Wiley.com
Print this page Share
E-book

System-level Modeling of MEMS

Tamara Bechtold (Volume Editor), Gabriele Schrag (Volume Editor), Lihong Feng (Volume Editor), Oliver Brand (Editor), Gary K. Fedder (Editor), Christofer Hierold (Editor), Jan G. Korvink (Editor), Osamu Tabata (Editor)
ISBN: 978-3-527-64712-5
562 pages
December 2012
System-level Modeling of MEMS (3527647120) cover image

Description

System-level modeling of MEMS - microelectromechanical systems - comprises integrated approaches to simulate, understand, and optimize the performance of sensors, actuators, and microsystems, taking into account the intricacies of the interplay between mechanical and electrical properties, circuitry, packaging, and design considerations. Thereby, system-level modeling overcomes the limitations inherent to methods that focus only on one of these aspects and do not incorporate their mutual dependencies.

The book addresses the two most important approaches of system-level modeling, namely physics-based modeling with lumped elements and mathematical modeling employing model order reduction methods, with an emphasis on combining single device models to entire systems. At a clearly understandable and sufficiently detailed level the readers are made familiar with the physical and mathematical underpinnings of MEMS modeling. This enables them to choose the adequate methods for the respective application needs.

This work is an invaluable resource for all materials scientists, electrical engineers, scientists working in the semiconductor and/or sensor
industry, physicists, and physical chemists.
See More

Table of Contents

PHYSICAL AND MATHEMATICAL FUNDAMENTALS FOR COMPACT MODELING OF MEMS
System-Level Modeling of MEMS by Lumped-Elements -
Physical Background
System-Level Modeling of MEMS by Means of Model Order Reduction -
Mathematical Background
Modal Reduction -
Mathematical Background
Issues in MEMS Macromodeling

APPLICATIONS OF MODEL REDUCTION BASED SYSTEM LEVEL MODELING OF MEMS
Application of Parametric Model Reduction for MEMS System-Level Simulation and Design
Application of Nonlinear Model Order Reduction for MEMS System-Level Simulation
Model Order Reduction for Circuit Level Simulation of RF MEMS Frequency Selective Devices
A Reduced-Order Model for Electrically Actuated Microplates
Combination of Analytical Models and Order Reduction Methods for System Level Modeling of Gyroscopes

APPLICATIONS OF LUMPED ELEMENT BASED SYSTEM LEVEL MODELING OF MEMS
System-level Modeling of Energy-Harvesting modules
Intertial MEMS Design with Higher Order Sigma-Delta Control Circuits
Macro-Modeling of Systems Including Free-Space Optical MEMS
A System-Level Model for a Silicon Thermal Flow Sensor
System-Level Modeling and Simulation of Force-Balance MEMS Accelerometers
System-Level Simulation of a Micromachined Electrometer using a Time-Domain Variable Capacitor Circuit Model
Modeling and System-Level Simulation of a CMOS Convective Accelerometer
System-Level Modeling of MEMS Based on SABER Platforms
VHDL Implementation of a communication interface for integrated MEMS
Heterogenous (Optics, Fluidics) System-Level Design

ENABLING TECHNIQUES FOR SYSTEM LEVEL MODELING OF MEMS
Manufacturable and EDA Compatible MEMS Design via 3D Parametric libraries
MEMS Related Design Optimizing of SiP
Efficient Optimization of Transient Dynamic Problems in MEMS
Modeling and Synthesis Tools for Analog Circuit Design
See More

Author Information

Tamara Bechtold is post-doctoral researcher at Philips/NXP Research Laboratories in the Netherlands. She obtained her PhD from the University of Freiburg, Germany, with a thesis on microsystems simulation conducted at the Institute of Microsystems Technology in the group of Jan Korvink. She is the author of one book and many scientific publications. As of 2009, Tamara Bechtold has more than ten years of experience in modeling and simulation of MEMS.

Gabriele Schrag heads a research group in the field of MEMS modeling with a focus on methodologies for the virtual prototyping of microdevices and microsystems at the Technical University of Munich, Germany. In her diploma and doctoral studies she worked on modeling methods for electromechanical microdevices and microsystems with an emphasis on fluid-structure interaction and viscous damping effects, including coupled effects on the device and system level.

Lihong Feng is a team leader in the research group of Computational Methods in Systems and Control theory headed by Professor Peter Benner, Max Planck Institute for Dynamics of Complex Technical Systems in Magdeburg, Germany. After her PhD from Fudan University in Shanghai, China, she joined the faculty of the State Key Laboratory of Application-Specific Integrated Circuits (ASIC) & System, Fudan University, Shanghai, China. From 2007 to 2008 she was a Humboldt research fellow in the working group of Mathematics in Industry and Technology at the Technical University of Chemnitz, Germany. In 2009-2010, she worked in the Laboratory for Microsystem Simulation, Department of Microsystems Engineering, University of Freiburg, Germany. Her research interests are in the field of reduced order modelling and fast numerical algorithms for control and optimization in Chemical Engineering, MEMS simulation, and circuit simulation.
See More

Related Titles

Back to Top