Textbook
A Brief Introduction To Fluid Mechanics, 5th EditionNovember 2010, ©2011

Description
Table of Contents
1 INTRODUCTION 1
1.1 Some Characteristics of Fluids 3
1.2 Dimensions, Dimensional Homogeneity, and Units 3
1.2.1 Systems of Units 6
1.3 Analysis of Fluid Behavior 9
1.4 Measures of Fluid Mass and Weight 9
1.4.1 Density 9
1.4.2 Specific Weight 10
1.4.3 Specific Gravity 10
1.5 Ideal Gas Law 11
1.6 Viscosity 12
1.7 Compressibility of Fluids 17
1.7.1 Bulk Modulus 17
1.7.2 Compression and Expansion of Gases 18
1.7.3 Speed of Sound 19
1.8 Vapor Pressure 21
1.9 Surface Tension 21
1.10 A Brief Look Back in History 24
1.11 Chapter Summary and Study Guide 27
Review Problems 28
Problems 28
2 FLUID STATICS 32
2.1 Pressure at a Point 33
2.2 Basic Equation for Pressure Field 34
2.3 Pressure Variation in a Fluid at Rest 36
2.3.1 Incompressible Fluid 36
2.3.2 Compressible Fluid 38
2.4 Standard Atmosphere 39
2.5 Measurement of Pressure 39
2.6 Manometry 42
2.6.1 Piezometer Tube 42
2.6.2 UTube Manometer 43
2.6.3 InclinedTube Manometer 46
2.7 Mechanical and Electronic PressureMeasuring Devices 47
2.8 Hydrostatic Force on a Plane Surface 47
2.9 Pressure Prism 52
2.10 Hydrostatic Force on a Curved Surface 54
2.11 Buoyancy, Flotation, and Stability 57
2.11.1 Archimedes’ Principle 57
2.11.2 Stability 59
2.12 Pressure Variation in a Fluid with RigidBody Motion 60
2.13 Chapter Summary and Study Guide 60
References 61
Review Problems 62
Problems 62
3 ELEMENTARY FLUID DYNAMICS—THE BERNOULLI EQUATION 68
3.1 Newton’s Second Law 69
3.2 F _ ma Along a Streamline 70
3.3 F _ ma Normal to a Streamline 74
3.4 Physical Interpretation 75
3.5 Static, Stagnation, Dynamic, and Total Pressure 78
3.6 Examples of Use of the Bernoulli Equation 81
3.6.1 Free Jets 81
3.6.2 Confined Flows 82
3.6.3 Flowrate Measurement 89
3.7 The Energy Line and the Hydraulic Grade Line 92
3.8 Restrictions on the Use of the Bernoulli Equation 94
3.9 Chapter Summary and Study Guide 95
Review Problems 96
Problems 97
4 FLUID KINEMATICS 102
4.1 The Velocity Field 103
4.1.1 Eulerian and Lagrangian Flow Descriptions 105
4.1.2 One, Two, and ThreeDimensional Flows 105
4.1.3 Steady and Unsteady Flows 106
4.1.4 Streamlines, Streaklines, and Pathlines 107
4.2 The Acceleration Field 110
4.2.1 The Material Derivative 110
4.2.2 Unsteady Effects 112
4.2.3 Convective Effects 113
4.2.4 Streamline Coordinates 114
4.3 Control Volume and System Representations 115
4.4 The Reynolds Transport Theorem 116
4.4.1 Derivation of the Reynolds Transport Theorem 116
4.4.2 Selection of a Control Volume 120
4.5 Chapter Summary and Study Guide 120
References 121
Review Problems 121
Problems 121
5 FINITE CONTROL VOLUME ANALYSIS 125
5.1 Conservation of Mass—The Continuity Equation 126
5.1.1 Derivation of the Continuity Equation 126
5.1.2 Fixed, Nondeforming Control Volume 127
5.1.3 Moving, Nondeforming Control Volume 131
5.2 Newton’s Second Law—The Linear Momentum and MomentofMomentum Equations 133
5.2.1 Derivation of the Linear Momentum Equation 133
5.2.2 Application of the Linear Momentum Equation 134
5.2.3 Derivation of the MomentofMomentum Equation 144
5.2.4 Application of the MomentofMomentum Equation 145
5.3 First Law of Thermodynamics—The Energy Equation 152
5.3.1 Derivation of the Energy Equation 152
5.3.2 Application of the Energy Equation 154
5.3.3 Comparison of the Energy Equation with the Bernoulli Equation 157
5.3.4 Application of the Energy Equation to Nonuniform Flows 162
5.4 Chapter Summary and Study Guide 164
Review Problems 166
Problems 166
6 DIFFERENTIAL ANALYSIS OF FLUID FLOW 175
6.1 Fluid Element Kinematics 176
6.1.1 Velocity and Acceleration Fields Revisited 176
6.1.2 Linear Motion and Deformation 177
6.1.3 Angular Motion and Deformation 179
6.2 Conservation of Mass 182
6.2.1 Differential Form of Continuity Equation 182
6.2.2 Cylindrical Polar Coordinates 184
6.2.3 The Stream Function 185
6.3 Conservation of Linear Momentum 188
6.3.1 Description of Forces Acting on Differential Element 189
6.3.2 Equations of Motion 191
6.4 Inviscid Flow 192
6.4.1 Euler’s Equations of Motion 192
6.4.2 The Bernoulli Equation 193
6.4.3 Irrotational Flow 195
6.4.4 The Bernoulli Equation for Irrotational Flow 196
6.4.5 The Velocity Potential 196
6.5 Some Basic, Plane Potential Flows 199
6.5.1 Uniform Flow 201
6.5.2 Source and Sink 201
6.5.3 Vortex 203
6.5.4 Doublet 207
6.6 Superposition of Basic, Plane Potential Flows 209
6.6.1 Source in a Uniform Stream—HalfBody 209
6.6.2 Flow around a Circular Cylinder 212
6.7 Other Aspects of Potential Flow Analysis 219
6.8 Viscous Flow 219
6.8.1 Stress–Deformation Relationships 219
6.8.2 The Navier–Stokes Equations 220
6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Fluids 221
6.9.1 Steady, Laminar Flow between Fixed Parallel Plates 222
6.9.2 Couette Flow 224
6.9.3 Steady, Laminar Flow in Circular Tubes 227
6.10 Other Aspects of Differential Analysis 229
6.11 Chapter Summary and Study Guide 230
References 232
Review Problems 232
Problems 232
7 SIMILITUDE, DIMENSIONAL ANALYSIS, AND MODELING 238
7.1 Dimensional Analysis 239
7.2 Buckingham Pi Theorem 240
7.3 Determination of Pi Terms 241
7.4 Some Additional Comments about Dimensional Analysis 246
7.4.1 Selection of Variables 247
7.4.2 Determination of Reference Dimensions 247
7.4.3 Uniqueness of Pi Terms 247
7.5 Determination of Pi Terms by Inspection 248
7.6 Common Dimensionless Groups in Fluid Mechanics 249
7.7 Correlation of Experimental Data 250
7.7.1 Problems with One Pi Term 251
7.7.2 Problems with Two or More Pi Terms 252
7.8 Modeling and Similitude 254
7.8.1 Theory of Models 254
7.8.2 Model Scales 258
7.8.3 Distorted Models 259
7.9 Some Typical Model Studies 260
7.9.1 Flow through Closed Conduits 260
7.9.2 Flow around Immersed Bodies 262
7.9.3 Flow with a Free Surface 264
7.10 Chapter Summary and Study Guide 267
References 268
Review Problems 269
Problems 269
8 VISCOUS FLOW IN PIPES 274
8.1 General Characteristics of Pipe Flow 275
8.1.1 Laminar or Turbulent Flow 275
8.1.2 Entrance Region and Fully Developed Flow 277
8.2 Fully Developed Laminar Flow 278
8.2.1 From F _ ma Applied Directly to a Fluid Element 278
8.2.2 From the Navier–Stokes Equations 282
8.3 Fully Developed Turbulent Flow 282
8.3.1 Transition from Laminar to Turbulent Flow 283
8.3.2 Turbulent Shear Stress 284
8.3.3 Turbulent Velocity Profile 285
8.4 Dimensional Analysis of Pipe Flow 285
8.4.1 Major Losses 286
8.4.2 Minor Losses 290
8.4.3 Noncircular Conduits 298
8.5 Pipe Flow Examples 299
8.5.1 Single Pipes 300
8.5.2 Multiple Pipe Systems 307
8.6 Pipe Flowrate Measurement 309
8.7 Chapter Summary and Study Guide 313
References 314
Review Problems 315
Problems 315
9 FLOW OVER IMMERSED BODIES 321
9.1 General External Flow Characteristics 322
9.1.1 Lift and Drag Concepts 322
9.1.2 Characteristics of Flow Past an Object 325
9.2 Boundary Layer Characteristics 328
9.2.1 Boundary Layer Structure and Thickness on a Flat Plate 328
9.2.2 Prandtl/Blasius Boundary Layer Solution 330
9.2.3 Momentum Integral Boundary Layer Equation for a Flat Plate 332
9.2.4 Transition from Laminar to Turbulent Flow 334
9.2.5 Turbulent Boundary Layer Flow 336
9.2.6 Effects of Pressure Gradient 338
9.3 Drag 341
9.3.1 Friction Drag 342
9.3.2 Pressure Drag 342
9.3.3 Drag Coefficient Data and Examples 343
9.4 Lift 357
9.4.1 Surface Pressure Distribution 357
9.4.2 Circulation 361
9.5 Chapter Summary and Study Guide 363
References 364
Review Problems 364
Problems 364
10 OPENCHANNEL FLOW 370
10.1 General Characteristics of OpenChannel Flow 370
10.2 Surface Waves 371
10.2.1 Wave Speed 372
10.2.2 Froude Number Effects 374
10.3 Energy Considerations 374
10.3.1 Specific Energy 375
10.4 Uniform Depth Channel Flow 378
10.4.1 Uniform Flow Approximations 378
10.4.2 The Chezy and Manning Equations 378
10.4.3 Uniform Depth Examples 381
10.5 Gradually Varied Flow 385
10.6 Rapidly Varied Flow 386
10.6.1 The Hydraulic Jump 386
10.6.2 SharpCrested Weirs 390
10.6.3 BroadCrested Weirs 393
10.6.4 Underflow Gates 395
10.7 Chapter Summary and Study Guide 397
References 398
Review Problems 398
Problems 398
11 TURBOMACHINES 403
11.1 Introduction 404
11.2 Basic Energy Considerations 404
11.3 Basic Angular Momentum Considerations 408
11.4 The Centrifugal Pump 410
11.4.1 Theoretical Considerations 410
11.4.2 Pump Performance Characteristics 414
11.4.3 System Characteristics and Pump Selection 416
11.5 Dimensionless Parameters and Similarity Laws 419
11.5.1 Specific Speed 422
11.6 AxialFlow and MixedFlow Pumps 423
11.7 Turbines 426
11.7.1 Impulse Turbines 427
11.7.2 Reaction Turbines 433
11.8 Compressible Flow Turbomachines 436
11.9 Chapter Summary and Study Guide 437
References 438
Review Problems 439
Problems 439
ANSWERS ANS1
INDEX I1
INDEX OF FLUIDS
PHENOMENA VIDEOS VI1
New To This Edition
 Illustrations: More than 200 new illustrations and graphs. These range from simple ones that help illustrate a basic concept or equation to more complex ones that illustrate practical applications of fluid mechanics in our everyday lives.
 Photographs: More than 200 new photos help the reader see fluid mechanics concepts in common everyday situations, as well as new and novel situations.
 Videos: The video library has been significantly enhanced by the addition of 70 new video segments related directly to the text material. Over 140 total videos now illustrate many of the interesting and practical applications of realworld fluid phenomena.
 Equation Summary: Each chapter ends with a new summary of the most important equations in the chapter, for easy reference.
 Problems: Approximately 50% new homework problems have been added for this edition. Several new problems ask students to find a photograph/image of a particular flow situation and write a paragraph describing it. Each chapter also includes new Life Long Learning Problems that ask the student to obtain information about a given flow concept and to write about it.
 Prevention through Design (PtD): Several new example problems in this edition incorporate PtD (Prevention through Design) discussion material, an initiative supported by NIOSH with the goal of increasing the awareness and use of proper design of workday equipment to reduce accidents and injuries in the workplace.
The Wiley Advantage
 WellPaced Concept and ProblemSolving Development: the authors develop student confidence in fluid problem solving by first considering each concept in simple and easytounderstand circumstances before more complicated features are introduced.
 Learning Objectives at the beginning of each chapter, and the Chapter Summary and Study Guide at the end of each chapter, guide the reader in the key knowledge they are to gain from the chapter.
 Illustrations, Photographs, and Videos: Hundreds of photos, illustrations, and videos help students visualize fluid flow, and connect the math and theory to physical realworld applications.
 Fluids In the News: Short stories that demonstrate some of the latest important and novel ways that fluid mechanics affects our lives, many with associated homework problems.
 ProblemSolving Methodology in Example Problems: All of the example problems are outlined and carried out with the problemsolving framework of “Given, Find, Solution, and Comment” to instill in students good problemsolving practices.
 Homework Problems Stressing the Practical Application of Principles: Problems include simple to complex problems, discussion problems, problems based on the fluids videos, and Excelbased lab problems.
 Two Systems of Units: Both the International System of Units (newtons, kilograms, meters, and seconds) and the British Gravitational System (pounds, slugs, feet, and seconds) are used in the text. About onehalf of the examples and homework problems are in each set.
Learn more
Learn more
 Wiley ETexts are powered by VitalSource technologies ebook software.
 With Wiley ETexts you can access your ebook how and where you want to study: Online, Download and Mobile.
 Wiley etexts are nonreturnable and nonrefundable.
 WileyPLUS registration codes are NOT included with the Wiley EText. For informationon WileyPLUS, click here .
 To learn more about Wiley etexts, please refer to our FAQ.
 Ebooks are offered as ePubs or PDFs. To download and read them, users must install Adobe Digital Editions (ADE) on their PC.
 Ebooks have DRM protection on them, which means only the person who purchases and downloads the ebook can access it.
 Ebooks are nonreturnable and nonrefundable.
 To learn more about our ebooks, please refer to our FAQ.