Wiley.com
Print this page Share
Journal

Statistical Analysis and Data Mining: The ASA Data Science Journal

Vol 10 (6 Issues in 2017)
Edited by: Niall Adams
Online ISSN: 1932-1872
Published on behalf of American Statistical Association
Impact Factor: 0.827
Statistical Analysis and Data Mining: The ASA Data Science Journal (SAM2) cover image

Description

Statistical Analysis and Data Mining addresses the broad area of data analysis, including data mining algorithms, statistical approaches, and practical applications. Topics include problems involving massive and complex datasets, solutions utilizing innovative data mining algorithms and/or novel statistical approaches, and the objective evaluation of analyses and solutions. Of special interest are articles that describe analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.

The focus of the journal is on papers which satisfy one or more of the following criteria:

  • Solve data analysis problems associated with massive, complex datasets
  • Are application and solution oriented with a focus on solving real problems
  • Describe innovative data mining algorithms or novel statistical approaches
  • Compare and contrast techniques to solve a problem, along with an objective evaluation of the analyses and the solutions

The goals of this interdisciplinary journal are to encourage collaborations across disciplines, communication of novel data mining and statistical techniques to both novices and experts involved in the analysis of data from practical problems, and a principled evaluation of analyses and solutions.

The 21st Century has become a Century of Data, with most domains striving for useful general models for their mountains of data. Data mining and statistical analysis are amongst the most effective bodies of methodology and technology capable of producing useful general models from massive, complex datasets.

Statistical Analysis and Data Mining will be a useful resource to those solving practical problems, at the same time enabling them to benefit from ideas developed in other domains. It will be an international journal, with an interdisciplinary focus, covering areas which are becoming increasingly important, and likely to remain so in the foreseeable future.


Guidelines for Reviewers

1) Scan the paper to identify the key contribution, if any.

2) If the key contribution is minor, reject the paper.

3) If the key contribution is substantial:
a) Synopsize the main ideas of the paper in your own summary;
b) If you know of any closely related research not covered in the paper, mention it;
c) Check the paper for accuracy and note corrections;
d) Check the paper for clarity and suggest alternative wordings where appropriate;
e) If you find the paper incomplete, consider writing your own publishable comment.

4) Do not hesitate to ask the Associate Editor to obtain any of the following, as needed:
a) Reference papers not easily accessible;
b) Original source data;
c) Original code.

5) Make your recommendation for:
a) Acceptance – paper publishable as is;
b) Minor Revision – no serious errors;
c) Major Revision – poorly written or containing potentially correctable flaws;
d) Rejection – paper would need to be totally rewritten or should be abandoned as a bad idea.

See More
Back to Top