Chapter 11

Series Solutions:
Bessel Functions, Legendre Polynomials

Section 11.1 Aging Springs and Steady Temperatures

Problem 9. Find the coefficient \(a_{100} \) in the series \(\sum_{n=0}^{\infty} a_n x^n \) if it is known that \(a_0 = a_1 = 1 \) and that

\[
\sum_{n=0}^{\infty} [(n+1)^2a_{n+2} - n^2a_{n+1} + (n-1)a_n]x^n = 0
\]

Solution:
We want to find \(a_{100} \) if it is known that \(\sum_{n=0}^{\infty} [(n+1)^2a_{n+2} - n^2a_{n+1} + (n-1)a_n]x^n = 0 \).
The recursion identity here is \((n+1)^2a_{n+2} - n^2a_{n+1} + (n-1)a_n = 0 \), that is, \(a_{n+2} = (n^2a_{n+1} - (n-1)a_n)/(n+1)^2 \), \(n = 0, 1, 2, \ldots \), where \(a_0 = a_1 = 1 \). A computer may easily be programmed to calculate the coefficients using the identity and the initial data \(a_0 = a_1 = 1 \). In fact, \(a_{100} \approx -1.0629 \times 10^{-6} \).

Section 11.2 Series Solutions Near an Ordinary Point

Problem 5. (Mathieu Equation). The Mathieu equation is \(y'' + (a + b \cos \omega x) y = 0 \). Calculate the first four nonvanishing coefficients in the power series expansion of the solution of the Mathieu equation; use \(a = 1 \), \(b = 2 \), \(\omega = 1 \), and \(y(0) = 1 \), \(y'(0) = 0 \).

Solution:
The Mathieu equation is \(y'' + (a + b \cos \omega x)y = 0 \). Set \(a = 1 \), \(b = 2 \), \(\omega = 1 \), and \(y(0) = 1 \), \(y'(0) = 0 \). Since we only want the first few terms, we shall not attempt to find the general coefficient of the series solution. The initial data imply that \(a_0 = 1 \) and \(a_1 = 0 \) if \(y = a_0 + a_1 x + a_2 x^2 + \cdots \). Since \(\cos x \) has Taylor series \(1 - x^2/2! + x^4/4! - x^6/6! + \cdots \) about \(x_0 = 0 \), we see that inserting the series for \(y \) and for \(\cos x \) in the ODE and using item 6(ii) of Appendix B.2 to determine the first few terms of the product series for \((2 \cos x)y(x) \), we have that

\[
0 = y'' + (1 + 2 \cos x) y = (3 + 2a_2) + 6a_3 x + (12a_4 + 3a_2 - 1)x^2 + (3a_3 + 20a_5)x^3 + (30a_6 + 3a_4 - a_2 + \frac{1}{12})x^4 + \cdots
\]

So \(a_2 = -3/2 \), \(a_3 = 0 \), \(a_4 = 13/48 \), \(a_5 = 0 \), \(a_6 = -23/288 \), and the series for the solution is

\[
y = 1 - \frac{3}{2} x^2 + \frac{13}{48} x^4 - \frac{23}{288} x^6 + \cdots
\]
Section 11.3 Legendre Polynomials

Problem 1. (*Legendre’s ODE and the Wronskian Method*). Legendre’s equation of orders 0 and 1 have respective solutions \(P_0 = 1 \) and \(P_1 = x \). Use the Wronskian Reduction Method (Problem 6, Section 3.7) to find a second independent solution for each case in terms of elementary functions. Plot the second solution for \(|x| < 1\).

Solution:
Assume that \(u(x) \) is a solution of the ODE \(y'' + a(x)y' + b(x)y = 0 \) and that \(u(x) \) is not the trivial solution \(y = 0 \), all \(x \). Then a second solution \(v(x) \), \(|x| < 1\), independent of \(u(x) \) can be found by solving the ODE

\[
W[u, v](x) = uv' - u'v = e^{-\int a(s)ds}
\]

In Legendre’s ODEs of order 0 and 1, we have that \(a(x) = -2x/(1-x^2) \), \(u_0(x) = 1 \), and \(u_1(x) = x \), respectively. So \(v_0' = e^{\int 2s/(1-s^2)ds} = C_1/(1-x^2) \), and (using an integral table)

\[
v_0 = \frac{C_1}{2} \ln \frac{1+x}{1-x} + C_2, \quad (C_1 > 0)
\]

Also, \(xv_1' - v_1 = C_1/(1-x^2) \), \(v_1' - v_1/x = C_1/x(1-x^2) \).

\[
v_1 = e^{\int (1/s)ds}[C_3 + \int e^{-\int (1/s)ds} \frac{C_1}{s(1-s^2)} ds]
\]

\[
= x[C_3 + C_1 \int \frac{1}{s^2(1-s^2)} ds]
\]

\[
= x[C_3 + C_1 \left(-\frac{1}{x} + \frac{1}{2} \ln \frac{1+x}{1-x}\right)] \quad (C_1 > 0)
\]

where we have used a table of integrals. So, second independent solutions for Legendre’s equations of order 0 and 1 on the interval \(|x| < 1\) are, respectively,

\[
v_0 = \frac{C_1}{2} \ln \frac{1+x}{1-x} + C_2 \quad \text{and} \quad v_1 = x[C_3 + C_1 \left(-\frac{1}{x} + \frac{1}{2} \ln \frac{1+x}{1-x}\right)]
\]

where \(C_1, C_2 \) and \(C_3 \) are constants and \(C_1 > 0 \). See Graph 1 and Graph 2, respectively, for graphs of \(v_0 \) and \(v_1 \), where \(C_1 = 1, \ C_2 = 0, \ C_3 = 0 \).
Section 11.4 Regular Singular Points

Problem 3. (Euler ODEs). Find the general, real-valued solution (for \(x > 0 \)) of each of the following equations. Plot some solutions of each equation.

\((a)\) \(x^2 y'' - 6y = 0 \)
\((b)\) \(x^2 y'' + xy' - 4y = 0 \)
\((c)\) \(x^2 y'' + xy' + 9y = 0 \)
\((d)\) \(x^2 y'' + xy'/2 - y/2 = 0 \)
\((e)\) \(xy'' - y' + (5/x)y = 0 \)
\((f)\) \(x^2 y'' + 7xy' + 9y = 0 \)

Solution:
Each of the equations may be written as an Euler equation \(x^2 y'' + p_0 xy' + q_0 y = 0 \), and the solutions are determined by the roots \(r_1 \) and \(r_2 \) of the indicial polynomial \(r^2 + (p_0 - 1)r + q_0 \). The three types of solutions are given in (13) in the text. In each case we list the indicial polynomial, its roots, and then the general solution; \(c_1 \) and \(c_2 \) denote arbitrary constants. It is assumed throughout that \(x > 0 \), and absolute value signs around \(x \) are not needed. See the appropriate figures for plots of some solutions of each equation. For negative \(x \), replace \(x \) by \(|x| \) in all formulas.

\((a)\) \(r^2 - r - 6; \quad r_1 = -2, \quad r_2 = 3; \quad y = c_1 x^{-2} + c_2 x^3 \).

\((c)\) \(r^2 + 9; \quad r_1 = 3i, \quad r_2 = -3i; \quad y = c_1 \cos(3 \ln x) + c_2 \sin(3 \ln x). \)

\((e)\) \(r^2 - 2r + 5; \quad r_1 = 1 + 2i = \bar{r}_2; \quad y = x[c_1 \cos(2 \ln x) + c_2 \sin(2 \ln x)]. \)

Section 11.5 Series Solutions Near Regular Singular Points, I

Problem 3. (Frobenius Series). Solve the ODE \(3x^2 y'' + 5xy' - e^x y = 0 \) by expanding \(e^x \) in a Taylor series about \(x_0 = 0 \) and recalling the formula for the product of two series (Appendix B.2). You only need to find the first four terms in the Frobenius series explicitly.

Solution:
The ODE is \(3x^2 y'' + 5xy' - e^x y = 0 \). The Taylor series for \(e^x \) about \(x_0 = 0 \) is \(1 + x + x^2/2! + x^3/3! + \cdots \). So \(p_0 = 5/3, \quad q_0 = -1/3 \) for the ODE in nonstandard form

\[x^2 y'' + 5xy'/3 - e^x y'/3 = x^2 y'' + 5xy'/3 + (-1/3 - x/3 - \cdots) y = 0 \]
The indicial polynomial is $r^2 + 2r/3 - 1/3$ and $r_1 = 1/3$, $r_2 = -1$. There are independent solutions of the form

$$y_1 = x^{1/3} + a_1 x^{4/3} + a_2 x^{7/3} + \cdots, \quad y_2 = x^{-1} + b_1 + b_2 x + \cdots$$

where we have set $a_0 = b_0 = 1$ in each series. Although we could use Frobenius Theorem I to determine the coefficients, it is probably simpler to make a direct substitution of y_1 and then y_2 into the ODE. For y_1 we have that

$$3x^2 y_1'' + 5xy_1' - e^x y_1 = (7a_1 - 1)x^{4/3} + (20a_2 - a_1 - 1/2)x^{7/3} + (39a_3 - a_2 - a_1/2 - 1/6)x^{10/3} + \cdots = 0$$

So $a_1 = 1/7$, $a_2 = 9/280$, $a_3 = 227/32760$ and

$$y_1 = x^{1/3} + x^{4/3}/7 + 9x^{7/3}/280 + 227x^{10/3}/32760 + \cdots$$

In the same way we see that

$$y_2 = x^{-1} - 1 - x/8 - 11x^2/360 + \cdots$$

Section 11.6 Bessel Functions

Problem 5. Plot J_0, J_1, J_2, and J_3. Then plot $J_{1/3}$, $J_{4/3}$, $J_{7/3}$, $0 \leq x \leq 20$.

Solution:
See Figs. 5 for plots of J_0, J_1, J_2, J_3 (Graph 1) and $J_{1/3}$, $J_{4/3}$, $J_{7/3}$ (Graph 2).

Section 11.7 Series Solutions Near Regular Singular Points, II

Problem 1. (Frobenius’s Theorem II: Cases II, III), Check that 0 is a regular singular point of each equation and find a basis for the solution space on the interval $(0, \infty)$. [Hint: In parts (a), (b), (c), the solution y_1 is easily found in closed form. Then use the Wronskian Reduction Method of Problem 6 of Section 3.7 to find a second independent solution.]

- (a) $xy'' + (1 + x)y' + y = 0$
- (b) $x^2 y'' + x(x - 1)y' + (1 - x)y = 0$
- (c) $xy'' - xy' + y = 0$
- (d) $xy'' - x^2 y' + y = 0$
Solution:
It is straightforward to show that 0 is a regular singular point of each ODE; the details are omitted.

(a) The ODE is \(xy'' + (1 + x)y' + y = 0 \). The equation in standard form is \(x^2 y'' + x(1 + x)y' + xy = 0 \). So, \(p_0 = 1, q_0 = 0 \) and the indicial polynomial is \(r^2 \) with roots \(r_1 = r_2 = 0 \). We are in Case II of Frobenius Theorem II. First, there is a solution of the form \(y_1 = \sum_{n=0}^{\infty} a_n x^n \) with \(a_0 = 1 \). Using the techniques of Section 11.5, we see that the recursion formula in this case is

\[
a_{n+1} = -\frac{a_n}{n+1}, \quad n = 0, 1, 2, \ldots
\]

and a solution is

\[
y_1 = \sum_{n=0}^{\infty} (-1)^n x^n / n! = e^{-x}
\]

We have by the Wronskian Reduction Method of Problem 6, Section 3.7, that \(e^{-x} y_2' + e^{-x} y_2 = e^{-x}/x \), where the right-hand side is \(\exp[-\int x a(s) ds] \), \(a(s) = s^{-1} + 1 \), for the normalized ODE, \(y'' + x^{-1}(1 + x)y' + x^{-1}y = 0 \). So, \(y_2' + y_2 = 1/x \), or \((y_2 e^x)' = e^x/x \).

(c) The ODE is \(xy'' - xy' + y = 0 \). Here the ODE in standard form is \(x^2 y'' - x^2 y' + xy = 0 \), and the indicial polynomial is \(r^2 - r \) and \(r_1 = 1, r_2 = 0 \). We are in Case III of Frobenius Theorem II. We may use the methods of Section 11.5 to find a solution \(y_1 = \sum_{n=0}^{\infty} a_n x^{n+1}, \quad a_0 = 1 \). The recursion formula is

\[
a_{n+1} = \frac{(1 - n)a_n}{n(n + 1)}, \quad n \geq 0
\]

So \(a_n = 0 \) for \(n \geq 1 \) and

\[
y_1 = x
\]

is a solution. We have by the Wronskian Reduction Method of Problem 6, Section 3.7 that \(xy_2' - y_2 = e^x, \ y_2' - y_2/x = e^x/x, \ (y_2/x)' = e^x/x^2 \) and

\[
y_2 = x \int e^x/s^2 ds = x[-1/x + \ln x + \cdots + x^{n-1}/(n!(n-1)) + \cdots]
\]

where we replaced \(e^x \) by its Maclaurin series, divided each term by \(s^2 \), and then integrated term by term.
Section 11.8 Steady Temperatures in Spheres and Cylinders

Problem 3. Solve the boundary value problems below:

(a) Solve boundary problem (16) if \(f(r) = 1, \ 0 \leq r \leq 1. \)

(b) Solve the boundary value problem that arises from (16) if the side-wall temperature condition \(u(1, \theta, z) = 0 \) is replaced by the perfect-insulation condition \(u_r(1, \theta, z) = 0, \ 0 \leq z \leq a, \ -\pi \leq \theta \leq \pi. \) [Hint: Use (19) in Theorem 11.6.2 with \(p = 0, \) and use the identity below in Problem 4 with \(a = x_n^*, \) where \(x_n^* \) is a positive zero of \(J_0' \) (and so of \(J_1' \)).]

Solution:

(a) We are to solve boundary problem (16) in a cylinder if \(f(r) = 1, \ 0 \geq r \geq 1. \) If \(f(r) = 1, \ 0 \leq r \leq 1, \) then with \(x_n, n = 1, 2, ..., \) denoting the consecutive positive zeros of \(J_0(x), \) we have from (20) that

\[
A_n = \frac{2}{[J_1(x_n)]^2 \sinh(x_n a)} \int_0^1 r J_0(x_n r) \, dr = \frac{2}{[J_1(x_n)]^2 \sinh(x_n a) k_n^2} \int_0^1 (r J_1(x_n r))' \, dr
\]

\[
= \frac{2}{[J_1(x_n)]^2 \sinh(x_n a) x_n^2} (r J_1(x_n r)) \Big|_0^1 = \frac{2}{J_1(x_n) \sinh(x_n a) x_n^2}
\]

where we have used the Bessel identity, \((x J_1(x))' = x J_0(x). \) So

\[
u(r, z) = \sum_{n=1}^{\infty} \frac{2}{x_n^2} \cdot \frac{\sinh(x_n (a - z))}{\sinh(x_n a)} \cdot \frac{J_0(x_n r)}{J_1(x_n)}
\]