Print this page Share

Strength and Conditioning: Biological Principles and Practical Applications

Marco Cardinale (Editor), Robert Newton (Editor), Kazunori Nosaka (Editor)
January 2011, ©2011
Strength and Conditioning: Biological Principles and Practical Applications (EHEP002346) cover image


"I recommend that you read and use the information in this book to provide your athletes with the best chances of performing at their best"
from the foreword by Sir Clive Woodward, Olympic Performance Director, British Olympic Association

This book provides the latest scientific and practical information in the field of strength and conditioning.

The text is presented in four sections, the first of which covers the biological aspects of the subject, laying the foundation for a better understanding of the second on the biological responses to strength and conditioning programs. Section three deals with the most effective monitoring strategies for evaluating a training program and establishing guidelines for writing a successful strength and conditioning program. The final section examines the role of strength and conditioning as a rehabilitation tool and as applied to those with disabilities.

This book is an invaluable textbook and reference both for academic programs and for the continuing education of sports professionals.

  • Integrates the latest research on physiological, anatomical and biomechanical aspects of strength and conditioning
  • Offers numerous practical examples of applications
  • Provides guidelines for writing and monitoring effective strength training programs
See More

Table of Contents

Foreword (Sir Clive Woodward).


List of Contributors.

Section 1 Strengthand Conditioning Biology.

1.1 Skeletal Muscle Physiology (Valmor Tricoli).

1.1.1 Introduction.

1.1.2 Skeletal muscle macrostructure.

1.1.3 Skeletal muscle microstructure.

1.1.4 Contraction mechanism.

1.1.5 Muscle fibre types.

1.1.6 Muscle architecture.

1.1.7 Hypertrophy and hyperplasia.

1.1.8 Satellite cells.

1.2 Neuromuscular Physiology (Alberto Rainoldi and Marco Gazzoni).

1.2.1 The neuromuscular system.

1.2.2 Muscle fatigue.

1.2.3 Muscle function assessment.

1.3 Bone Physiology (Jörn Rittweger).

1.3.1 Introduction.

1.3.2 Bone anatomy.

1.3.3 Bone biology.

1.3.4 Mechanical functions of bone.

1.3.5 Adaptive processes in bone.

1.3.6 Endocrine involvement of bone.

1.4 Tendon Physiology (Nicola Maffulli, Umile Giuseppe Longo, Filippo Spiezia and Vincenzo Denaro).

1.4.1 Tendons.

1.4.2 The musculotendinous junction.

1.4.3 The osteotendinous junction.

1.4.4 Nerve supply.

1.4.5 Blood supply.

1.4.6 Composition.

1.4.7 Collagen formation.

1.4.8 Cross-links.

1.4.9 Elastin.

1.4.10 Cells.

1.4.11 Ground substance.

1.4.12 Crimp.

1.5 Bioenergetics of Exercise (R.J. Maughan).

1.5.1 Introduction.

1.5.2 Exercise, energy, work, and power.

1.5.3 Sources of energy.

1.5.4 The tricarboxylic acid (TCA) cycle.

1.5.5 Oxygen delivery.

1.5.6 Energy stores.

1.5.7 Conclusion.

1.6 Respiratory and Cardiovascular Physiology (Jeremiah J. Peiffer and Chris R. Abbiss).

1.6.1 The respiratory system.

1.6.2 The cardiovascular system.

1.6.3 Conclusion.

1.7 Genetic and Signal Transduction Aspects of Strength Training (Henning Wackerhage, Arimantas Lionikas, Stuart Gray and Aivaras Ratkevicius).

1.7.1 Genetics of strength and trainability.

1.7.2 Signal transduction pathways that mediate the adaptation to strength training.

1.8 Strength and Conditioning Biomechanics (Robert U. Newton).

1.8.1 Introduction.

1.8.2 Biomechanical concepts for strength and conditioning.

1.8.3 The force–velocity–power relationship.

1.8.4 Musculoskeletal machines.

1.8.5 Biomechanics of muscle function.

1.8.6 Body size, shape, and power-to-weight ratio.

1.8.7 Balance and stability.

1.8.8 The stretch–shortening cycle.

1.8.9 Biomechanics of resistance machines.

1.8.10 Machines vs free weights.

1.8.11 Conclusion.

Section 2 Physiological adaptations to strength and conditioning.

2.1 Neural Adaptations to Resistance Exercise (Per Aagaard).

2.1.1 Introduction.

2.1.2 Effects of strength training on mechanical muscle function.

2.1.3 Effects of strength training on neural function.

2.1.4 Conclusion.

2.2 Structural and Molecular Adaptations to Training (Jesper L. Andersen).

2.2.1 Introduction.

2.2.2 Protein synthesis and degradation in human skeletal muscle.

2.2.3 Muscle hypertrophy and atrophy.

2.2.4 What is the significance of satellite cells in human skeletal muscle?

2.2.5 Concurrent strength and endurance training: consequences for muscle adaptations.

2.3 Adaptive Processes in Human Bone and Tendon (Constantinos N. Maganaris, Jörn Rittweger and Marco V. Narici).

2.3.1 Introduction.

2.3.2 Bone.

2.3.3 Tendon.

2.3.4 Conclusion.

2.4 Biomechanical Markers and Resistance Training (Christian Cook and Blair Crewther).

2.4.1 Introduction.

2.4.2 Testosterone responses to resistance training.

2.4.3 Cortisol responses to resistance training.

2.4.4 Dual actions of testosterone and cortisol.

2.4.5 Growth hormone responses to resistance training.

2.4.6 Other biochemical markers.

2.4.7 Limitations in the use and interpretation of biochemical markers.

2.4.8 Applications of resistance training.

2.4.9 Conclusion.

2.5 Cardiovascular Adaptations to Strength and Conditioning (Andy Jones and Fred DiMenna).

2.5.1 Introduction.

2.5.2 Cardiovascular function.

2.5.3 Cardiovascular adaptations to training.

2.5.4 Cardiovascular-related adaptations to training.

2.5.5 Conclusion.

2.6 Exercise-induced Muscle Damage and Delayed-onset Muscle Soreness (DOMS) (Kazunori Nosaka).

2.6.1 Introduction.

2.6.2 Symptoms and markers of muscle damage.

2.6.3 Relationship between DOMS and other indicators.

2.6.4 Factors influencing the magnitude of muscle damage.

2.6.5 Muscle damage and training.

2.6.6 Conclusion.

2.7 Alternative Modalities of Strength and Conditioning: Electrical Stimulation and Vibration (Nicola A. Maffiuletti and Marco Cardinale).

2.7.1 Introduction.

2.7.2 Electrical-stimulation exercise.

2.7.3 Vibration exercise.

2.8 The Stretch–Shortening Cycle (SSC) (Anthony Blazevich).

2.8.1 Introduction.

2.8.2 Mechanisms responsible for performance enhancement with the SSC.

2.8.3 Force unloading: a requirement for elastic recoil.

2.8.4 Optimum MTU properties for SSC performance.

2.8.5 Effects of the transition time between stretch and shortening on SSC performance.

2.8.6 Conclusion.

2.9 Repeated-sprint Ability (RSA) (David Bishop and Olivier Girard).

2.9.1 Introduction.

2.9.2 Limiting factors.

2.9.3 Ergogenic aids and RSA.

2.9.4 Effects of training on RSA.

2.9.5 Conclusion.

2.10 The Overtraining Syndrome (OTS) (Romain Meeusen and Kevin De Pauw).

2.10.1 Introduction.

2.10.2 Definitions.

2.10.3 Prevalence.

2.10.4 Mechanisms and diagnosis.

2.10.5 Prevention.

2.10.6 Conclusion.

Section 3 Monitoring strength and conditioning progress.

3.1 Principles of Athlete Testing (Robert U. Newton and Marco Cardinale).

3.1.1 Introduction.

3.1.2 General principles of athlete testing.

3.1.3 Maximum strength.

3.1.4 Ballistic testing.

3.1.5 Reactive strength tests.

3.1.6 Eccentric strength tests.

3.1.7 Conclusion.

3.2 Speed and Agility Assessment (Warren Young and Jeremy Sheppard).

3.2.1 Speed.

3.2.2 Agility.

3.2.3 Conclusion.

3.3 Testing Anaerobic Capacity and Repeated-sprint Ability (David Bishop and Matt Spencer).

3.3.1 Introduction.

3.3.2 Testing anaerobic capacity.

3.3.3 Testing repeated-sprint ability.

3.3.4 Conclusion.

3.4 Cardiovascular Assessment and Aerobic Training Prescription (Andy Jones and Fred DiMenna).

3.4.1 Introduction.

3.4.2 Cardiovascular assessment.

3.4.3 Aerobic training prescription.

3.4.4 Conclusion.

3.5 Biochemical Monitoring in Strength and Conditioning (Michael R. McGuigan and Stuart J. Cormack).

3.5.1 Introduction.

3.5.2 Hormonal monitoring.

3.5.3 Metabolic monitoring.

3.5.4 Immunological and haematological monitoring.

3.5.5 Practical application.

3.6 Body Composition: Laboratory and Field Methods of Assessment (Arthur Stewart and Tim Ackland).

3.6.1 Introduction.

3.6.2 History of body composition methods.

3.6.3 Fractionation models for body composition.

3.6.4 Biomechanical imperatives for sports performance.

3.6.5 Methods of assessment.

3.6.6 Profiling.

3.6.7 Conclusion.

3.7 Total Athlete Management (TAM) and Performance Diagnosis (Robert U. Newton and Marco Cardinale).

3.7.1 Total athlete management.

3.7.2 Performance diagnosis.

3.7.3 Conclusion.

Section 4 Practical applications.

4.1 Resistance Training Modes: A Practical Perspective (Michael H. Stone and Margaret E. Stone).

4.1.1 Introduction.

4.1.2 Basic training principles.

4.1.3 Strength, explosive strength, and power.

4.1.4 Conclusion.

4.2 Training Agility and Change-of-direction Speed (CODS) (Jeremy Sheppard and Warren Young).

4.2.1 Factors affecting agility.

4.2.2 Organization of training.

4.2.3 Change-of-direction speed.

4.2.4 Perceptual and decision-making factors.

4.2.5 Training agility.

4.2.6 Conclusion.

4.3 Nutrition for Strength Training (Christopher S. Shaw and Kevin D. Tipton).

4.3.1 Introduction.

4.3.2 The metabolic basis of muscle hypertrophy.

4.3.3 Optimal protein intake.

4.3.4 Acute effects of amino acid/protein ingestion.

4.3.5 Conclusion.

4.4 Flexibility (William A. Sands).

4.4.1 Definitions.

4.4.2 What is stretching?

4.4.3 A model of effective movement: the integration of flexibility and strength.

4.5 Sensorimotor Training (Urs Granacher, Thomas Muehlbauer, Wolfgang Taube, Albert Gollhofer and Markus Gruber).

4.5.1 Introduction.

4.5.2 The importance of sensorimotor training to the promotion of postural control and strength.

4.5.3 The effects of sensorimotor training on postural control and strength.

4.5.4 Adaptive processes following sensorimotor training.

4.5.5 Characteristics of sensorimotor training.

4.5.6 Conclusion.

Section 5 Strength conditioning special cases.

5.1 Strength and Conditioning as a Rehabilitation Tool (Andreas Schlumberger).

5.1.1 Introduction.

5.1.2 Neuromuscular effects of injury as a basis for rehabilitation strategies.

5.1.3 Strength and conditioning in retraining of the neuromuscular system.

5.1.4 Conclusion.

5.2 Strength Training for Children and Adolescents (Avery D. Faigenbaum).

5.2.1 Introduction.

5.2.2 Risks and concerns associated with youth strength training.

5.2.3 The effectiveness of youth resistance training.

5.2.4 Physiological mechanisms for strength development.

5.2.5 Potential health and fitness benefits.

5.2.6 Youth strength-training guidelines.

5.2.7 Conclusion.

5.3 Strength and Conditioning Considerations for the Paralympic Athlete (Mark Jarvis, Matthew Cook and Paul Davies).

5.3.1 Introduction.

5.3.2 Programming considerations.

5.3.3 Current controversies in Paralympic strength and conditioning.

5.3.4 Specialist equipment.

5.3.5 Considerations for specific disability groups.

5.3.6 Tips for more effective programming.


See More


"The field of strength and conditioning is always evolving and this book provides current research to help readers to stay informed. It should be a part of the library of professionals and students who are affiliated with this field." (Doody's, 17 February 2012)


See More
Students Resources
Wiley Student Companion Site
See More
See Less
Purchase Options
Strength and Conditioning: Biological Principles and Practical Applications
ISBN : 978-1-119-95716-4
482 pages
June 2011
$75.99   BUY

Strength and Conditioning: Biological Principles and Practical Applications
ISBN : 978-0-470-01919-1
482 pages
January 2011
$94.00   BUY

Wiley E-Text   
Strength and Conditioning: Biological Principles and Practical Applications
ISBN : 978-1-118-35550-3
552 pages
May 2012
$196.00   BUY

Related Titles

Back to Top