Textbook
Introductory Physics with Algebra as a Second Language: Mastering ProblemSolvingAugust 2006, ©2007

Description
Understand the basic language of physics
Introductory Physics with Algebra as a Second
Language™ will help you make sense of your textbook and
class notes so that you can use them more effectively. The text
explains key topics in algebrabased physics in clear,
easytounderstand language.
Break problems down into simple steps
Introductory Physics with Algebra as a Second
Language™ teaches you to recognize details that tell you
how to begin new problems. You will learn how to effectively
organize the information, decide on the correct equations, and
ultimately solve the problem.
Learn how to tackle unfamiliar physics problems
Stuart Loucks coaches you in the fundamental concepts and
approaches needed to set up and solve the major problem types. As
you learn how to deal with these kinds of problems, you will be
better equipped to tackle problems you have never seen before.
Improve your problemsolving skills
You’ll learn timesaving problemsolving strategies that will
help you focus your efforts and avoid potential pitfalls.
Table of Contents
CHAPTER 2. LINEAR VELOCITY AND ACCELERATION .
2.1 Linear Motion Equations.
2.2 The Idea Behind How to Use Motion Equations.
2.3 Constant/Average Speed or Velocity Problems.
2.4 Constant/Average Speed or Velocity—Two Intervals, Same Direction.
2.5 Constant/Average Speed or Velocity—Two Intervals, Direction Change.
2.6 Constant/Average Speed or Velocity—Two Objects.
2.7 How to Set Up Constant/Average Speed or Velocity Problems.
2.8 Constant/Average Acceleration Problems.
2.9 Constant/Average Acceleration—One Interval.
2.10 Constant/Average Acceleration—Multiple Intervals.
2.11 Constant/Average Acceleration—“FreeFall”.
2.12 Constant/Average Acceleration—Two Objects.
2.13 How to Set Up Constant/Average Acceleration Problems.
CHAPTER 3. VECTORS.
3.1 Magnitude and Direction, and x and yComponents.
3.2 Vectors along One Axis.
3.3 Vector Addition.
3.4 How to Set Up Vector Problems.
3.5 “Back Where You Started”—When Vectors Add to Zero.
3.6 Subtracting Vectors, OR, When One of the Added Vectors Is Unknown.
CHAPTER 4. PROJECTILE MOTION.
4.1 Projectile Motion: Combining Three Basic Concepts.
4.2 When Initial Velocity Is Horizontal.
4.3 How to Set Up Projectile Motion Problems.
4.4 When Final Velocity Is Horizontal (at Maximum Height).
4.5 When Initial and Final Heights Are Equal.
4.6 When Both Initial and Final Velocities Are at Angles.
CHAPTER 5. FORCE AND NEWTON’S LAWS OF MOTION.
5.1 How to Draw a FreeBody Diagram (FBD).
5.2 Forces in 1D.
5.3 How to Set Up Force Problems.
5.4 Motion Intervals in Force Problems.
5.5 Objects Connected by Strings, Ropes, and so on.
5.6 Forces in 2D.
5.7 Sliding—Kinetic Friction.
5.8 “Just about to Slip”—Maximum Static Friction.
5.9 Inclines or Ramps.
5.10 Objects Pushing on Each Other.
CHAPTER 6. CIRCULAR MOTION AND CENTRIPETAL FORCE.
6.1 Tangential Speed and Centripetal Acceleration.
6.2 Comparing Circular Motion at Two Different Radii.
6.3 Comparing Circular Motion at Two Different Speeds.
6.4 How to Set Up Circular Motion Comparison Problems.
6.5 How to Think about Centripetal Force Problems.
6.6 Circular Motion with a Horizontal String.
6.7 How to Set Up Centripetal Force Problems.
6.8 Circular Motion with a String at an Angle.
6.9 Circular Motion on an Unbanked Road with Friction.
6.10 Circular Motion on a Banked Road without Friction.
6.11 Vertical Circular Motion—Lowest Point.
6.12 Vertical Circular Motion—Highest Point, UpsideDown.
6.13 Vertical Circular Motion—Highest Point, RightSideUp.
CHAPTER 7. GRAVITATION AND ORBITS.
7.1 Weight and g at a Planet’s Surface.
7.2 Adding Gravitational Force Vectors.
7.3 Circular Orbit Problems.
7.4 Circular Orbit Equations.
7.5 Comparing Orbits at Two Different Radii.
CHAPTER 8. WORK AND ENERGY.
8.1 Work Done by a Constant/Average Force.
8.2 Work Problems—with Two or More Forces.
8.3 Work Problems—when Forces Are Not Given.
8.4 How to Set Up Work Problems.
8.5 The WorkEnergy Theorem—KE Only.
8.6 How to Set Up WorkEnergy Problems—KE only.
8.7 Potential Energy, Conservative and Nonconservative Forces.
8.8 The WorkEnergy Theorem—KE and PE.
8.9 How to Set Up WorkEnergy Problems—KE and PE.
8.10 Conservation of Energy—When Wnc 0.
8.11 How to Set Up Conservation of Energy Problems.
8.12 How to Split Up a Difficult Problem.
CHAPTER 9. IMPULSE, MOMENTUM, AND CENTER OF MASS.
9.1 The ImpulseMomentum Theorem.
9.2 1D Impulse and Momentum.
9.3 2D Impulse and Momentum.
9.4 How to Set Up Impulse and Momentum Problems.
9.5 Conservation of Momentum.
9.6 1D Collisions—Objects Coming Together.
9.7 1D Explosions—Objects Pushing Apart.
9.8 1D Elastic Collisions.
9.9 2D Collisions.
9.10 How to Set Up Conservation of Momentum Problems.
9.11 Center of Mass.
9.12 1D Center of Mass.
9.13 2D Center of Mass.
9.14 How to Set Up Center of Mass Problems.
CHAPTER 10. ANGULAR VELOCITY AND ACCELERATION.
10.1 How to Relate Angular and Tangential or Linear Quantities.
10.2 TwoObject, TwoCircle Problems.
10.3 How to Set Up TwoObject, TwoCircle Problems.
10.4 Constant/Average Angular Velocity.
10.5 How to Set Up Constant/Average Angular Velocity Problems.
10.6 Constant/Average Angular Acceleration.
10.7 Constant/Average Angular Acceleration—Multiple Intervals.
10.8 Constant/Average Angular Acceleration—with Tangential or Linear Acceleration.
10.9 Constant/Average Angular Acceleration—with Centripetal Acceleration.
10.10 Summary of Angular Velocity and Acceleration Equations.
10.11 How to Set Up Constant/Average Angular Acceleration Problems.
CHAPTER 11. TORQUE AND EQUILIBRIUM.
11.1 Torque.
11.2 How to Set Up Torque Problems.
11.3 Equilibrium for “Rigid” Bodies.
11.4 Equilibrium—With Only 90 Angles.
11.5 Equilibrium—With Non90 Angles.
11.6 How to Set Up Equilibrium Problems.
CHAPTER 12. MORE ANGULAR MOTION.
12.1 Moment of Inertia.
12.2 Torque and Angular Acceleration Problems.
12.3 How to Set Up Torque and Angular Acceleration Problems.
12.4 Rotational Kinetic Energy and Conservation of Energy.
12.5 Conservation of Angular Momentum.
12.6 Conservation of Angular Momentum Problems—First Type.
12.7 Conservation of Angular Momentum Problems—Second Type.
12.8 How to Set Up Conservation of Angular Momentum Problems.
INDEX .
Author Information
The Wiley Advantage
 Teaches readers to effectively organize information and decide on the correct equations
 Coaches readers in the fundamental concepts and approaches needed to set up and solve major problem types.
 Demonstrates timesaving problemsolving strategies to help focus efforts and avoid potential pitfalls.
 Wiley ETexts are powered by VitalSource and accessed via the VitalSource Bookshelf reader, available online and via a downloadable app.
 Wiley ETexts are accessible online and offline, and can be read on a variety of devices, including smartphones and tablets.
 Wiley ETexts are nonreturnable and nonrefundable.
 Wiley ETexts are protected by DRM. For specific DRM policies, please refer to our FAQ.
 WileyPLUS registration codes are NOT included with any Wiley EText. For informationon WileyPLUS, click here .
 To learn more about Wiley ETexts, please refer to our FAQ.
 Ebooks are offered as ePubs or PDFs. To download and read them, users must install Adobe Digital Editions (ADE) on their PC.
 Ebooks have DRM protection on them, which means only the person who purchases and downloads the ebook can access it.
 Ebooks are nonreturnable and nonrefundable.
 To learn more about our ebooks, please refer to our FAQ.