
132

Chapter 4

Combinational
Logic Design

The foundations for the design of digital logic circuits were established in the
preceding chapters. The elements of Boolean algebra (two-element “switching
algebra”) and how the operations in Boolean algebra can be represented
schematically by means of gates (primitive devices) were presented in Chapter
2. How switching expressions can be manipulated and represented in different
ways was the subject of Chapter 3, which also presented various ways of imple-
menting such representations in a variety of circuits using primitive gates.

With all of the tools for the purpose now in hand, we will be concerned in
this chapter with the design of more complex logic circuits. Circuits in which all
outputs at any given time depend only on the inputs at that time are called com-
binational logic circuits. The design procedures will be illustrated with impor-
tant classes of circuits that are now universal in digital systems.

The approach taken is to examine the tasks that a combinational logic cir-
cuit is intented to perform and then identify one or more circuits that can per-
form the task. One circuit may have some specific advantages over others, but
it may also have certain deficiencies. Often one factor can be improved, but
only at the expense of others. Some important factors are speed of operation,
complexity or cost of hardware, power dissipation, and availability in prefabri-
cated units. We will take up a number of different operations that are useful in
different contexts and show how appropriate circuits can be designed to carry
out these operations.

1 BINARY ADDERS

One of the most important tasks performed by a digital computer is the opera-
tion of adding two binary numbers.1 A useful measure of performance is speed.
Of course, speed can be improved by using gate designs that favor speed at the

1As discussed in Chapter 1, subtraction of two numbers is included in the meaning of addition, since sub-
traction is performed first by carrying out some operation on the subtrahend and then adding the result.
(What operation is first performed depends on the type of computer—either inverting the subtrahend or
taking its two’s complement, as discussed in Chapter 1.)

Binary Adders 133

Short

Even

expense of other measures, such as power consumption (using advanced
Schottky, for example, versus low-power Schottky designs). But for the logic de-
signer, the important question is how to design an adder to increase the speed,
regardless of the type of gate used. It may be that increased speed can be
achieved at the expense of increased circuit complexity. That is, there might be
several designs, each characterized by a certain speed and a certain circuit com-
plexity. A judgment must be made as to the acceptable trade-offs between them.

A symbolic diagram representing a binary adder is shown in Figure 1a. Each
open arrowhead represents multiple variables; in this case the inputs are two bi-
nary numbers. If each number has n digits, then each line shown really repre-
sents n lines. The sum of two n-bit numbers is an (n + 1)-bit number. Thus, S
(sum) represents n + 1 output lines. If this circuit were designed by the methods
of Chapter 3, we would require a circuit with n + 1 output functions, each one
dependent on 2n variables. The truth table for each of the output functions
would have 22n rows. Since n could easily be in the range 20–40, a different ap-
proach is obviously needed.

Full Adder

An alternative approach for the addition of two n-bit numbers is to use a sep-
arate circuit for each corresponding pair of bits. Such a circuit would accept the
2 bits to be added, together with the carry resulting from adding the less signif-
icant bits. It would yield as outputs the 1-bit sum and the 1-bit carry out to the
more significant bit. Such a circuit is called a full adder. A schematic diagram is
shown in Figure 1b. The 2 bits to be added are xi and yi , and the carry in is Ci.
The outputs are the sum Si and the carry out Ci+1. The truth table for the full
adder and the logic maps for the two outputs are shown in Figure 2.

The minimal sum-of-products expressions for the two outputs obtained
from the maps are

Si = xi'yiCi' + xiyi'Ci' + xi'yi'Ci + xiyiCi (1a)

Ci+1 = xiyi + xiCi + yiCi

= xiyi + Ci(xi + yi) (1b)

(Make sure you verify these.) Each minterm in the map of Si constitutes a prime
implicant. Hence, a sum-of-products expression will require four 3-input AND
gates and a 4-input OR gate. The carry out will require three AND gates and an

X

Y
S

xi

yi

Si

(a) (b)

Ci+1

Ci

Figure 1 Binary addition. (a) General adder. (b) Full adder
of two 1-bit words.

134 Chapter 4 Combinational Logic Design

Short

Even

OR gate. If we assume that each gate has the same propagation delay tp, then a
two-level implementation will have a propagation delay of 2tp.

In the map of the carry out, minterm m7 is covered by each of the three
prime implicants. This is overkill; since m7 is covered by prime implicant xiyi,
there is no need to cover it again by using it to form prime implicants with m5
and m6. If there is some benefit to it, we might use the latter two minterms as
implicants without forming prime implicants with m7. The resulting expression
for Ci+1 becomes

Ci+1 = xi yi + Ci(xi'yi + xi yi') = xi yi + Ci(xi ⊕ yi) (2)

(Confirm this result.) We already have an expression for Si in (1a), but it is in
canonic sum-of-products form. It would be useful to seek an alternative form
for a more useful implementation.

Exercise 1 With the use of switching algebra, confirm that the expression for
the sum in (1a) can be converted to

Si = xi ⊕ yi ⊕ Ci (3) ◆

Using the expressions for Si and Ci+1 containing XORs, confirm that we can
obtain the implementation of the full adder shown in Figure 3a. Notice that the
circuit consists of two identical XOR-AND combinations and an additional OR
gate. The circuit inside each dashed box is shown in Figure 3b; it is named a half
adder. Its only inputs are the 2 bits to be added, without a carry in. The two out-
puts are (1) the sum of the 2 bits and (2) the carry out.

Assuming that an XOR gate (implemented in a two-level circuit) has a
propagation delay of 2tp, the full adder in Figure 3a has a propagation delay of
4tp, both for the sum and for the carry. (Verify these claims.)

We will observe in the following section that the overall speed in the addition of
two n-bit binary numbers depends mainly on the speed with which the carry propa-
gates from the least significant bit to the most significant bit. Hence, reducing the
delay experienced by the carry of a full adder is a significant improvement. This is an
incentive in seeking other implementations of the full adder. In some of the cases in
Problem 1 at the end of the chapter, additional implementations of the full adder are

Ci Xi Yi Si Ci + 1

0 0 0 0 0
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 1 0
1 0 1 0 1
1 1 0 1 1
1 1 1 0 1

(a)

Figure 2 Truth table and logical maps of the full adder. (a) Truth table.
(b) Si map. (c) Ci+1 map.

(b)

1

1

1

1

00

01

11

10

0 1

yz

x

(c)

1

1 1

1

00

01

11

10

0 1

yz

x

Binary Adders 135

Short

Even

proposed in which the propagation delay for the carry is 2tp instead of 4tp. Henceforth,
for a full adder, we will assume that the propagation delay of the carry is 2tp.

Ripple-Carry Adder

The problem of adding two multidigit binary numbers has the following form.
Two n-bit binary numbers are available, with all digits being presented in par-
allel. The addition is performed by using a full adder to add each correspond-
ing pair of digits, one from each number. The full adders are connected in
tandem so that the carry out from one stage becomes the carry into the next
stage, as illustrated for the case of four-digit numbers in Figure 4. Thus, the
carry ripples through each stage. For binary addition, the carry into the first
(least significant) stage is 0. The last carry out (the overflow carry) becomes the
most significant bit of the (n + 1)-bit sum.

Since the carry of each full adder has a propagation delay of 2tp, the total
delay in carrying out the sum of two n-bit numbers is 2ntp. Not every pair of two
n-bit numbers will experience this much delay. Take the following two numbers
as an example:

101010

010101

(b) (c)

xi⊕ yi

xi⋅yi

xi
yi

(a)

xi⊕ yi

xi⋅yi

xi

Ci

Ci+1

Si
yi

yi

xi

Ci+1

Si

Figure 3 Full adder implemented with half adders. (a) Full adder.
(b) Half adder. (c) Half adder schematic diagram.

Figure 4 Four-bit ripple-carry adder.

A1

S1

B1

A2

B2

S2

A3

B3

S3 S4

C5C4C3C2

A4

B4
C1 = 0

136 Chapter 4 Combinational Logic Design

Short

Even

Assuming that the carry into the first stage is zero, no carries are generated at
any stage in taking the sum. Hence, there will be no carry ripple, and so no
propagation delay along the carry chain.

However, to handle the general case, provision must be made for the worst
case; no new numbers should be presented for addition before the total delay
represented by the worst case. The maximum addition speed, thus, is limited by
the worst case of carry propagation delay.

Carry-Lookahead Adder

In contemplating the addition of two n-digit binary numbers, we were appalled
by the thought of a single combinational circuit with all those inputs. So we con-
sidered the repeated use of a simpler circuit, a full adder, with the least possi-
ble number of inputs. But what is gained in circuit simplicity with this approach
is lost in speed. Since the speed is limited by the delay in the carry function,
some of the lost speed might be regained if we could design a circuit—just for
the carry—with more inputs than 2 but not as many as 2n. Suppose that several
full-adder stages are treated as a unit. The inputs to the unit are the carry into
the unit as well as the input digits to all the full adders in that unit. Then per-
haps the carry out could be obtained faster than the ripple carry through the
same number of full adders.

These concepts are illustrated in Figure 5 with a unit consisting of just two
full adders and a carry-lookahead circuit. The four digits to be added, as well as
the input carry Ci, are present simultaneously. It is possible to get an expression
for the carry out, Ci+2, from the unit by using the expression for the carry of the
full adder in (2).

For reasons which will become clear shortly, let’s attach names to the two
terms in the carry expression in (2), changing the names of the variables to A
and B from x and y in accordance with Figure 5. Define the generated carry Gi
and the propagated carry Pi for the ith full adder as follows:

Gi = AiBi (4a)

Pi = Ai ⊕ Bi (4b)

Inserting these into the expression for the carry out in (2) gives

Ci+1 = Ai Bi + Ci(Ai ⊕ Bi) = Gi + PiCi (5)

Ci+2

Si+1

Ci+1
Ci

Bi+1

Ai+1

Bi

Ai

Si

Figure 5 Carry-lookahead circuit schematic.

Binary Adders 137

Short

Even

A carry will be generated in the ith full adder (that is, Gi = 1) if Ai and Bi both
equal 1. But if only one of them is 1, a carry out will not be generated. In that
case, however, Pi will be 1. (Confirm this.) Hence, the carry out will be Ci+1 =
Ci. We say that the carry will be propagated forward.

The expression for the carry out in (5) can be updated by changing the
index i to i + 1:

Ci+2 = Gi+1 + Pi+1Ci+1 = Gi+1 + Pi+1(Gi + PiCi)

= Gi+1 + Pi+1Gi + Pi+1PiCi (6)

The last expression can be interpreted in the following way. A carry will appear
at the output of the unit under three circumstances:

• It is generated in the last stage: Gi+1 = 1.
• It is generated in the first stage, Gi = 1, and propagated forward: Pi+1 = 1.
• The input carry Ci is propagated through both stages: Pi = Pi+1 = 1.

Obviously, this result can be extended through any number of stages, but the
circuit will become progressively more complicated.

Exercise 2 Extend the previous result by one more stage and write the ex-
pression for Ci +3. Then describe the ways in which this carry out can be 1.
Confirm your result using the general result given next. ◆

Extending the design to j stages, the expression in (6) becomes

Ci+j+1 = Gi+j + Pi+jGi+j–1 + Pi+jPi+j–1Gi+j–2 + ... + (Pi+jPi+j–1
... Pi)Ci (7)

This expression looks complicated, but it is easy to interpret. Since the carry out
Ci+j+1 = 1 if any one of the additive terms on the right is 1, the carry out from
the unit will be 1 for several possibilities. Either it is generated in the last (jth)
stage of the unit, or it is generated in an earlier stage and is propagated through
all succeeding stages, or the carry into the unit is propagated through all the
stages to the output.

The greater the number of full-adder stages included in a unit, the greater
the improvement in speed—but also the greater the complexity of the carry-
lookahead circuit. There is an obvious trade-off between the two. Consider a
unit of four stages. This unit is to add two 4-bit words A and B. Each stage can
be considered as having a sum circuit (S) and a separate carry circuit (C). The
sum circuit of each stage has as inputs the carry from the preceding stage and
the corresponding bits of the A and B words. The inputs to the carry network of
each stage consist of all the bits of the A and B words up to that stage and the
carry—not just from the preceding stage, but from the input to the whole unit.
Thus, if the first stage is stage i, the inputs to the carry circuit of stage i + 2 are:
Ai, Ai+1, Ai+2, Bi, Bi+1, Bi+2, and Ci.

Exercise 3 Draw a schematic diagram for a three-stage unit using rectangles
to represent the sum and carry circuits of each stage. (Let the first stage be 1 in-
stead of the general i.) ◆

138 Chapter 4 Combinational Logic Design

Short

Even

A circuit implementation of the carry network of the last stage in a four-
stage unit is shown in Figure 6. Except for Ci, the carry into the unit, all other
inputs to the AND gates are generated carries and propagated carries from the
various stages of the unit. These generated and propagated carries are pro-
duced by the half-adder circuits in Figure 7.

A semi-block diagram of the four-stage carry-lookahead adder is shown in
Figure 8. (Note that pins that carry the same label in different subcircuits are
assumed to be connected.) Since each propagated carry Pi+j is the output of an
XOR gate, the overall propagation delay of the carry circuit having the design
of Figure 7 is 4tp. However, all generated and propagated carries, Gi+j and Pi+j,
of all units become available within 2tp after the two words are first presented
for addition, as evident from Figure 6. Hence, in all carry-lookahead units be-
sides the first, the propagation delay of the carry network is only 2tp.

Exercise 4 Suppose that a carry-lookahead adder is to have k 4-bit units to
carry out the addition of two 4k-bit words. From the preceding discussion, from
the diagram of Figure 8 implementing each unit, and from a consideration of
the first and last units, determine the propagation delay of this adder in terms
of tp, the propagation delay through one gate. (Don’t peek at the answer until
you do the work.)
Answer 2

2The sum of the delays through (a) the carry circuit of each unit (2tp each), (b) the sum circuit of the last
unit (2tp) since it depends on having the carry from the last unit, and (c) the extra delay in getting the
carry from the first unit. Total delay = (k + 1 + 1)2tp = (2k + 4)tp ◆

Ci+4

Gi+3

Pi+3
Gi+2

Pi+3
Pi+2
Gi+1

Pi+3
Pi+2
Pi+1

Gi

Pi+3
Pi+2
Pi+1

Pi
Ci

Figure 6 Four-stage carry-lookahead
circuit.

Pk = Ak⊕ Bk

Gk = Ak⋅Bk

Ak

Bk

Figure 7 Half adder for generated and propagated
carries.

If an adder has eight 4-bit units, the propagation delay through a carry-lookahead
adder will be 20tp.The corresponding ripple-carry adder will have a propagation delay
of 4 × 8 × 2tp = 64tp. Thus, the carry-lookahead adder will have an advantage of 320
percent in speed over the ripple-carry adder. All is not gravy, however: the speed ad-
vantage has been paid for in the cost of the added hardware.

Exercise 5 From a count on the number of gates in each implementation, esti-
mate the hardware disadvantage (in percent) of the carry-lookahead adder
compared with the ripple-carry adder. Compare the disadvantage with the 320
percent speed advantage. ◆

The circuits described here are available in IC packages. A single full adder,
for example, is available as a unit. A ripple-carry adder, as illustrated in Figure
4, and a carry-lookahead adder for 4-bit words, as shown in Figure 8, are avail-
able as MSI packages.

Externally, a package consisting of a ripple-carry adder of 4-bit words
would look the same as a package consisting of a carry-lookahead adder of 4-
bit words. The block diagram in Figure 9 illustrates such a package. There are

Binary Adders 139

Short

Even

Figure 8 Schematic diagram of 4-bit carry-lookahead adder.

S1

S2

P1

G1 P2
C2

C2

C1

S3
P2

G2

P3

G3

P4

G4

P1

C1

P2

G2

P3

G3

P4

G4

A1

A2

B1

A3

B3

A4

B4

P3
C3

C3

C4

C5

S4

C4

P4

Figure 9 High-speed adder: 4-bit words.

B3

CO

CI

B2
B1
B0

S3
S2
S1
S0

A3
A2
A1
A0

nine inputs: the carry in and four inputs per word. There are five outputs: the
carry out and the 4 bits of the sum. (The carry out becomes the most significant
bit of the sum if the circuit is used just to add 4-bit words, and not as part of an
adder of longer words.)

Binary Subtractor

In Chapter 1 two representations of signed binary numbers were studied: one’s
complement and two’s complement. Recall that when numbers are represented
in one of the complement forms, the only special treatment needed in the ad-
dition of a negative number with another positive or negative number is in the
final carry out. Thus, the adders studied in the previous section are suitable for
the addition of complement numbers if some additional circuitry is used to
process the final carry out. Also, binary subtraction can be performed using the
same adder circuits by negating the subtrahend.

Two’s-Complement Adder and Subtractor

Recall from Chapter 1 that when the addition of 2 two’s complement binary
numbers produces a final carry, it can be ignored. However, it is necessary to
detect the overflow that can occur when the result of the addition is out of
range.3 In Chapter 1 it was concluded that an arithmetic overflow could be de-
tected if the carry in and carry out of the most significant bit position are dif-
ferent. Thus, the overflow can be detected with one additional Exclusive-OR
gate. The two’s complement adder is not much different from the binary adder
for unsigned numbers.

What about subtraction? We already suggested that subtraction should be
carried out by complementing the subtrahend and adding. So the task is to de-
sign a circuit whose output is the two’s complement of the input, and use its
output as one input to an adder. Such a circuit can be designed easily, but why
should a system contain some hardware dedicated to addition and other hard-
ware dedicated to subtraction? If the only difference between these two circuits
is a circuit that computes the two’s complement, then why not design a circuit
where either addition or subtraction can be selected with one additional input?
When this additional input is, say, 0 the circuit performs addition, and when the
input is 1 the circuit performs subtraction. It sounds easy; a representation of
the circuit can be derived using the techniques of Chapter 3, but an elegant so-
lution exists that we describe next.

Examine the truth table of the Exclusive-OR operation and notice that it
can be viewed as a conditional inverter. If one input is 0, then the output is
identical to the second input. If one input is 1, then the output is the comple-
ment of the second input. This is convenient for producing the complement of
an input to our adder/subtractor circuit when we want to perform subtraction.
However, to compute the two’s complement of a binary number we have to add

140 Chapter 4 Combinational Logic Design

Short

Even

3The range of binary numbers having n binary digits represented in two’s complement form is
–2n–1 ≤ m ≤ 2n–1 – 1.

Binary Adders 141

Short

Even

1. Any ideas on how to do this without additional gates? (Think about it before
you continue.)

The full adder for the least significant bit has a carry input signal that can
be utilized to add the required 1. The design of our two’s complement
adder/subtractor circuit is complete; a version for adding 4-bit numbers is
shown in Figure 10. If the control signal M is 0, then the circuit performs A+B;
however, if M is 1, the circuit performs A − B.

One’s-Complement Adder and Subtractor

To perform subtraction in one’s complement we can use the Exclusive-OR cir-
cuit used in the two’s complement adder/subtractor. The only difference is that
we do not want to inject a carry into the least significant bit. One’s complement
addition requires the addition of 1 to the sum when a carry out from the most
significant bit position occurs. This can be accomplished using multiple half
adders as shown in Figure 11. Overflow detection for one’s complement addi-
tion is left as a problem for you.

Figure 10 Two’s complement adder/subtractor with overflow detection.

B3 B2 B1 B0

M

A3 A2 A1 A0

C4 C3 C2 C1 C0

S3

overflow

S2 S1 S0

B3 B2 B1 B0

M

0

A3 A2 A1 A0

C4 C3 C2 C1 C0

S3 S2 S1 S0

FA FA FA FA

HA HA HA HA

Figure 11 One’s complement adder/subtractor.

142 Chapter 4 Combinational Logic Design

Short

Even

Two’s complement addition is the most common method implemented in
modern computers due to its reduced circuit complexity compared with one’s
complement.

This is as far as we will go with the addition of multibit words; other adder
circuits are left for the problem set.

2 MULTIPLEXERS

Many tasks in communications, control, and computer systems can be per-
formed by combinational logic circuits. When a circuit has been designed to
perform some task in one application, it often finds use in a different applica-
tion as well. In this way, it acquires different names from its various uses. In this
and the following sections, we will describe a number of such circuits and their
uses. We will discuss their principles of operation, specifying their MSI or LSI
implementations.

One common task is illustrated in Figure 12. Data generated in one location
is to be used in another location; A method is needed to transmit it from one
location to another through some communications channel.

The data is available, in parallel, on many different lines but must be trans-
mitted over a single communications link. A mechanism is needed to select which
of the many data lines to activate sequentially at any one time so that the data this
line carries can be transmitted at that time. This process is called multiplexing. An
example is the multiplexing of conversations on the telephone system. A number
of telephone conversations are alternately switched onto the telephone line many
times per second. Because of the nature of the human auditory system, listeners
cannot detect that what they are hearing is chopped up and that other people’s
conversations are interspersed with their own in the transmission process.

Needed at the other end of the communications link is a device that will
undo the multiplexing: a demultiplexer. Such a device must accept the incoming
serial data and direct it in parallel to one of many output lines. The interspersed
snatches of telephone conversations, for example, must be sent to the correct
listeners.

A digital multiplexer is a circuit with 2n data input lines and one output
line. It must also have a way of determining the specific data input line to be se-
lected at any one time. This is done with n other input lines, called the select or
selector inputs, whose function is to select one of the 2n data inputs for connec-

data
in

dat
out

communications
channel

multiplexer

demultiplexer

•

•

•

•
•
•

Figure 12 A data communication problem.

Multiplexers 143

Short

Even

tion to the output. A circuit for n = 3 is shown in Figure 13. The n selector lines
have 2n = 8 combinations of values that constitute binary select numbers.

Exercise 6 Write expressions for each of the AND gate outputs in terms of the si
and Di inputs, confirming that the multiplier of Dk is the binary equivalent of k. ◆

When the selector inputs have the combination s2s1s0 = 011, for example, the
outputs of all AND gates except the one to which data line D3 is connected will be
0. All other inputs to that AND gate besides D3 will be 1. Hence, D3 appears at the
output of the circuit. In this way, the select inputs whose binary combination cor-
responds to decimal 3 have selected data input D3 for transmittal to the output.

Standard MSI packages are available as multiplexers. Figure 14a shows the
circuit for a package containing two separate multiplexers for n = 2. Practical
considerations not included in Figure 13 account for some of the features of
this circuit. The enable input E, for example, is used to control the period of
time that the multiplexer is operative. Thus, when the value of E is 1, the out-
put will be 0 no matter what the values of the select inputs. The circuit will be
operative only when the corresponding enable input is 0. (In other circuits, the

Figure 13 Multiplexer with eight data inputs.

r

D0

D1

D2

D3

D4

D5

D6

D7

s0

s1

s2

0

7

144 Chapter 4 Combinational Logic Design

Short

Even

enable signal is not inverted; in such cases, the circuit is operative when E = 1,
just the opposite of the case shown in Figure 14a.)

In addition, note from the figure that both the selector signals and their
complements are inputs to AND gates. The signal inputs themselves are ob-
tained after two inversions. This is especially useful if n is large. In this way, the
circuit that produces the select inputs has as load only a single gate (the in-
verter) rather than several AND gates. In Figure 14a the select inputs are com-
mon to both multiplexers, but each has its own enable. In other designs, the
enable can also be common. A schematic diagram of a dual four-input multi-
plexer (MUX) with a single enable is shown in Figure 14b.

The preferred gate form for many IC logic packages (for example, the
74LS00 and the 74LS10) is the NAND gate. Since the multiplexer design in ei-
ther Figure 13 or 14 is a two-level AND-OR circuit, a direct replacement of all
AND and OR gates by NAND gates will maintain the logic function, as dis-
cussed in the preceding chapter. In this way, the actual implementation of the
multiplexer is carried out with NAND gates.

output 1

output 2

(a)

s1

s0

2D4

E2

E1

2D1

2D3

2D0

1D3

1D2

1D1

1D0

1D0

(b)

1D1
1D2
1D3

1Q

2Q

2D0
2D1
2D2
2D3

S0
S1

EN

Figure 14 (a) Dual four-input multiplexer with enable. (b) Dual four-input multiplexer with
single enable.

Multiplexers as General-Purpose Logic Circuits

It is clear from Figures 13 and 14 that the structure of a multiplexer is that of a
two-level AND-OR logic circuit, with each AND gate having n + 1 inputs, where
n is the number of select inputs. It appears that the multiplexer would constitute
a canonic sum-of-products implementation of a switching function if all the data
lines together represent just one switching variable (or its complement) and each
of the select inputs represents a switching variable.

Let’s work backward from a specified function of m switching variables for
which we have written a canonic sum-of-products expression. The size of multi-
plexer needed (number of select inputs) is not evident. Suppose we choose a mul-
tiplexer that has m − 1 select inputs, leaving only one other variable to
accommodate all the data inputs. We write an output function of these select in-
puts and the 2m–1 data inputs Di. Now we plan to assign m − 1 of these variables
to the select inputs; but how to make the assignment?4 There are really no re-
strictions, so it can be done arbitrarily.

The next step is to write the multiplexer output after replacing the select inputs
with m − 1 of the variables of the given function. By comparing the two expressions
term by term, the Di inputs can be determined in terms of the remaining variable.

EXAMPLE 1

A switching function to be implemented with a multiplexer is

f(x, y, z) = Σ(1, 2, 4, 7) = x'y'z + x'yz' + xy'z' + xyz

Since the function has three variables, the desired multiplexer will have 3 – 1 = 2 se-
lect inputs; half of the dual four-input MUX of Figure 14 will do. The expression for
the multiplexer output is

f = s1's0'D0 + s1's0D1 + s1s0'D2 + s1s0D3

There are no restrictions on how to assign the selector inputs to the variables of the
given function; let s1 = x and s0 = y arbitrarily. Then

f = x'y'D0 + x'yD1 + xy'D2 + xyD3

Comparing this with the original expression for the given function leads to

D0 = D3 = z

D1 = D2 = z'

The original function is thus implemented with a four-input multiplexer. ■

There are five other ways that the two select inputs could have been as-
signed to two of the three switching variables. No conditions need to be satis-
fied by the choice, so it is arbitrary. However, the specific outcome obtained for
the Di inputs depends on that initial choice.

Multiplexers 145

Short

Even 4For a set of m − 1 variables, there are m! ways of assigning m − 1 quantities to specific variables.

Exercise 7 In the problem of Example 1, choose s1 = z and s0 = x. Determine
the Di.
Answer5

Exercise 8 For practice, choose each of the remaining possible ways of assign-
ing select inputs to the switching variables, and then determine the required Di;
specify the external gates needed. ◆

To implement a switching function of m variables, we have seen that a mul-
tiplexer of m – 1 select inputs will work. It might be possible in some cases that
even a smaller multiplexer can be used. It should be expected that, when possi-
ble, this savings in MUX complexity must come at some other cost.

EXAMPLE 2

The function of four variables whose map is shown in Figure 15 is to be imple-
mented by a multiplexer. One with 4 – 1 = 3 select variables is always possible.
However, let’s explore the possibility of using a multiplexer with only two select
variables to implement this function.

Arbitrarily assign the two select inputs s1 and s0 to w and x. The expression
for the output of the multiplexer is the same one given in Example 1, since this
one has the same dimensions. For wx = s1s0 = 00, that expression reduces to D0.
But for the values wx = 00, the expression that covers the 1’s in the map is y'z'
+ y'z = y'. Hence, D0 = y'. Similarly, in the 01 column of the map, the expression
reduces to D1 and the map gives yz + yz' = y; hence, D1 = y. In the same way,
from the 11 column we find D3 = 0 and from the 10 column D2 = yz. (Confirm
these.) The rather simple circuit is shown in Figure 15b. We find that to imple-

146 Chapter 4 Combinational Logic Design

Short

Even5D0 = D3 = y, D1 = D2 = y' ◆

y

z
O

00

00 01 11 10

01
yz

wx

11

10

1 1

1

1

1
f

s1 = w s0 = x

… … … …

(b)(a)

Figure 15 Multiplexer implementation of f = Σ(0, 1, 6, 7, 11).

Decoders and Encoders 147

Short

Even

ment a certain specific function of four variables, a multiplexer of order lower
than 3 can be used, at the cost of an additional AND gate. (The inverter would
be necessary even with a higher-order multiplexer, so it does not count as ad-
ditional cost.) ■

Exercise 9 In the preceding example, suppose that s1 and s0 are identified
as y and z instead of w and x. Determine expressions for the data inputs in
terms of w and x, and specify the external hardware that will be needed be-
sides the multiplexer. Note the difference in complexity for the two choices
of select inputs.
Answer6

In the implementation of an arbitrary switching function, different choices
for the select inputs lead to different amounts of external hardware for a
smaller-than-normal multiplexer. Unfortunately, short of trying them, there is
no way to determine which choice will be most economical.

3 DECODERS AND ENCODERS

The previous section began by discussing an application: Given 2n data signals,
the problem is to select, under the control of n select inputs, sequences of these
2n data signals to send out serially on a communications link. The reverse op-
eration on the receiving end of the communications link is to receive data seri-
ally on a single line and to convey it to one of 2n output lines. This again is
controlled by a set of control inputs. It is this application that needs only one
input line; other applications may require more than one. We will now investi-
gate such a generalized circuit.

Conceivably, there might be a combinational circuit that accepts n in-
puts (not necessarily 1, but a small number) and causes data to be routed to
one of many, say up to 2n, outputs. Such circuits have the generic name de-
coder. Semantically, at least, if something is to be decoded, it must have pre-
viously been encoded, the reverse operation from decoding. Like a
multiplexer, an encoding circuit must accept data from a large number of
input lines and convert it to data on a smaller number of output lines (not
necessarily just one). This section will discuss a number of implementations
of decoders and encoders.

Demultiplexers

Refer back to the diagram in Figure 12. The demultiplexer shown there is a
single-input, multiple-output circuit. However, in addition to the data input,
there must be other inputs to control the transmission of the data to the ap-
propriate data output line at any given time. Such a demultiplexer circuit

6D0 = D1 = w'x', D2 = w'x, D3 = w ⊕ x; three AND gates and one XOR gate, in addition to a four-input
MUX. ◆

having eight output lines is shown in Figure 16a. It is instructive to compare
this demultiplexer circuit with the multiplexer circuit in Figure 13. For the
same number of control (select) inputs, there are the same number of AND
gates. But now each AND gate output is a circuit output. Rather than each
gate having its own separate data input, the single data line now forms one
of the inputs to each AND gate, the other AND inputs being control inputs.

When the word formed by the control inputs C2C1C0 is the binary equiva-
lent of decimal k, then the data input x is routed to output Dk. Viewed in an-
other way, for a demultiplexer with n control inputs, each AND gate output
corresponds to a minterm of n variables. For a given combination of control in-
puts, only one minterm can take on the value 1; the data input is routed to the
AND gate corresponding to this minterm. For example, the logical expression
for the output D3 is xC2'C1C0. Hence, when C2C1C0 = 011, then D3 = x and all
other Di are 0. The complete truth table for the eight-output demultiplexer is
shown in Figure 16b.

148 Chapter 4 Combinational Logic Design

Short

Even

(a)

D0

data input

D1

D2

D3

D4

D5

D6

D7

C0

C1

C2

x

0

1

2

3

4

5

6

7

Figure 16 A demultiplexer circuit (a) and its truth table (b).

Control Data
Inputs Outputs

C2 C1 C0 D0 D1 D2 D3 D4 D5 D6 D7

0 0 0 x 0 0 0 0 0 0 0
0 0 1 0 x 0 0 0 0 0 0
0 1 0 0 0 x 0 0 0 0 0
0 1 1 0 0 0 x 0 0 0 0
1 0 0 0 0 0 0 x 0 0 0
1 0 1 0 0 0 0 0 x 0 0
1 1 0 0 0 0 0 0 0 x 0
1 1 1 0 0 0 0 0 0 0 x

(b)

n-to-2n-Line Decoder

In the demultiplexer circuit in Figure 16, suppose the data input line is removed.
(Draw the circuit for yourself.) Each AND gate now has only n (in this case three)
inputs, and there are 2n (in this case eight) outputs. Since there isn’t a data input line
to control, what used to be control inputs no longer serve that function. Instead,
they are the data inputs to be decoded. This circuit is an example of what is called
an n-to-2n-line decoder. Each output represents a minterm. Output k is 1 whenever
the combination of the input variable values is the binary equivalent of decimal k.

Now suppose that the data input line from the demultiplexer in Figure 16 is
not removed but retained and viewed as an enable input. The decoder now op-
erates only when the enable x is 1. Viewed conversely, an n-to-2n-line decoder
with an enable input can also be used as a demultiplexer, where the enable be-
comes the serial data input and the data inputs of the decoder become the con-
trol inputs of the demultiplexer.7

Decoders of the type just described are available as integrated circuits
(MSI); n = 3 and n = 4 are quite common. There is no theoretical reason why n
can’t be increased to higher values. Since, however, there will always be practi-
cal limitations on the fan-in (the number of inputs that a physical gate can sup-
port), decoders of higher order are often designed using lower-order decoders
interconnected with a network of other gates.

An illustration is given in Figure 17 for the design of a 6-to-26-line decoder
constructed from two 3-to-23-line decoders. Each of the component decoders

Decoders and Encoders 149

Short

Even

7In practice, the physical implementation of the decoder with enable is carried out with NAND gates. In
that case, it is the complements of the outputs in the circuit under discussion that are obtained, and the
enable input is inverted before it is applied to the NAND gates. These are practical details that do not
change the principles described here.

…
…

…
A2

A0

A0′A1′A2

array of 64 AND gates

A0 A1′A2

A0′A1′A2B0B1B2′

A0 A1′A2B0B1B2′

B0 B1 B2′

D0
D1

D14

D46

A1

B2B0 B1

D63

decoder B
3 × 23

0 1 2 3 4 5 6 7

0

de
co

de
r

A
3

×
23

1
2
3
4
5
6
7

Figure 17 Design of a 6-to-26-line decoder from two 3-to-23-line decoders
with an interconnection matrix of 64 AND gates.

has eight outputs. Each of the outputs from the A decoder must be ANDed with
each of the outputs from the B decoder to yield one of the 64 outputs from the
complete decoder. Thus, in addition to the 8 three-input AND gates in each
component decoder, there are 64 two-input AND gates in the interconnection
network. Only two of these are shown explicitly in Figure 17.

Exercise 10 A 6-to-26-line decoder is to be designed using the structure of
Figure 16. Specify the number of AND gates and the total number of input lines
to all gates. Compare this with the design in Figure 17. ◆

Tree Decoder

When higher-order decoders are designed in a hierarchy of several stages of
lower-order ones, a practical difficulty with fan-out (number of gates driven
by one terminal) results. (By a hierarchy of stages we mean, for example, two
3 ×8 stages to form a 6 ×64 decoder, as in Figure 17; then two 6 ×64 stages to
form a 12 ×212 decoder; and so on.) Even in Figure 17, each gate in the com-
ponent decoders drives eight other gates. In the next level of the hierarchy,
each of the outputs from the gates in the next-to-last level will have to drive
64 other gates.

This problem is overcome, but only partially, by the decoder design illus-
trated in Figure 18, called a tree decoder. The first stage is a 2-to-4-line decoder.
A new variable is introduced in each successive stage; it or its inverse becomes
one input to each of the two-input AND gates in this stage. The second input to
each AND gate comes from the preceding stage. For example, one of the outputs
of the second stage will be AB'C. This will result in two outputs from the next
stage, AB'CD and AB'CD'. This design does avoid the fan-out problem in the
early stages but not in the later stages. Nevertheless, the problem exists only for
the variables introduced in those stages. Any remedies required will have to be
used for relatively few variables, as opposed to the large number needed by the
design of Figure 17.

Decoders as General-Purpose Logic Circuits: Code Conversion

Since each output from an n-to-2n-line decoder is a canonic product of literals,
simply ORing all the outputs produces a canonic sum of products. And since
every switching function can be expressed as a canonic sum of products, it fol-

150 Chapter 4 Combinational Logic Design

Short

Even

Figure 18 Design of tree decoder.

A

B

C

D

E

.

. . .

2×4
4

two-input
AND
gates

3×8
8

two-input
AND
gates

4×16
16

two-input
AND
gates

5×32
32

two-input
AND
gates

Decoders and Encoders 151

Short

Even

lows that every switching function can be implemented by an n-to-2n-line de-
coder followed by an OR gate. (If 2n exceeds the fan-in limitation of the OR
gate, additional levels of OR gates will be needed.) Indeed, if more than one
function of the same variables is to be implemented, the same decoder can be
used, with each function having its own set of OR gates.

One major class of logic circuits is known as a code converter. This is a cir-
cuit that accepts as inputs the digits of a word that expresses some information
in a particular code and that yields as outputs the digits of a word in a different
code. (See Chapter 1 for an introduction to codes.) We will illustrate the use of
a decoder as a code converter by designing a circuit to convert from excess-3
code to seven-segment code. (These codes were given in Figure 4 and Exercise
12 in Chapter 1; they are repeated here in Figure 19.)

Assume that a 4-to-16-line decoder is available. Since there are only 10
valid excess-3 code words, only 10 of the 16 AND gate outputs ever become 1.
So only those 10 outputs from a 4-to-16-line decoder will be used. They are in-
dicated in Figure 19 by their decimal equivalents.

Figure 19 is the truth table for each of seven output functions (the Si) in
terms of the four input variables. The circuit external to the decoder will consist
of seven OR gates, one for each segment. Only one decision needs to be made:
Which outputs from the decoder should become inputs to each OR gate? This is
answered for each segment by listing the minterm numbers corresponding to
each code word for which that segment output has the value 1. The minterm lists
for the outputs corresponding to some of the segments are as follows:

S3 = Σ(3, 5, 6, 8, 10, 11, 12)

S4 = Σ(3, 4, 5, 6, 7, 10, 11, 12) (8)

S5 = Σ(3, 4, 6, 7, 8, 9, 10, 11, 12)

S6 = Σ(3, 5, 6, 8, 9, 11)

Only one of the OR gates (the one for S6) is shown in Figure 20; there should
be six others. Then, when an excess-3 code word corresponding to a decimal

Figure 19 Excess-3 to seven-segment code conversion.

Inputs: Outputs:
Excess-3 Seven-Segment

Decimal
Digit w x y z S1 S2 S3 S4 S5 S6 S7

0 0 0 1 1 1 1 1 1 1 1 0
1 0 1 0 0 0 0 0 1 1 0 0
2 0 1 0 1 1 0 1 1 0 1 1
3 0 1 1 0 0 0 1 1 1 1 1
4 0 1 1 1 0 1 0 1 1 0 1
5 1 0 0 0 0 1 1 0 1 1 1
6 1 0 0 1 1 1 0 0 1 1 1
7 1 0 1 0 0 0 1 1 1 0 0
8 1 0 1 1 1 1 1 1 1 1 1
9 1 1 0 0 0 1 1 1 1 0 1

digit appears at the input, the appropriate segments will light up, displaying
the digit.

Exercise 11 Write the minterm lists for the three segments whose minterm
lists were not given in (8). Confirm the inputs to the OR gate in Figure 20. ◆

4 READ-ONLY MEMORY (ROM)

A circuit for implementing one or more switching functions of several variables
was described in the preceding section and illustrated in Figure 20. The compo-
nents of the circuit are

• An n × 2n decoder, with n input lines and 2n output lines
• One or more OR gates, whose outputs are the circuit outputs
• An interconnection network between decoder outputs and OR gate inputs

The decoder is an MSI circuit, consisting of 2n n-input AND gates, that produces
all the minterms of n variables. It achieves some economy of implementation, be-
cause the same decoder can be used for any application involving the same number
of variables. What is special to any application is the number of OR gates and the
specific outputs of the decoder that become inputs to those OR gates.Whatever else
can be done to result in a general-purpose circuit would be most welcome.

The most general-purpose approach is to include the maximum number of
OR gates, with provision to interconnect all 2n outputs of the decoder with the
inputs to every one of the OR gates. Then, for any given application, two things
would have to be done:

• The number of OR gates used would be fewer than the maximum number,
the others remaining unused.

• Not every decoder output would be connected to all OR gate inputs.

This scheme would be terribly wasteful and doesn’t sound like a good idea.
Instead, suppose a smaller number, m, is selected for the number of OR

gates to be included, and an interconnection network is set up to interconnect

152 Chapter 4 Combinational Logic Design

Short

Even

Figure 20 Excess-3 to seven-segment code converter.

y

w
x

z

0
1
2
3
4
5
6
7
8
9

2

1

4

5

7

3

6

4
×

10
de

co
de

r

the 2n decoder outputs to the m OR gate inputs. Such a structure is illustrated
in Figure 21. It is an LSI combinational circuit with n inputs and m outputs that,
for reasons that will become clear shortly, is called a read-only memory (ROM).
A ROM consists of two parts:

• An n × 2n decoder
• A 2n × m array of switching devices that form interconnections between the

2n lines from the decoder and the m output lines

The 2n output lines from the decoder are called the word lines. Each of the 2n

combinations that constitute the inputs to the interconnection array corresponds to a
minterm and specifies an address. The memory consists of those connections that are
actually made in the connection matrix between the word lines and the output lines.

Once made, the connections in the memory array are permanent.8 So this mem-
ory is not one whose contents can be changed readily from time to time; we “write”
into this memory but once. However, it is possible to “read” the information already
stored (the connections actually made) as often as desired, by applying input words
and observing the output words. That’s why the circuit is called read-only memory.9

Before you continue reading, think of two possible ways in which to fabri-
cate a ROM so that one set of connections can be made and another set left un-
connected. Continue reading after you have thought about it.

The one-time “writing” into memory can be done as follows:

• A ROM can be almost completely fabricated except that none of the con-
nections are made. Such a ROM is said to be blank. Forming the connections
for a particular application is called programming the ROM. In the process
of programming the ROM, a mask is produced to cover those connections
that are not to be made. For this reason, the blank form of the ROM is called
mask programmable.10

Read-Only Memory (ROM) 153

Short

Even

8In certain designs, it is possible for the connections to be erasable; this will be described shortly.
9Although “memory” appears in its name, a ROM does not have memory in the usual sense. As will be
described in Chapters 5 and 6, memory is a characteristic of sequential, but not combinational, circuits.
10The mask, requiring minute attention, is expensive to produce. Hence, mask-programmable ROMs are
used only when the cost is justified by very large production runs.

Figure 21 Basic structure of a ROM.

x1
x2
x3

z1
z2
z3

xn zm
2n

n inputs m output
n × 2n

decoder

1

2n × m
interconnection

array

2n × m. . .

. . .

. . .mi

154 Chapter 4 Combinational Logic Design

Short

Even

• A ROM can be completely fabricated such that all potential connections
have been made. Such a ROM is also said to be blank. Programming the
ROM for a specific application in this case consists of opening those connec-
tions that are unwanted. In this case, the blank ROM is said to be field pro-
grammable (designated PROM). The connections are made by placing a fuse
or link at every connection point. In any specific application, the unwanted
connections are opened or “blown out” by passing pulses of current through
them. A measure of PROM cost is the number of fusible links, 2n × m.11

Once a ROM has been programmed, an input word x1x2 ... xn activates a spe-
cific word line corresponding to the minterm formed by the specific values of
the xi. The connections in the output matrix result in the desired output word.

EXAMPLE 3

Figure 22a gives the truth table for the interconnection matrix of a 22 × 3 ROM. The
truth table leads to the ROM program represented by the solid dots at the inter-
sections of the input and output word lines in Figure 22b. Each input word defines
an output word, as required by the truth table. If the input word is 01 (correspond-
ing to minterm m1), for example, only output line z2 will be activated because that
is the only connection with m1 in the connection matrix. Hence, the output word will
be 010, as confirmed also from the truth table. (Confirm from the truth table that
the rest of the program is correct.) ■

Exercise 12 A ROM is to be programmed to implement the conversion from
excess-3 to seven-segment code whose table was given in Figure 19. ROMs
come in standard sizes, and m = 7 is not one of them. The next larger standard
size is m = 8. Hence, the truth table will have six more rows and one more col-
umn than shown in Figure 19. (Specify what the entries in the truth table will
be for these extra rows and column.) Draw the appropriate number of crossing
lines for the input and output words. Using the truth table, program the ROM
by putting dots at the appropriate intersections of the two words. ◆

11Some PROMs are fabricated so that it is possible to restore them to their blank condition after they
have been programmed for a specific application; these are erasable PROMs, or EPROMs. They have
some clear advantages over the nonerasable kind, but their cost is correspondingly higher.

Figure 22 A ROM truth table and its program.

(a) (b)

x1 x2 z1 z2 z3

0 0 1 0 1
0 1 0 1 0
1 0 1 1 1
1 1 0 0 1

m0
m1
m2
m3

z1 z2 z3

Other LSI Programmable Logic Devices 155

Short

Even

In Exercise 12 the number of entries in the truth table (which corresponds to
the number of links between the input and output words) is 2n × m = 16 × 8 = 128.
Of these, fully half represent don’t-cares. There are cases far worse than this;
sometimes as few as 1 percent of the links are used, resulting in considerable
“waste” in such ROM implementations. Another implementation that avoids this
waste would be most welcome. That’s the subject of the next section.

5 OTHER LSI PROGRAMMABLE LOGIC DEVICES

One way of looking at the ROM discussed in the previous section is as a device
with a specific structure (a set of AND gates and a set of OR gates) that a de-
signer can use to achieve desired outputs by making a few modifications. We
might say that the ROM has been “programmed” to produce its specific out-
puts. There are other structures that have this property, namely, programmabil-
ity. A generic name for them is programmable (or programmed) logic device
(PLD).

The ROM implements logic functions as sums of minterms. For n input
variables there are 2n minterms and, hence, 2n AND gates, each one with n in-
puts. As just discussed, in a number of important logic functions, many of the
AND gates and the links connecting them to the output OR gates are unused.
We will now discuss two implementations in which some of this “waste” is
avoided.

Programmed Logic Array (PLA)

The canonic sum-of-products implementation of a logic function is wasteful in
two ways: in the number of AND gates used (as many as there are minterms, 2n)
and in the number of inputs to each AND gate (n). Suppose we contemplate a
reduced (possibly minimal) sum-of-products implementation. Given a logic
function of n variables, the largest number of terms in a minimal sum-of-prod-
ucts expression representing this function is 2n–1—just half the number of
minterms. (See Problem 36 in Chapter 3.) That means a savings of 50 percent in
AND gates for the worst single-output case. Since there will be a reduced set of
inputs to the AND gates, this saving in gates is paid for by the need to program
not only the outputs of the AND gates but their inputs as well. The structure of
the circuit that results is called a programmable (or programmed) logic array
(PLA). It is illustrated in Figure 23 for the case n = 3 input variables, m = 4 out-
put functions, and four AND gates.

The diagram in Figure 23 is not a circuit diagram but a schematic diagram.
A single line is shown to represent all inputs to each AND and OR gate. The
number of input lines to each AND gate should be 2n, twice the number of in-
puts, to accommodate the possibility of connecting each variable or its comple-
ment to each AND gate. The number of input lines to each OR gate should
equal the number of AND gates, say p. (For simplicity and without fear of con-
fusion, even the gate symbols can be omitted.) The programmed connections
between the inputs and the AND gates, and between the AND-gate outputs and
the OR gates for a specific set of output functions are shown by the heavy dots
at the intersections.

156 Chapter 4 Combinational Logic Design

Short

Even

Maps of the four output functions and minimal sum-of-products expres-
sions are shown in Figure 24. In this example, a total of only four product terms
covers all functions, so only four AND gates are needed in the implementation.
Two sets of lines must be programmed: the input lines and the output lines. To
do this, we construct a programming table as follows:

• The implicants (product terms) are listed as row headings.
• In one set of columns, the headings are the input variables; this part of the

table must provide the information that tells which variables (or their com-
plements) are factors in each implicant.

• In a second set of columns, the headings are the output functions; this part of
the table must provide the information that indicates the output gate to
which each implicant (AND-gate output) is directed.

In the first set of columns, if a variable (uncomplemented) is present in a
particular row, the corresponding entry is 1; if its complement is present, the
entry is 0. If neither is present, the entry can be left blank, but it is preferable
to show some symbol instead; a dash is often used.

In the second set of columns, corresponding to the output functions, if a
particular function covers a particular implicant, then the corresponding entry
is 1; otherwise it could be left blank, but it is customary to enter a dot. To illus-
trate, consider row 4. Since the implicant is y'z, the entry in column z is 1, that
in column y is 0, and that in x is a dash. In the output columns, only f1 does not
cover implicant y'z; hence, the entry will be 1 in every column in row 4 except
the f1 column, where the entry is •. Confirm the remaining rows.

Once the programming is done, fabricating the links (connection points) in
a PLA is carried out in a similar manner as for the ROM. The PLA is either
mask programmable or field programmable (FPLA). In the case of the FPLA,
with p = the number of AND gates, there will be 2np links at the inputs and mp

Figure 23 Structure of a PLA.

A′C′

AB′

A f1 f2 f3 f4B C

AC

B′C

links at the outputs. For the example in Figure 23, the number of links is 4(6 +
4) = 40. Only 16 of these are to be kept, meaning that, during field program-
ming, 24 links are to be blown out. Typical PLAs have many more inputs, out-
puts, and AND gates than are shown in the example in Figure 23. (IC type
82S100, for example, has n = 16, m = 8, and p = 48.)

When a set of switching functions is presented for implementation with a PLA,
a design goal would be reduction in p (the number of AND gates). The economy
achieved is not derived from a reduction in the production cost of gates. (The pro-
duction cost of an IC is practically the same for one with 40 gates as it is for one
with 50 gates.) Rather, the removal of one AND gate eliminates 2n + m links; the
main source of savings is the elimination of a substantial number of links due to the
elimination of each AND gate. On the other hand, reduction of the number of
AND gates to a minimum does not mean that each function should be minimized
or that all implicants should be prime implicants. The implicants should be chosen
so that as many as possible of them are common to many of the output functions.

Programmed Array Logic (PAL)

A ROM has a large number of fusible links (m × 2n) because of the large num-
ber (2n) of AND gates. Programming of links is performed only on the outputs
from the AND gates. In a PLA, the number of links is drastically reduced by re-
ducing the number of AND gates. The latter is done by changing the expression
representing the switching function from a canonic sum-of-products form to a
sum of products with fewer terms. The price paid is the need to program not only
the outputs from the AND gates, but also the inputs to the AND gates. What
other possibility for programming is there beyond the two cases of (a) pro-
gramming the outputs of the AND gates and (b) programming both the inputs

Other LSI Programmable Logic Devices 157

Short

Even

Figure 24 Programming the PLA.

Inputs Outputs
Product

Term x y z f1 f2 f3 f4

1: x'z' 0 – 0 1 • 1 •
2: xy' 1 0 – • • • 1
3: xz 1 – 1 1 1 • •
4: y'z – 0 1 • 1 1 1

f1 = x'z' + xz
f2 = xz + y'z
f3 = x'z' + y'z
f4 = xy' + y'z

f1

1

1

1

1

00

01

11

10

0 1

yz

x

f2

1 1

1

00

01

11

10

0 1

yz

x

f3

1

1 1

1

00

01

11

10

0 1

yz

x

f4

1

1 1

00

01

11

10

0 1

yz

x

and the outputs? We’re sure you answered, “programming only the inputs.” This
is a possibility, but is it worthwhile?

In the case of the ROM, there is no need to program the inputs because, for
any function of n variables, there will be the same (large) number of AND
gates. In the same way, if the number of OR gates at the output could be fixed,
then programming the outputs of the AND gates could be avoided.

In many circuits with multiple outputs, even though the outputs are func-
tions of a large number of input variables, the number of product terms in each
output is small. Hence the number of AND gates that drive each OR gate is
small. In such cases, permanently fixing the number of OR gates and leaving
only the programming of the AND gate inputs for individual design might
make economic sense. The resulting circuit is called programmed array logic
(PAL).12 The number of fusible links in a PAL is only 2np. Standard PALs for
a number of low values of p exist. For example, the PAL16L8 has a maximum
of 16 inputs and 8 outputs.

A programming table for a PAL is similar to the one for a PLA. A case with
six outputs is illustrated in Figure 25. A ROM with 12 input variables would re-
quire 212 = 4096 AND gates. However, let’s assume that for some possible cases,
the canonic sum-of-products expression can be reduced to 16 implicants, only
one of which is shown in Figure 25. The entries in the table would have the same
meanings as those for the PLA. However, for the PAL, the output columns
would be fixed by the manufacturer on the basis of the number of AND gates
already connected to each OR gate.

In the present case, two of the output OR gates are each driven by four AND
gates; the remaining four OR gates are each driven by two AND gates. For any

158 Chapter 4 Combinational Logic Design

Short

Even12PAL is a registered trademark of Advanced Micro Devices.

Product Term Inputs Outputs

Number Function 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6

1 • • • • • 1
2 • • • • • 1
3 • • • • • 1
4 • • • • • 1
5 • • • • 1 •
6 • • • • 1 •
7 x1x2'x5x7x11'x12 1 0 – – 1 – 1 – – – 0 1 • • • 1 • •
8 • • • 1 • •
9 • • 1 • • •

10 • • 1 • • •
11 • 1 • • • •
12 • 1 • • • •
13 1 • • • • •
14 1 • • • • •
15 1 • • • • •
16 1 • • • • •

Figure 25 Programming table for a PAL example.

given design problem, the first step is to obtain an appropriate sum-of-products
expression, just as in the case of a PLA implementation. The input connections are
indicated in the table as in the case of the PAL: an entry is a 1 if a variable appears
uncomplemented in an implicant, a 0 if it appears complemented, and a dash if it
does not appear at all. This is illustrated for one row in Figure 25. The number of
fusible links in this example is 2 × 12 × 16 = 384. This is 20 percent fewer than the
number of links of a PLA having the same dimensions. Typically, however, PLAs
have many more AND gates and so, for a PAL, the number of links would typi-
cally be many times more than the number for a comparable PLA.

Exercise 13 Suppose two of the rows of inputs in Figure 25 are as follows:

0 1 0 – 0 – – 1 – – – –

1 0 1 – – 0 – – 1 1 – –

What are the corresponding product terms? ◆

Further attention will be devoted to PLDs in Chapter 8. Attention will also be
given there to the use of hardware description languages in designs using PLDs.

CHAPTER SUMMARY AND REVIEW

In Chapter 3, designs were carried out with primitive gates in SSI circuits. This
chapter advanced the design process to more complex circuits implemented in
MSI units. The topics included were

• Binary adder
• Full adder
• Ripple-carry adder
• Carry-lookahead adder
• Binary subtractor
• Two’s complement adder and subtractor
• One’s complement adder and subtractor
• Multiplexer
• Data input
• Select input
• Implementation of general-purpose logic circuits with multiplexers
• Demultiplexer
• Data input lines
• Control input lines
• Decoder
• n × 2n-line decoder
• Tree decoder
• Implementation of general-purpose logic circuits with decoders
• Code conversion
• Read-only memory (ROM)
• n × 2n decoder
• 2n × m interconnection array
• Programming a ROM

Chapter Summary and Review 159

Short

Even

• Mask-programmable ROM
• Field-programmable ROM
• Programmable logic device (PLD)
• Programmed logic array (PLA)
• Programmed array logic (PAL)

PROBLEMS

1 a. Analyze each of the full adder circuits shown in Figure P1 and write expressions for
the output of each intermediate gate.

b. Obtain logic expressions for the sum and carry circuit outputs.
c. Verify that these expressions are equivalent to the sum and carry functions in

equations (1) in the text.

2 a. A 4-bit carry-lookahead adder is to be designed. In equation (7) in the text for the
carry function, let i = 0 and let j range from 0 to 4. Write the resulting expressions for
C1, C2, C3, and C4.

b. Construct the logic diagram for the 4-bit carry-lookahead whose schematic diagram
is given in Figure 8.

3 A 4-bit binary number Y = y3y2y1y0 is to be multiplied by a 3-bit binary number X = x2x1x0.
Use two 4-bit adders and other gates that you might need to implement this operation, and
draw the corresponding diagram.
4 Prove formally that if the propagate variable Pi for a carry-lookahead adder is defined
as Ai + Bi instead of Ai ⊕ Bi, the sum and carry outputs of the adder will still be computed
correctly. (Give an informal proof also.) Which definition is better for implementation
purposes?
5 Design a circuit for overflow detection in the one’s complement adder/subtractor shown in
Figure 11.
6 a. Show the connections on a schematic diagram of a dual four-input multiplexer for im-

plementing the sum and carry functions of a full adder.
b. Repeat using a 3-to-23-line decoder.

7 Realize each of the following functions using an 8 × 1 multiplexer.

a. f = Σ(0, 1, 10, 11, 12, 13, 14, 15)
b. f = Σ(0, 3, 4, 7, 10)
c. f = Σ(0, 3, 4, 6, 7, 8, 12)
d. f = Σ(1, 2, 5, 8, 11, 12, 14)

8 Realize each of the functions in Problem 7 using half of a dual 4 × 1 multiplexer and the
minimum number of external gates.
9 Repeat Problem 7 using a 3-to-23-line decoder.
10 Use a dual four-input multiplexer to implement each of the following pairs of functions
with the fewest external gates.

a. f1 = Σ(0, 4, 5, 7, 9, 11), f2 = Σ(2, 3, 5, 6, 10, 13)
b. f1 = Σ(0, 4, 7, 10, 12, 14, 15), f2 = Σ(2, 7, 8, 9, 12, 13, 14, 15)

11 a. Show how to connect a 4-bit MSI adder to serve as a BCD-to-excess-3 code converter.
b. Repeat using a 4-to-10-line (BCD-to-decimal) decoder and four AND gates.

12 Design a BCD-to-decimal decoder using two 2-to-4-line decoders and a minimum of in-
terconnecting AND gates.

160 Chapter 4 Combinational Logic Design

Short

Even

Problems 161

Short

Even

Figure P1

yi

xi

Ci Si

Ci+1

yi

xi

Ci

Si

Ci+1

Ci

yi

xi

Si

Ci+1

(d)

Ci

yi

xi Si

Ci+1

13 A circuit is to accept two 2-bit binary numbers x1x0 and y1y0 and emit the product as a 4-bit
binary number z3z2z1z0. (Review binary multiplication in Chapter 1 if you need to.)

a. The result is to be achieved by a (possibly) multilevel circuit with two-input gates.
Determine appropriate expressions for each output. How many levels of gates does
each output have?

b. Design a circuit using a 4-to-24-line decoder with external OR gates.

14 Examine late editions of manufacturers’ data books.

a. What is n for the largest n-to-2n-line decoders?
b. Note what the standard sizes of ROMs are.
c. What are some representative dimensions of a PLA chip?
d. What are some representative dimensions of a PAL?
e. Is there a BCD adder in a single MSI package?

(a)

(b)
(c)

15 A switching function of n variables is to be implemented by an n-to-2n-line decoder fol-
lowed by an external OR gate. The physical gate available for this purpose has both an OR
and a NOR output. (It is an ECL gate.) For practical reasons (to avoid fan-in problems), it
would be best to try to reduce the number of inputs to an external gate.

a. Describe how to implement the function using the available physical gate if the num-
ber of minterms contained in the function is more than 2n–1 = 2n/2.

b. Illustrate with the following function:

f = Σ(0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 13, 14, 15)

16 a. Design a BCD-to-decimal decoder using the minimal number of two-input AND gates.
b. Repeat, using two 2-to-4-line decoders and a few interconnecting AND gates.

17 a. Use two identical n-to-2n-line decoders with enable inputs to construct an (n +1)-to-
2n-line decoder without enable. Show how the outputs are obtained.

b. Illustrate with two 2-to-4-line decoders.

18 Design an octal to binary encoder. This is a circuit with 8 inputs, xi, and 3 outputs, zi. Only
one of the outputs is 1 at any one time. Octal digit k is represented by xk = 1.
19 A decimal-digit code converter from 2-out-of-5 to seven-segment code is to be designed.
A number of different possibilities are to be explored, assuming that only valid code words
will occur as inputs.

a. Draw a circuit diagram using a complete 5 × 25 decoder design.
b. Assuming a design using discrete gates:

i. Draw a circuit for a sum-of-minterms design. (This would constitute a partial decoder.)
ii. The AND gates in the preceding design are five-input gates. Is it possible to use

the same structure but with two-input gates? Justify your answer.
iii. Carry out a minimal sum-of-products design that uses 11 AND gates and 7 OR

gates, each with no more than three inputs.
iv. Consider a minimal product-of-sums design. Is this more economical than the

minimal sum-of-products design?
v. Now suppose that, in addition to valid code words, invalid ones can also occur.

Modify the best of the preceding designs so that, whenever there is an invalid
code word, the symbol E (for error) is displayed.

20 The code converter in Problem 19 is to be designed with a ROM. The closest-size ROM
available is a 25 × 8. Construct the required programming table. Specify the number of links.
21 The code converter in Problem 19 is to be implemented with a PLA. A 5 × 8 PLA with 12
AND gates is available. Draw a programming diagram for implementing the desired code
converter. Specify the number of links.
22 a. Suppose the circuit in Problem 13 is to be implemented with a 24 × 4 PROM. Show

the programming table and draw an appropriate diagram.
b. Suppose instead that the circuit is to be implemented by a 4 × 4 PLA with 10 AND

gates. Show the programming diagram (in the form of Figure 23 in the text). Compare
the number of links with those of the PROM implementation. Construct the pro-
gramming table in the form of Figure 25 in the text.

c. Now suppose that the circuit is to be implemented by a PAL. Construct the pro-
gramming table in the form of Figure 25 in the text.

23 A combinational circuit having three inputs and six outputs is to be designed. The output
word is to be the square of the input word.

a. Design the circuit using a ROM that has the smallest possible dimensions. Construct
the truth table and specify the number of links.

162 Chapter 4 Combinational Logic Design

Short

Even

Problems 163

Short

Even

b. Design the circuit using a PLA with the fewest number of product terms. Construct
the programming diagram and specify the number of links.

24 The programming diagrams for two PLAs are shown in Figure P24.

a. Write the equations of the outputs realized by each PLA. Specify the number of links.
b. The same functions are to be implemented with a ROM. Specify the dimensions of

the ROM and the number of links. Set up its programming table.
c. The same functions are to be implemented with a PAL. Is it possible to do so? If so,

set up the programming table and specify the number of links. If it is not possible, ex-
plain why not.

A

1

2

3

4

5

6

7

8

B C D E f1 f2 f3 f4

(a)

A

1

2

3

4

5

6

7

8

9

10

B C D E f1 f2 f3 f4

(b)

F

Figure P24

164 Chapter 4 Combinational Logic Design

Short

Even

R' W' M/I'O'

0 1 1 µp wants to read memory
1 0 1 µp wants to write to memory
0 1 0 µp wants to read an input/output device
1 0 0 µp wants to write to an input/output device
1 1 × µp wants none of the preceding operations

B

control C

when: C=0: pass
when: C=1: bit-by-bit

 complement
binary adder

sum

argument 2

argument 1
A

Figure P26

25 (Review Chapter 1 on Hamming codes if you need to.) Using an n-to-2n-line decoder (for
an appropriate n) and any additional logic:

a. Design the error-correcting logic for a single-error-correcting Hamming code assum-
ing 3 message bits in each code word. The outputs of the circuit shoud be

• E, indicating that an error has been detected
• IV, indicating that the MSG output is invalid (obviously, IV is 0 when no error, or

only a single error, has occurred)
• MSG, a 3-bit output that contains the corrected transmitted message in the cases of

zero and one error

b. Design the single-error-correcting and double-error-detecting (SEC-DED) logic for
an error-correcting Hamming code extended by the addition of a parity bit over all
(that is, message and parity) positions. Assume 3 message bits in each code word. The
output signals and their meanings are to be the same as in part a.

26 Explain in words the behavior of the diagram in Figure P26. (The open-headed arrows
represent multiple-bit inputs and outputs.)

27 A microprocessor (µp) outputs three control signals that have the meanings given in the
following table. (No knowledge of µp is necessary to solve this problem.)

a. Design a logic circuit using a suitable multiplexer and minimal additional logic to trans-
form these three signals into the following four signals, each representing an operation:

(M R)', (M W)', (IO R)', (IO W)'

When any of the operations is desired (not desired), the value of the corresponding
signal is to be 0 (1).

b. Design a multiplexer implementation to perform the inverse transformation.

28 The 4-bit lookahead unit shown in Figure P28a receives generate and propagate variables
from units 0 through 3 comprising a similar group. It also receives C, the carry input to unit

C0

4-bit
lookahead
subtractor

G

P

C4

A D

B

Problems 165

Short

Even

0 of the group. It computes C0, C1, and C2, which are the carry outputs from units 0, 1, and 2,
respectively. It also computes the generate and propagate variables, G and P, for the whole
group. The carry outputs are generated in parallel, not in ripple fashion.

C

4-bit
lookahead

unit

G1
P1

G0
P0

G

P

C0

C1

C2

G2
P2

C

4-bit
adder

(a) (b)

A
S

G

P

C4

B

G3
P3

Figure P28

a. Derive equations for all the outputs, and show the implementation.
b. Using 4-bit lookahead units of the above type and 4-bit adders of the type shown in

Figure P28b, draw the logic diagram for a 48-bit adder using a single-level lookahead.
(The open arrows represent multiple-bit inputs and outputs—in this case, 4 bits. A,
for example, stands for a vector of 4 bits: A0, A1, A2, A3.)

c. Repeat part b using two levels of lookahead, in which the G and P outputs of the
first-level lookahead units feed the Gi and Pi inputs of the second-level lookahead
units. Compare with respect to speed with the design of part b.

29 This problem concerns the design of a 4-bit lookahead subtractor (Figure P29).The 4-bit vec-
tor B (B3B2B1B0) is to be subtracted from 4-bit vector A. The borrow input C0 is 1 if and only if
the next lower unit is borrowing a 1 from this unit. The 4-bit vector D is the difference output,
and C4 is the borrow output. G and P are generate and propagate variables from the whole unit.

Figure P29

a. Give an expression for each output and show the implementation.
b. As in Problem 28, there will be more than one way to define the propagate variable.

Give these definitions and compare the differences in their implementation.
c. Suppose that multiple-bit subtraction is to be carried out. For this purpose, can 4-bit

lookahead units, of the type described in Problem 28 in the context of addition, be
used with 4-bit lookahead subtractors of the type defined here? Justify your answer.

d. Using 4-bit subtractors of the type described in this problem, and also suitable 4-bit
lookahead units, design a 24-bit lookahead subtractor.

166 Chapter 4 Combinational Logic Design

Short

EvenFigure P31

BI

a b c d e f g

I3–I0

BCD-to-seven-segment
decoder

BO f

e

b

c

g

a

d

(a)

(b)

30 An 8-input priority encoder (Figure P30) has eight request inputs: I(7. . . 0).A logic 1 on any
of these lines denotes the presence of a request from the corresponding source for some ser-
vice. The priority varies from the highest for 7 to the lowest for 0. Output LR (Local Request)
is 1 if and only if there is at least one request among the eight I inputs. If EI (Enable Input) is
1, the encoder identifies the request having the highest priority and outputs its 3-bit address on
A(0…2). If no request is active, it outputs a zero address. If the encoder is not enabled (EI = 0),
it outputs zeros on A. EO (Enable Output) is 1 if and only if the encoder is enabled (EI = 1) and
there is no request among the eight I inputs.

Figure P30

EI

priority
encoder

A(7...0)
I(7...0)

LR

EO

a. Derive expressions for each output and simplify.
b. Design a 48-input priority encoder using 8-bit priority encoders of the type described

in this problem and minimal additional logic. Use a ripple configuration.
c. Considering the enable signals, EI and EO, as the equivalent of carry signals, derive ex-

pressions for the generate and propagate variables for the eight-input priority encoder.
As in Problem 29, give two expressions for the propagate variable and pick the “better”
one. Does it require extra logic to compute the generate and propogate variables, or are
they available from the outputs of the eight-input priority encoder described here?

d. Using suitable 4-bit lookahead units, design a lookahead implementation for a 48-
input priority encoder and compare its speed with the design in part b.

e. Suppose that the eight-input priority encoder has disable signals, DI and DO, instead
of enable signals EI and EO. Repeat parts c and d considering the disable signals as
the equivalent of carry signals.

31 A BCD-to-seven-segment decoder has “blank” signals, BI and BO, to help suppress lead-
ing 0’s in integer displays and trailing 0’s in fraction displays. When BI is 1, if the input digit
is 0, all outputs should be 0; that is, the digit will be blanked. When BI is 0, there is no blank-
ing, but then BO is a blank signal to the next digit. A diagram is shown in Figure P31a.

Problems 167

Short

Even

a. Give expressions for the outputs BO, a, and f.
b. Design an 8-bit display with four digits each for the integer and fractional parts. The

least significant integer digit should never be blanked, even if the integer part of the
number is 0.

c. Considering sluggish human response times, the ripple implementation in part b
should be adequate. However for pedagogical purposes, suppose you wanted to de-
sign a lookahead implementation of the display, so that each digit would settle into
the blanked or unblanked state faster. Treating BI and BO as carry signals, give ex-
pressions for the generate and propagate variables for this decoder.

d. Suppose that, instead of the BI and BO pins, the decoder has DBI (“don’t blank
input”) and DBO (“don’t blank output”) pins. Treat these as the carry signals this
time, and repeat part c.

32 Prove formally that if the propagate variable Pi for a lookahead adder is defined as the
Boolean sum of Ai and Bi instead of their Exclusive-OR, the sum and carry outputs of the
adder will still be computed correctly. Give an informal proof also. Which definition is better
for implementation purposes?
33 A 4-bit data selector has four data inputs, D3…D0, and two select inputs, s1s0. The output
z is one of the data inputs as selected by the select inputs. Thus, z = D2 when s1s0 = 10.

a. Draw an AND-OR diagram of the data selector.
b. Another circuit consists of two XOR gates. The inputs to XOR1 are two signals A

and B. The inputs to XOR2 are the output of XOR1 and a third signal C. Draw this
circuit and write its output in terms of A, B, and C.

c. Choose the select inputs and the data inputs in part a in terms of A, B, and C so that
the circuits in parts a and b will have the same outputs. If there is more than one
choice, show all of them.

34 a. Design a BCD adder using a ROM (and any other logic needed), assuming only legal
BCD words are used as input. Specify the dimensions of the ROM and show a
schematic diagram.

b. Describe the programming table and illustrate it (at least partially).
c. Specify the number of links.

