology, Vol 20 (2) 2005)

See More

Related Titles

Back to Top