Print this page Share

Essentials of Modern Materials Science and Engineering

December 2008, ©2009
Essentials of Modern Materials Science and Engineering (EHEP000702) cover image


This book begins with four fundamental tenants:The properties of a material are determined by its structure.  Processing can alter that structure in specific and predictable ways;The behavior of materials is grounded in science and is understandable;The properties of all materials change over time with use and exposure to environmental conditions;When selecting a material, sufficient and appropriate testing must be performed to insure that the material will remain suitable throughout the reasonable life of the product.This text assumes that the students are at least sophomores, so that they are familiar with basic chemical bonding and the periodic table. But it is an introductory materials course, so there will be no differential equations, percolation theory, quantum mechanics, statistical thermodynamics, or other advanced topics.The book is designed as an introduction to the field, not a comprehensive guide to all materials science knowledge.  Instead of going into great detail in many areas, the book provides key concepts and fundamentals students need to understand materials science and make informed decisions.  An example of the philosophy is found in the materials testing section.  Although countless variations exist in testing techniques, the chapter focuses on operating principles and the property to be measured, rather than confusing the student with exposition on variations and exceptions.  That material is beyond the scope of most introductory courses.



See More

Table of Contents

1. Introduction.

Why Study Materials Science?

1.1 Overview of Materials Science.

What Issues Impact Materials Selection and Design?

1.2 Property Considerations for Specific Applications.

1.3 Impact of Bonding of Material Properties.

1.4 Changes of Properties over Time.

1.5 Impact of Economics on Decision Making.

1.6 Sustainability and Green Engineering.

What Choices Are Available?

1.7 Classes of Materials.

2. Structure in Materials.

How Are Atoms Arranged in Materials?

2.1 Introduction.

2.2 Level of Order.

2.3 Lattice Parameters and Atomic Packing Factors.

2.4 Density Estimations.

2.5 Crystallographic Planes.

2.6 Miller Indices.

How Are Crystals Measured?

2.7 X-Ray Diffraction.

2.8 Microscopy.

How Do Crystals Form and Grow?

2.9 Nucleation and Grain Growth.

What Kinds of Flaws Are Present in Crystals and What Do They Affect?

2.10 Point Defects.

2.11 Dislocations.

2.12 Slip.

2.13 Dislocation Climb.

What New Developments Are Happening with Crystals and Crystal Structures?

2.14 Monocrystals and Nanocrystals.

3. Measurement of Mechanical Properties.

How Do I Know How to Measure Properties?

3.1 ASTM Standards.

What Properties Can Be Measured, and What Do They Tell Me?

3.2 Tensile Testing.

3.3 Compressive Testing.

3.4 Bend Testing.

3.5 Hardness Testing.

3.6 Creep Testing.

3.7 Impact Testing.

Will I Get the Same Result Every Time I Run a Specific Test?

3.8 Error and Reproducibility in Measurement.

Why Do Materials Fail Under Stress?

3.9 Fracture Mechanics.

How Do Mechanical Properties Change Over Time?

3.10 Fatigue Testing.

3.11 Accelerated Aging Studies.

4. Metals.

How Do You Work with Metals?

4.1 Forming Operations.

What Advantages Do Alloys Offer?

4.2 Alloys and Phase Diagrams.

4.3 Carbon Steel.

4.4 Phase Transitions.

4.5 Age Hardening (Precipitation Hardening).

4.6 Copper and Its Alloys.

4.7 Aluminum and Its Alloys.

What Limitations Do Metals Have?

4.8 Corrosion.

What Happens to Metals after Their Commercial Life?

4.9 Recycling of Metals.

5. Polymers

What Are Polymers?

5.1 Polymer Terminology.

5.2 Types of Polymers.

How Are Polymer Chains Formed?

5.3 Addition Polymerization.

5.4 Condensation Polymerization.

5.5 Importance of Molecular Weight Distributions.

What Influences the Properties of Polymers?

5.6 Constitution.

5.7 Configuration.

5.8 Conformation.

5.9 Additives.

How Are Polymers Processed into Commercial Products?

5.10 Polymer Processing.

What Happens to Polymers When They Are Discarded?

5.11 Recycling of Polymers.

6. Ceramics and Carbon Materials.

What Are Ceramic Materials?

6.1 Crystal Structures in Ceramics.

What Are the Industrial Uses of Ceramics?

6.2 Abrasives.

6.3 Glasses

6.4 Cements.

6.5 Refractories.

6.6 Structural Clay Products

6.7 Whitewares

6.8 Advanced Ceramics.

What Happens to Ceramic Materials at the End of Their Useful Lives?

6.9 Recycling of Ceramic Materials.

Is Graphite a Polymer or a Ceramic?

6.10 Graphite.

Do Other Carbon Materials Offer Unusual Properties?

6.11 Diamond.

6.12 Carbon Fibers.

6.13 Fullerenes (Buckyballs) and Carbon Nanotubes.

7. Composites.

What Are Composite Materials, and How Are They Made?

7.1 Classes of Composites.

7.2 Fiber-Reinforced Composites.

7.3 Particulate Composites.

7.4 Laminar Composites

What Happens to Obsolete Composites?

7.5 Recycling of Composite Materials.

8. Electronic and Optical Materials.

How Do Electrons Flow through Metals?

8.1 Conductivity in Metals.

8.2 Electrical Resistivity.

What Happens When There Are No Free Electrons?

8.3 Insulators.

8.4 Intrinsic Semiconduction.

8.5 Extrinsic Semiconduction.

How Do Electronic Devices Operate?

8.6 Diodes.

8.7 Transistors.

8.8 Integrated Circuits.

8.9 Dielectric Behavior and Capacitors.

What Other Electrical Behaviors Do Some Materials Display?

8.10 Ferroelectric and Piezoelectric Materials.

What Are Optical Properties, and Why Do They Matter?

8.11 Optical Properties.

8.12 Applications of Optical Materials.

9. Biomaterials and Biological Materials.

What Types of Materials Interact with Biological Systems?

9.1 Biomaterials, Biological Materials, and Biocompatibility.

What Biological Materials Provide Structural Support, and What Biomaterials Interact with or Replace Them?

9.2 Structural Biological Materials and Biomaterials.

What Biomaterials Serve a Nonstructural Function in the Body?

9.3 Functional Biomaterials.

What Ethical Issues Are Unique to Biomaterials?

9.4 Ethics and Biomaterials.

Appendix A: Major Producers of Metals and Polymers.

Appendix B: Properties of Major Metals and Alloys.



See More

The Wiley Advantage

  • It’s practical and applicable. It is our goal for students, after completing the course and using this text, that they are prepared to make informed materials selection decisions.
  • It’s balanced. A variety of materials are presented to provide a broad overview of materials available to engineers.
  • It’s visual. This book strong use of visuals help students understand the concepts better than simply reading about them.
  • Conversational Tone The book is written in a conversational tone, designed to facilitate student learning.  When I piloted the text in my Materials Science class, the anonymous comments from students included statements like “I didn’t need to read it five times to start to understand it.”
  • Learning Objectives: Detailed learning objectives at the beginning of each chapter let the student know the specific goals of the chapter – what should you be able to do if you really understand the material. 
  • Homework Problems: The homework problems at the end of the chapter are a blend of numerical questions (Calculate the tensile strength of a 0.509 in2 beam…) and more open-ended qualitative questions (Compare and contrast the advantages and disadvantages of fillings made from dental composites with those made from amalgam) that require a deeper understanding to answer (and are much harder to copy).
See More
Instructors Resources
Wiley Instructor Companion Site
A research-based online environment for learning and assessment.
Learn more
Digital evaluation copy available for this title
Request Copy
Contact your Wiley Representative
Find Your Rep
See More
See Less
Students Resources
Wiley Student Companion Site
See More
See Less
Purchase Options
Wiley E-Text   
Essentials of Modern Materials Science and Engineering
ISBN : 978-0-470-47112-8
368 pages
October 2008, ©2009
$64.00   BUY

Essentials of Modern Materials Science and Engineering
ISBN : 978-0-471-75365-0
368 pages
December 2008, ©2009
$167.95   BUY

Related Titles

Back to Top