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2 Theory Supplement Section A

A THE UNDERPINNINGS OF CALCULUS

Mathematics in its applied form has existed from time immemorial. Commercial arithmetic and the

geometry of land-surveying and building construction were well-developed by 1500 B.C. Gradually

people realized that simple mathematical facts may be interrelated in non-obvious ways, and that

the interrelationships themselves were worthy of study. Thales (640-546 B.C.) is said to have proved

that the sum of the angles of a triangle is two right angles. This is the oldest indication we have of

the idea of proof in geometry. In the next section we look at an example of a proof.

Over the next few centuries, people began to think of geometry as being not about points, lines,

and circles drawn with chalk on a slate, but about abstract entities: points tinier than the smallest

speck, lines that are perfectly straight, and circles that are perfectly round. In other words, what

one draws on a slate or carves into stone is merely an imperfect model of the abstract reality. Plato

(427-347 B.C.) extended this view. He believed that the entire world of experience was an imperfect

shadow of the true reality. However, one cannot reason about abstract things without taking some

of their properties for granted. In mathematics, these assumptions are called axioms or postulates.

About 300 B.C. Euclid wrote a textbook, The Elements, covering a good deal of geometry,

some number theory, and some more advanced topics concerning irrational numbers. It was and

is the most successful textbook ever written. (It is still in print.) Euclid begins his treatment of

geometry by stating several axioms concerning lines and circles. For example:

If A and B are two points, there is a circle having center A that passes through B.

This is surely a reasonable property to ascribe to the abstract points and circles that we imagine.

He goes on to prove many facts about figures in the plane and in space, including the celebrated

Pythagorean theorem: The area of the square drawn on the hypotenuse of a right triangle is equal to

the sum of the areas of the squares drawn on the two legs.

For many years The Elements was revered as the pinnacle of logical reasoning. It is quite rightly

regarded as a masterpiece, but its reasoning is no longer thought to be airtight. In fact, there is an

error (by modern standards) in the proof of the very first proposition. The argument goes as follows.

Starting from two points A and B, consider the circle with center A passing through B
and the circle with center B passing through A. (See Figure A.1.) Let these circles cut one

another at C. . .

A B

C?

Figure A.1

But why must there be a point at which these two circles intersect? It is clear from the figure that

they do, but the figure is drawn in the real world, not the abstract world of pure geometry. Perhaps

when the circles we have drawn are replaced by their abstract representations, it might turn out that

there isn’t any point where C ought to be. Here and in several other places Euclid seems to have

relied on a figure. Perhaps he did not know how to describe clearly those properties of drawings that

he believed carried over to abstract geometry and guaranteed the existence of C, and so he left it to

his readers to decide whether they believed that C would exist in the ideal realm. Although these

deficiencies were noted in classical times, The Elements retained its status as the ultimate example

of mathematical rigor until well into the nineteenth century. Finally, after centuries of study by

many mathematicians, Hilbert (1863-1943) gave what is regarded today as the definitive treatment



Theory Supplement Section B 3

of Euclidean geometry. It is important to realize that none of the theorems stated by Euclid have

been found to be wrong in substance; the difficulties lie entirely in Euclid’s incomplete statement of

the axioms on which he was relying.

Calculus belongs to a different branch of mathematics than geometry. Instead of lines, circles,

and angles, calculus studies the behavior of numerical functions: specifically, functions that repre-

sent a rate of change. Calculus also provides a language for expressing laws of nature that govern

everything from the behavior of the atomic nucleus to the life cycles of stars.

Some anticipations of calculus can be seen in Euclid and other classical writers, but most of

the ideas appear first in the seventeenth century. Newton (1642-1727) and Leibniz (1646-1716) are

generally credited with shaping the subject into a coherent theory. Newton’s most famous work,

Philosophiae Naturalis Principia Mathematica (in three volumes) appeared in 1686-1687. Its best

known result is that the Laws of Planetary Motion, which had been announced by Kepler (1571-

1630) on purely empirical evidence, can be deduced from simpler universal laws, such as the Law of

Gravity. In addition, Newton’s theory explained other astronomical phenomena, such as the irregu-

larities in the motion of the moon, and terrestrial phenomena, such as the tides. The real significance

of Principia lies in its demonstration that very complicated physical systems can be successfully

modeled by pure mathematics. Although Principia uses geometrical arguments, not calculus, the

ideas in it were, by Newton’s own statement, generated with the aid of calculus.

After its start in the seventeenth century, calculus went for over a century without a proper

axiomatic foundation. Newton wrote that it could be rigorously founded on the idea of limits, but he

never presented his ideas in detail. A limit is, roughly speaking, the value approached by a function

near a given point. During the eighteenth century many mathematicians based their work on limits,

but their definition of limit was not clear. In 1784, Lagrange (1736-1813) at the Berlin Academy

proposed a prize for a successful axiomatic foundation for calculus. He and others were interested in

being as certain of the internal consistency of calculus as they were about algebra and geometry. No

one was able to successfully respond to the challenge. It remained for Cauchy (1789-1857) to show,

around 1820, that limits can be defined rigorously by means of inequalities. The modern definition

of the limit, given on page 11, is essentially due to Cauchy.1

This rigorous definition of the limit was the advance that was needed in order to begin the

axiomatic foundations of calculus, where every result is carefully proved from axioms, or from

theorems that have already been proved. Courses in analysis follow this chain of logical reasoning.

In the textbook we concentrated on developing the solid intuitive understanding on which the

rigorous approach depends, emphasizing plausibility arguments, not proofs. In this supplement we

give some glimpses of the theoretical underpinnings of calculus. We hope that this brief excursion

into a more theoretical world encourages you to investigate further.

B A CASE STUDY IN RIGOROUS ARGUMENT: THE BINOMIAL THEOREM

In everyday life we are often content to believe things simply by observing that they seem to be true.

In mathematics, however, we decide what is true by means of logical arguments. Mathematicians

attempt to eliminate all possible sources of disagreement by carefully stating axioms (assumptions)

and definitions, formulating precise theorems (statements to be proved), and using strict rules of

logic. In this section we illustrate how theorems are formulated and proved by studying the example

of the binomial theorem. In the next section we see how, and why, an axiom is introduced, using as

an example the completeness of the real numbers.

Recall the algebraic formulas for squaring and cubing x+ y:

(x+ y)2 = x2 + 2xy + y2

(x+ y)3 = x3 + 3x2y + 3xy2 + y3.

1Grabiner, Judith V. “Who Gave You the Epsilon? Cauchy and the Origins of Rigorous Calculus.” American Mathematical

Monthly 90 (1983) pp. 185-194.
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We want to find a general formula for (x+y)n for any positive integer n. We do this in three stages:

• Find a pattern.

• Formulate a statement, called a conjecture, describing the pattern.

• Prove the conjecture.

Once we have proved the statement, it becomes a theorem.

Finding a pattern

First we look at some more examples. Multiplying out (x + y)n for n = 4, 5, 6 gives:

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

(x+ y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5

(x+ y)6 = x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6.

Notice that the exponents of x and y in each term on the right always add up to n. The reason

for this is that in the expansion of

(x+ y)n = (x+ y)(x+ y) · · · (x+ y)
︸ ︷︷ ︸

n times

,

each term comes from choosing x’s from some of the factors and y’s from the others. The total

number of x’s and y’s chosen equals the total number of (x + y)’s, which is n. For example, in the

expansion of (x + y)3, choosing x from one of the factors and y from the other two yields a term

xy2. There are three different ways of doing this (depending on which factor x is chosen from), so

there are three terms of this form, giving 3xy2.

We arrange the coefficients in the expansion of (x + y)n in a triangle called Pascal’s triangle,

after the French mathematician Blaise Pascal.

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

The second row in this triangle gives the coefficients in the expansion of (x+y)2 = x2+2xy+
y2, namely 1, 2, and 1. The next row gives the coefficients for (x + y)3, and so on. The top row

gives the coefficients for the expansion (x + y)1 = x+ y.

There appears to be a pattern to the triangle: The outside entries are all 1s; each inside entry is

equal to the sum of the entries immediately to its left and right in the row above. For example, each

10 in the fourth row has a 4 and a 6 immediately above it, and 10 = 4 + 6.

Formulating the theorem

We want to prove that, for any n, the coefficients in the expansion of (x+ y)n satisfy the pattern we

have observed for n = 1, . . . , 6. The general case is made easier by writing Cn
k for the coefficient

of xn−kyk in the expansion of (x+ y)n, so

(x+ y)n = Cn
0 x

n + Cn
1 x

n−1y + Cn
2 x

n−2y2 + · · ·+ Cn
n−1xy

n−1 + Cn
ny

n.

Thus, for example, C5
3 = 10 because the x2y3 term in the expansion of (x+ y)5 is 10x2y3.

Now

Cn
0 Cn

1 Cn
2 . . . Cn

n−1 Cn
n
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is the n-th row in Pascal’s triangle. There are two rules that described the pattern we have observed:

first, the outside entries are all 1s; second, each inside entry is the sum of the two above it. Thus, we

must show, first, that Cn
0 = 1 and Cn

n = 1 for all n, and, second, that

Cn
k = Cn−1

k−1 + Cn−1
k , 0 < k < n.

Notice, if 0 < k < n, then Cn
k is an inside entry in the triangle, and Cn−1

k−1 and Cn−1
k are the entries

immediately above it. Now we can state the theorem we want to prove as follows:

The Binomial Theorem

If n is a positive integer and we write

(x+ y)n = Cn
0 x

n + Cn
1 x

n−1y + Cn
2 x

n−2y2 + · · ·+ Cn
n−1xy

n−1 + Cn
ny

n,

then

Cn
0 = Cn

n = 1, forn ≥ 1,

and

Cn
k = Cn−1

k−1 + Cn−1
k , for n ≥ 2 and 0 < k < n.

Proof In the expansion of

(x+ y)n = (x+ y)(x+ y) · · · (x+ y)
︸ ︷︷ ︸

n times

,

there is only one way of getting the term xn, and that is by choosing an x from each factor. So, the

coefficient of xn is 1. By the same argument, the coefficient of yn is also 1, so

Cn
0 = Cn

n = 1.

To prove Cn
k = Cn−1

k−1 + Cn−1
k , we write

(x+ y)n = Cn
0 x

n + Cn
1 x

n−1y + Cn
2 x

n−2y2 + · · ·+ Cn
n−1xy

n−1 + Cn
ny

n,

and we write

(x + y)n−1 = Cn−1
0 xn−1 + Cn−1

1 xn−2y + Cn−1
2 xn−3y2 + · · ·+ Cn−1

n−2xy
n−2 + Cn−1

n−1y
n−1.

Now, we will use the fact that

(x+ y)n = (x+ y)(x+ y)n−1.

Substituting in the expressions for (x + y)n−1 and (x+ y)n gives

Cn
0 x

n + Cn
1 x

n−1y + · · · + Cn
n−1xy

n−1 + Cn
ny

n

= (x + y)
(
Cn−1

0 xn−1 + Cn−1
1 xn−2y + · · · + Cn−1

n−2xy
n−2 + Cn−1

n−1y
n−1

)

= x
(
Cn−1

0 xn−1 + Cn−1
1 xn−2y + · · · + Cn−1

n−2xy
n−2 + Cn−1

n−1y
n−1

)

+ y
(
Cn−1

0 xn−1 + Cn−1
1 xn−2y + · · · + Cn−1

n−2xy
n−2 + Cn−1

n−1y
n−1

)

= Cn−1
0 xn +

(
Cn−1

1 + Cn−1
0

)
xn−1y + · · ·+

(
Cn−1

n−1 + Cn−1
n−2

)
xyn−1 + Cn−1

n−1y
n.

The inside terms in this expression have the form (Cn−1
k + Cn−1

k−1 )x
n−kyk, for k = 1, . . . , n − 1.

The corresponding term in the expansion of (x+y)n is Cn
k x

n−kyk. Since the expressions are equal,

the coefficients of like terms must be equal, so

Cn
k = Cn−1

k + Cn−1
k−1 = Cn−1

k−1 + Cn−1
k ,

which is what we wanted to show.



6 Theory Supplement Section B

A Formula for the Binomial Coefficients

The numbers Cn
k are called binomial coefficients. They are usually computed using the following

formula, rather than by writing out Pascal’s triangle. (Note that k! = k(k − 1) · · · 3 · 2 · 1.)

Cn
k =

n!

k!(n− k)!
=

n(n− 1) · · · (n− k + 1)

k!

This formula holds for k = 0 and k = n if we adopt the convention that 0! = 1:

Cn
0 =

n!

0!(n− 0)!
=

n!

n!
= 1 and Cn

n =
n!

n!(n− n)!
=

n!

n!
= 1.

To prove the formula in general, we use an important technique called mathematical induction.

There are two steps:

• Prove the formula in the case n = 1.

• Prove that if it holds for a specific positive integer n then it holds for n+ 1.

The second step, called the induction step, enables us to deduce that the formula is true for all n, as

follows. Since we know by the first step that it is true for n = 1, by the induction step it is true for

n = 2. But then, by the induction step again, it is true for n = 3, and so on.

Proof We have already proved that the formula holds for n = 1 since the only binomial coefficients in that

case are C1
0 and C1

1 .

Now we prove the induction step. Suppose that our formula is true for n. That is, suppose that

Cn
k =

n!

k!(n− k)!
, 0 ≤ k ≤ n.

We want to deduce the formula for n+ 1. That is, we want to show that

Cn+1
k =

(n+ 1)!

k!(n+ 1− k)!
, 0 ≤ k ≤ n+ 1.

We already know that this is true if k = 0 or k = n+1. If 0 < k < n+1, then, using the Binomial

Theorem,

Cn+1
k = Cn

k + Cn
k−1 =

n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!

=
n!

k(k − 1)!(n− k)!
+

n!

(k − 1)!(n− k + 1)(n− k)!

=
n!

(k − 1)!(n− k)!

(
1

k
+

1

n− k + 1

)

=
n!

(k − 1)!(n− k)!

(
n− k + 1 + k

k(n− k + 1)

)

=
n!

(k − 1)!(n− k)!

(n+ 1)

k(n− k + 1)
=

(n+ 1)!

k!(n− k + 1)!
,

which is what we wanted to prove.
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Problems for Section B

1. The formula for the binomial coefficients gives Cn
k as a

ratio of integers. Is Cn
k necessarily an integer? Could Cn

k

be a fraction? Justify your answer.

2. Look at the entries in the first few rows of Pascal’s trian-

gle on page 4. You should see a pattern of symmetry.

(a) Describe the pattern in words.

(b) Formulate a conjecture about the binomial coeffi-

cients Cn
k that describes the pattern mathematically.

(c) Prove your conjecture.

3. Add the entries across the rows in Pascal’s triangle for the

first six rows. You should notice a pattern to the sequence

of numbers that you obtain.

(a) Formulate a general conjecture that describes the

pattern.

(b) Prove your conjecture.

C COMPLETENESS OF THE REAL NUMBERS

If two people argue about something long enough, they may eventually reveal the hidden assump-

tions that are the root of the argument. In the same way, mathematicians arrive at axioms by a pro-

cess which is somewhat like arguing with themselves. In attempting to understand something, they

question every seemingly obvious statement, hoping to eventually arrive at fundamental axioms.

We apply this method to the process of finding a root of a polynomial by zooming in on its

graph. This will lead us to a subtle property of the real numbers, called completeness. Many proofs

involving limits depend on this property.

Case Study: Finding the Roots of a Polynomial

Consider the polynomial f(x) = 3x3 − x2 + 2x − 1 on the interval [0, 1]. Since f(0) = −1 and

f(1) = 3, we expect that the graph of f crosses the x-axis at some point x = r between x = 0 and

x = 1. Since the coordinates of this point are (r, 0), we have f(r) = 0. Suppose we estimate this

root by graphing the polynomial on a calculator or computer and zooming in. We start by knowing

that

0 ≤ r ≤ 1.

By zooming in, we find f(0.4) < 0 and f(0.5) > 0, so r is trapped in a smaller interval

0.4 ≤ r ≤ 0.5.

Successive zooming in shows that

0.45 ≤ r ≤ 0.46

0.459 ≤ r ≤ 0.460

0.4598 ≤ r ≤ 0.4599.

At each stage, we divide the interval into tenths and pick any one for which f is negative at the

left end point and positive at the right. (If f is 0 at any of the endpoints, we have found r and can

stop.) Continuing this way we obtain a sequence of intervals, each one one-tenth the length of the

previous one and each one containing r. (See Figure C.2.) Although a calculator will only give us

a finite number of digits, we could in principle continue forever, generating an infinite sequence of

intervals.

r

0 1

r

0.4 0.5

r

0.45 0.46

r

0.459 0.460

r

0.4598 0.4599

Figure C.2: Zooming in on a zero of f(x) = 3x3 − x2 + 2x− 1
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It seems that this process leads us to a number r such that f(r) = 0. However, there are two

questions that can be raised:

• How do we know2 that this process of zooming in really does close in on a number, r?

• How do we know that f(r) = 0?

The Completeness Axiom

Consider the first question above (the answer to the second question is worked out in Problem 26

on page 18). The left hand endpoints of the nested intervals form an ever increasing sequence of

decimals; clearly the number r that we are looking for is the smallest number that is greater than all

these decimals. The completeness axiom says that, given any nonempty set of numbers, if there is

any number which is greater than or equal to all of the numbers in the set, then there is a smallest

such number.3 A number which is greater than or equal to all the numbers in a set is called an upper

bound for the set. We have the following:

The Completeness Axiom

Any nonempty set of real numbers which has an upper bound has a least upper bound.

Example 1 For each of the following sets, say whether it has an upper bound. If so, give the least upper bound.

(a) The set of x such that −2 < x < 3.

(b) The set of x such that −2 ≤ x ≤ 3.

(c) The set of all integers.

(d) The sequence 0.9, 0.99, 0.999, . . ..

Solution (a) The numbers 3, 4, and π are all upper bounds; 3 is the least upper bound.

(b) Same as part (a); an upper bound for a set can be in the set, since it only has to be greater than

or equal to each number in the set.

(c) There is no upper bound for this set; no matter how large a number we choose for the upper

bound, there will always be some integer bigger than it.

(d) All the numbers are less than 1, and 1 is the smallest number with this property. Thus, this

sequence has a least upper bound of 1.

In the previous example we could see directly what the least upper bounds were. In other

situations it may not be obvious. The completeness axiom guarantees the existence of the least

upper bound but offers no help in finding it.

The Nested Interval Theorem

Now we see how the completeness axiom ensures that the process of zooming in closes in on a

specific number.

Nested Interval Theorem

Given an infinite sequence of closed intervals, [an, bn], each one contained within the previ-

ous one, then there is at least one number in all the intervals.

2This is related to the question raised on page 2 about the existence of an intersection point C between two circles.
3It is possible to give a definition of the real numbers in which the completeness axiom becomes a theorem.
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Proof Because each interval [an, bn] is contained in the previous one, each an must be at least as large as

the previous one, so

a1 ≤ a2 ≤ a3 ≤ · · · ≤ an ≤ · · · .

Similarly, each bn is no larger than its predecessor, so

· · · ≤ bn ≤ · · · ≤ b3 ≤ b2 ≤ b1.

All the an are bounded above by b1, and in fact by every bn. Therefore, by the completeness axiom,

we know that the an have a least upper bound; call it r. Since r is an upper bound, r ≥ an for all n.

Since r is the least upper bound, r must be less than or equal to each of the upper bounds bn. Thus,

r is in all the intervals.

Note that in our statement of the Nested Interval Property, we did not assume that the lengths

of the intervals approached zero, so in general there may be more than one number r in all the

intervals. However, when the lengths do approach zero, as in the case of finding a root by zooming

in, there is a unique number r (see Problem 2).

The Intermediate Value Theorem

When we considered the polynomial 3x3 − x2 + 2x− 1, we assumed it must have a root between

x = 0 and x = 1 because it was negative at x = 0 and positive at x = 1. More generally, our

intuitive notion of continuity tells us that, as we follow the graph of a continuous function f from

some point (a, f(a)) to another point (b, f(b)), then f must take on all intermediate values between

f(a) and f(b). (See Figure C.3.) This is:

Intermediate Value Theorem

Suppose f is continuous on a closed interval [a, b]. If k is any number between f(a) and f(b),
then there is at least one number c in [a, b] such that f(c) = k.

Problems 26 and 27 on page 18 suggest a way of proving the Intermediate Value Theorem using

the Nested Interval Theorem.

a c b

k

(a, f(a))

(b, f(b))

x

Figure C.3: The Intermediate Value

Theorem
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Problems for Section C

1. (a) Using the definitions in this section as a guide, de-

fine the following terms:

(i) A lower bound of a set of numbers

(ii) The greatest lower bound of a set of numbers

(b) State the completeness axiom in terms of lower

bounds.

2. Let r be a number contained in each of a sequence of

nested intervals [an, bn]. Suppose that the width of the

intervals, |bn − an|, goes to 0 as n → ∞. Prove that r
is unique. [Hint: Suppose there were two such numbers,

and argue to a contradiction.]

3. In this problem we will use the completeness axiom to

show that an infinite decimal expansion actually defines

a real number, and that the first n digits of the expansion

give the number accurate to n decimal places. Let xn be

the number defined by the first n digits of the expansion;

we call xn the n-th truncation of the expansion.

(a) For any n, show that xn+(1/10n) is an upper bound

for the set of all the truncations.

(b) Deduce that there is a real number, c, such that

xn ≤ c ≤ xn + (1/10)n for all n. Thus xn rep-

resents c accurate to n places, so it’s reasonable to

say that c is the number represented by the infinite

decimal expansion.

D LIMITS AND CONTINUITY

In this section we use the example of limits and continuity to illustrate how formal definitions are

developed from intuitive ideas.

Definition of Limit

By the beginning of the 19th century, calculus had proved its worth, and there was no doubt about the

correctness of its answers. However, it was not until the work of the French mathematician Augustin

Cauchy (1789–1857) that a formal definition of the limit was given, similar to the following:

Suppose a function f , is defined on an interval around c, except perhaps not at the point

x = c. We define the limit of the function f(x) as x approaches c, written limx→c f(x), to

be a number L (if one exists) such that f(x) is as close to L as we please whenever x is

sufficiently close to c (but x 6= c). If L exists, we write

lim
x→c

f(x) = L.

Shortly, we will see how “as close as we please” and “sufficiently close” can be given a precise

meaning using inequalities. First, we look at lim
θ→0

(sin θ/θ) more closely (see Example 1 on page 68

of the textbook).

Example 1 By graphing y = (sin θ)/θ in an appropriate window, find how close θ should be to 0 in order to

make (sin θ)/θ within 0.01 of 1.

Solution Since we want (sin θ)/θ to be within 0.01 of 1, we set the y-range on the graphing window to go

from 0.99 to 1.01. Our first attempt with −0.5 ≤ θ ≤ 0.5 yields the graph in Figure D.4. Since

we want the y-values to stay within the range 0.99 < y < 1.01, we do not want the graph to

leave the window through the top or bottom. By trial and error, we find that changing the θ-range

to −0.2 ≤ θ ≤ 0.2 gives the graph in Figure D.5. Thus, the graph suggests that (sin θ)/θ will be

within 0.01 of 1 whenever θ is within 0.2 of 0. Proving this requires an analytical argument, not just

graphs from a calculator.
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1.01

0.99
−0.5 0.5

y

Figure D.4: (sin θ)/θ with

−0.5 ≤ θ ≤ 0.5

1.01

0.99
−0.2 0.2

y

Figure D.5: (sin θ)/θ with

−0.2 ≤ θ ≤ 0.2

When we say “f(x) is as close to L as we please,” we mean that we can specify a maximum

distance between f(x) and L. We express the distance using absolute values:

|f(x)− L| = Distance between f(x) and L.

Using ǫ (the Greek letter epsilon) to stand for the distance we have specified, we write

|f(x)− L| < ǫ

to indicate that the maximum distance between f(x) and L is less than ǫ. In Example 2 we used

ǫ = 0.01. In a similar manner we interpret “x is sufficiently close to c” as specifying a maximum

distance between x and c:
|x− c| < δ,

where δ (the Greek letter delta) tells us how close x should be to c. In Example 2 we found δ = 0.2.

If lim
x→c

f(x) = L, we know that no matter how narrow the band determined by ǫ in Figure D.6,

there’s always a δ which makes the graph stay within the band for c− δ < x < c+ δ.

Thus we restate the definition of a limit, using symbols:

Definition of Limit

We define lim
x→c

f(x) to be the number L (if one exists) such that for any ǫ > 0 (as small

as we want), there is a δ > 0 (sufficiently small) such that if |x − c| < δ and x 6= c, then

|f(x)− L| < ǫ.

Realize that the point of this definition is that for any ǫ we are given, we need to be able to

determine a corresponding δ. One way to do this is to give an explicit expression for δ in terms of ǫ.

c− δ c c+ δ

L− ǫ

L

L+ ǫ

✻❄
ǫ

✻❄ǫ

f(x)

x

Figure D.6: What the definition of the limit means practically
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Example 2 Use algebra to find a maximum distance between x and 2 which ensures that x2 is within 0.1 of 4.

Use a similar argument to show that lim
x→2

x2 = 4.

Solution We write x = 2 + h. We want to find the values of h making x2 within 0.1 of 4. We know

x2 = (2 + h)2 = 4 + 4h+ h2,

so x2 differs from 4 by 4h+ h2. Since we want x2 to be within 0.1 of 4, we need

∣
∣x2 − 4

∣
∣ =

∣
∣4h+ h2

∣
∣ = |h| · |4 + h| < 0.1.

Assuming 0 < |h| < 1, we know |4 + h| < 5, so we need

∣
∣x2 − 4

∣
∣ < 5 |h| < 0.1.

Thus, if we choose h such that 0 < |h| < 0.1/5 = 0.02, then x2 is less than 0.1 from 4.

An analogous argument using any small ǫ instead of 0.1 shows that if we take δ = ǫ/5, then

∣
∣x2 − 4

∣
∣ < ǫ for all |x− 2| < ǫ/5.

Thus, we have used the definition to show that

lim
x→2

x2 = 4.

It is important to understand that the ǫ, δ definition by itself does not make it easier to calculate

limits. The advantage of the ǫ, δ definition is that it makes it possible to put calculus on a rigorous

foundation. From this foundation, we can prove the following properties. See Problems 13–16.

Theorem: Properties of Limits

Assuming all the limits on the right hand side exist:

1. If b is a constant, then lim
x→c

(bf(x)) = b
(

lim
x→c

f(x)
)

.

2. lim
x→c

(f(x) + g(x)) = lim
x→c

f(x) + lim
x→c

g(x).

3. lim
x→c

(f(x)g(x)) =
(

lim
x→c

f(x)
)(

lim
x→c

g(x)
)

.

4. lim
x→c

f(x)

g(x)
=

limx→c f(x)

limx→c g(x)
, provided lim

x→c
g(x) 6= 0.

5. For any constant k, lim
x→c

k = k.

6. lim
x→c

x = c.

These properties underlie many limit calculations, though we seldom acknowledge them explicitly.

Example 3 Explain how the limit properties are used in the following calculation:

lim
x→3

x2 + 5x

x+ 9
=

32 + (5)(3)

3 + 9
= 2.
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Solution We calculate this limit in stages, using the limit properties to justify each step:

lim
x→3

x2 + 5x

x+ 9
=

lim
x→3

(x2 + 5x)

lim
x→3

(x + 9)
Property 4 (since limx→3(x + 9) 6= 0)

=
lim
x→3

(x2) + lim
x→3

(5x)

lim
x→3

x+ lim
x→3

9
Property 2

=

(

lim
x→3

x
)2

+ 5
(

lim
x→3

x
)

lim
x→3

x+ lim
x→3

9
Properties 1 and 3

=
32 + (5)(3)

3 + 9
= 2. Properties 5 and 6

One- and Two-Sided Limits

When we write

lim
x→2

f(x),

we mean the number that f(x) approaches as x approaches 2 from both sides. We examine values

of f(x) as x approaches 2 through values greater than 2 (such as 2.1, 2.01, 2.003) and values less

than 2 (such as 1.9, 1.99, 1.994). If we want x to approach 2 only through values greater than 2, we

write

lim
x→2+

f(x)

for the number that f(x) approaches (assuming such a number exists). Similarly,

lim
x→2−

f(x)

denotes the number (if it exists) obtained by letting x approach 2 through values less than 2. We call

lim
x→2+

f(x) a right-hand limit and lim
x→2−

f(x) a left-hand limit.

2

L1

L2

f(x)

x

Figure D.7: Left- and right-hand limits at

x = 2

For the function graphed in Figure D.7, we have

lim
x→2−

f(x) = L1 lim
x→2+

f(x) = L2.

If the left- and right-hand limits were equal, that is, if L1 = L2, then it could easily be proved that

lim
x→2

f(x) exists and lim
x→2

f(x) = L1 = L2. Since L1 6= L2 in Figure D.7, we see that lim
x→2

f(x)

does not exist in this case.

When Limits Do Not Exist

Whenever there is not a number L such that lim
x→c

f(x) = L, we say lim
x→c

f(x) does not exist. In

addition to cases in which the left- and right-hand limits are not equal, there are some other cases in

which limits fail to exist. Here are three examples.
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Example 4 Explain why lim
x→2

|x− 2|
x− 2

doesn’t exist.

Solution Figure D.8 shows the problem: The right-hand limit and the left-hand limit are different. For x > 2,

we have |x− 2| = x− 2, so as x approaches 2 from the right,

lim
x→2+

|x− 2|
x− 2

= lim
x→2+

x− 2

x− 2
= lim

x→2+
1 = 1.

Similarly, if x < 2, then |x− 2| = 2− x so

lim
x→2−

|x− 2|
x− 2

= lim
x→2−

2− x

x− 2
= lim

x→2−
(−1) = −1.

So if lim
x→2

|x− 2|
x− 2

= L then L would have to be both 1 and −1. Since L cannot have two different

values, the limit does not exist.

2

−1

1

x

Figure D.8: Graph of
|x−2|
x−2

x

Figure D.9: Graph of 1
x2

− 1
2π

1
2π

x

Figure D.10: Graph of sin
(

1
x

)

Example 5 Explain why lim
x→0

1

x2
doesn’t exist.

Solution As x approaches zero, 1/x2 becomes arbitrarily large, so it can’t stay close to any finite number L.

See Figure D.9. Therefore we say 1/x2 has no limit as x → 0.

Example 6 Explain why lim
x→0

sin

(
1

x

)

doesn’t exist.

Solution We know that the sine function has values between −1 and 1. The graph in Figure D.10 oscillates

more and more rapidly as x → 0. There are x-values as close to 0 as we like where sin(1/x) = 0.

There are also x-values as close to 0 as we like where sin(1/x) = 1. So if the limit existed, it would

have to be both 0 and 1. Thus, the limit does not exist.

Limits at Infinity

Sometimes we want to know what happens to f(x) as x gets large, that is, the end behavior of f .
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If f(x) gets as close to a number L as we please when x gets sufficiently large, then we write

lim
x→∞

f(x) = L.

Similarly, if f(x) approaches L as x gets more and more negative, then we write

lim
x→−∞

f(x) = L.

The symbol ∞ does not represent a number. Writing x → ∞ means that we consider arbitrarily

large values of x. If the limit of f(x) as x → ∞ or x → −∞ is L, we say that the graph of f has a

horizontal asymptote y = L.

Example 7 Investigate lim
x→∞

1

x
and lim

x→−∞

1

x
.

Solution A graph of f(x) = 1
x in a large window shows 1/x approaching zero as x increases in either the

positive or the negative direction (See Figure D.11). This is as we would expect, since dividing 1 by

larger and larger numbers yields answers which are smaller and smaller. This suggests that

lim
x→∞

1

x
= lim

x→−∞

1

x
= 0,

and f(x) = 1/x has y = 0 as a horizontal asymptote as x → ±∞.

x

y

f(x) = 1
x

Figure D.11: The end behavior of f(x) = 1
x

Definition of Continuity

We can now define continuity. Recall that the idea of continuity rules out breaks, jumps, or holes by

demanding that the behavior of a function near a point be consistent with its behavior at the point:

The function f is continuous at x = c if f is defined at x = c and

lim
x→c

f(x) = f(c).

In other words, f(x) is as close as we please to f(c) provided x is close enough to c. The

function is continuous on an interval [a, b] if it is continuous at every point in the interval.4
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Constant functions and f(x) = x are continuous. (See Problem 16.) Using the continuity of

sums and products, we can show that any polynomial is continuous. Proving that sinx, cosx, and

ex are continuous is more difficult. The following theorem, based on the properties of limits on

page 12, makes it easier to decide whether a given function is continuous.

Theorem: Continuity of Sums, Products, and Quotients of Functions

Suppose that f and g are continuous on an interval and that b is a constant. Then, on that

same interval,

1. bf(x) is continuous

2. f(x) + g(x) is continuous

3. f(x)g(x) is continuous

4. f(x)/g(x) is continuous, provided g(x) 6= 0 on the interval.

We prove the first of these properties.

Proof To prove that bf(x) is continuous, pick any point c in the interval. We must show that lim
x→c

bf(x) =

bf(c). Since f(x) is continuous, we already know that lim
x→c

f(x) = f(c). So, by the first property

of limits,

lim
x→c

(bf(x)) = b
(

lim
x→c

f(x)
)

= bf(c).

Since c was chosen arbitrarily, we have shown that bf(x) is continuous at every point in the interval.

Theorem: Continuity of Composite Functions

If f and g are continuous, and if the composite function f(g(x)) is defined on an interval,

then f(g(x)) is continuous on that interval.

Assuming the continuity of sinx and ex, this result shows us, for example, that sin(ex) and esin x

are both continuous. A proof of the continuity of composite functions is outlined in Problem 17.

Problems for Section D

1. Consider the function (sin θ)/θ. Estimate how close θ
should be to 0 to make (sin θ)/θ stay within 0.001 of 1.

2. The function g(θ) = (sin θ)/θ is not defined at θ = 0. Is

it possible to define g(0) in such a way that g is continu-

ous at θ = 0? Explain your answer.

Use a graph to estimate each of the limits in Problems 3–6.

3. lim
θ→0

sin (2θ)

θ
(use radians)

4. lim
θ→0

cos θ − 1

θ
(use radians)

5. lim
θ→0

sin θ

θ
(use degrees)

6. lim
θ→0

θ

tan(3θ)
(use radians)

7. Consider the limit

lim
x→0+

xx.

Estimate this limit either by evaluating xx for smaller and

smaller positive values of x
(say x = 0.1, 0.01, 0.001, . . .) or by zooming in on the

graph of y = xx near x = 0.

4If c is an endpoint of the interval, we define continuity at x = c using one-sided limits at c.
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8. (a) Give an example of a function such that lim
x→2

f(x) =
∞.

(b) Give an example of a function such that lim
x→2

f(x) =

−∞.

9. Consider the function f(x) = sin(1/x).

(a) Find a sequence of x-values that approach 0 such

that sin(1/x) = 0.
[Hint: Use the fact that sin(π) = sin(2π) =
sin(3π) = . . . = sin(nπ) = 0.]

(b) Find a sequence of x-values that approach 0 such

that sin(1/x) = 1.

[Hint: Use the fact that sin(nπ/2) = 1 if n =
1, 5, 9, . . . .]

(c) Find a sequence of x-values that approach 0 such

that sin(1/x) = −1.
(d) Explain why your answers to any two of parts (a)–

(c) show that lim
x→0

sin(1/x) does not exist.

10. Write the definition of the following statement both in

words and in symbols:

lim
h→a

g(h) = K.

11. For each of the following functions do the following:

(i) Make a table of values of f(x) for x = a + 0.1,

a+0.01, a+0.001, a+0.0001, a− 0.1, a− 0.01,

a− 0.001, and a− 0.0001.

(ii) Make a conjecture about the value of lim
x→a

f(x).

(iii) Graph the function to see if it is consistent with your

answers to parts (i) and (ii).

(iv) Find an interval for x containing a such that the dif-

ference between your conjectured limit and the value

of the function is less than 0.01 on that interval. (In

other words, find a window of height 0.02 such that

the graph exits the sides of the window and not the

top or bottom of the window.)

(a) f(x) =
x2 − 4

x− 2
, a = 2

(b) f(x) =
x2 − 9

x− 3
, a = 3

(c) f(x) =
sin x− 1

x− π/2
, a =

π

2

(d) f(x) =
sin 5x− 1

x− π/2
, a =

π

2

(e) f(x) =
e2x−2 − 1

x− 1
, a = 1

(f) f(x) =
e0.5x−1 − 1

x− 2
, a = 2

12. Assuming that limits as x → ∞ have the properties listed

for limits as x → c on page 12, use algebraic manipula-

tions to evaluate lim
x→∞

for the following functions:

(a) f(x) =
x+ 3

2− x
(b) f(x) =

x2 + 2x− 1

3 + 3x2

(c) f(x) =
x2 + 4

x+ 3
(d) f(x) =

2x3 − 16x2

4x2 + 3x3

(e) f(x) =
x4 + 3x

x4 + 2x5
(f) f(x) =

3ex + 2

2ex + 3

(g) f(x) =
2e−x + 3

3e−x + 2

13. This problem suggests a proof of the first property of lim-

its on page 12: lim
x→c

bf(x) = b lim
x→c

f(x).

(a) First, prove the property in the case b = 0.

(b) Now suppose that b 6= 0. Let ǫ > 0. Show that if

|f(x) − L| < ǫ/|b|, then |bf(x)− bL| < ǫ.
(c) Finally, prove that if lim

x→c
f(x) = L then

lim
x→c

bf(x) = bL. [Hint: Choose δ so that if |x−c| <
δ, then |f(x)− L| < ǫ/|b|.]

14. Prove the second property of limits: lim
x→c

(f(x) + g(x)) =

lim
x→c

f(x)+ lim
x→c

g(x). Assume that the limits on the right

exist.

15. This problem suggests a proof of the third property of

limits:

lim
x→c

(f(x)g(x)) =
(

lim
x→c

f(x)
)(

lim
x→c

g(x)
)

(assuming the limits on the right exist). Let L1 =
limx→c f(x) and L2 = limx→c g(x).

(a) First, show that if lim
x→c

f(x) = lim
x→c

g(x) = 0, then

lim
x→c

(f(x)g(x)) = 0.

(b) Show algebraically that f(x)g(x) =
(f(x)− L1) (g(x)− L2) + L1g(x) + L2f(x) −
L1L2.

(c) Use the second limit property (see Problem 14) to

explain why

lim
x→c

(f(x)− L1) = lim
x→c

(g(x)− L2) = 0.

(d) Use parts (a) and (c) to explain why

lim
x→c

(f(x)− L1) (g(x)− L2) = 0.

(e) Finally, use parts (b) and (d) and the first and second

limit properties to show that

lim
x→c

(f(x)g(x)) =
(

lim
x→c

f(x)
)(

lim
x→c

g(x)
)

.

16. Show that the following functions are both continuous

everywhere.

(a) f(x) = k (a constant) (b) g(x) = x

17. This problem suggests a proof of the theorem on conti-

nuity of composite functions on page 16: If f and g are

continuous and the composite function f (g(x)) is de-

fined on an interval, then f (g(x)) is continuous on that

interval.

Let c be a point inside the interval where f (g(x))
is defined. We must show that lim

x→c
f (g(x)) = f (g(c)).

Let d = g(c). Then the continuity of f at d means

that lim
y→d

f(y) = f(d). Thus, for a given ǫ > 0,
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we can choose δ > 0 so that |y − d| < δ implies

|f(y)− f(d)| < ǫ.

Now, take y = g(x) and show that the continu-

ity of g means that we can find a δ1 > 0 such that, if

|x − c| < δ1, then |g(x)− d| < δ. Explain how this

establishes the continuity of f (g(x)) at x = c.

For each value of ǫ in Problems 18–19, find a positive value

of δ such that the graph of the function leaves the window

a − δ < x < a + δ, b − ǫ < y < b + ǫ by the sides and not

through the top or bottom.

18. f(x) = −2x + 3; a = 0; b = 3; ǫ = 0.2, 0.1, 0.02,

0.01, 0.002, 0.001.

19. g(x) = −x3 + 2; a = 0; b = 2; ǫ = 0.1, 0.01, 0.001.

20. Show that lim
x→0

(−2x+3) = 3. You may use the result of

Problem 18.

21. Show that lim
x→0

(−x3 + 2) = 2. [Hint: Try δ = ǫ1/3.]

In Problems 22–24, modify the definition of limit on page 11

to give a definition of each of the following.

22. A right-hand limit 23. A left-hand limit

24. lim
x→∞

f(x) = L

25. Consider the function f(x) =

{

x sin
(
1

x

)

x 6= 0

0 x = 0.
Show that f is continuous everywhere, but that it is nei-

ther always increasing nor always decreasing on the in-

terval [0, ǫ] for any ǫ > 0, no matter how small.

26. On page ?? we showed how to find a sequence of in-

tervals [an, bn] that close in on a root r of f(x) =
3x3 − x2 + 2x − 1. In this problem we use the conti-

nuity of f to prove that r is in fact a root, that is, that

f(r) = 0. You may assume that all the intervals have

been chosen so that f(an) < 0 and f(bn) > 0.

(a) Suppose f(r) = L > 0. Use the definition of conti-

nuity with any ǫ such that ǫ < L to choose a δ such

that

|f(x)− L| < ǫ for all |x− r| < δ.

Find an an in the interval [r− δ, r+ δ] and arrive at

a contradiction involving f(an).
(b) Suppose f(r) = L < 0. Make a similar argument

to arrive at a contradiction involving a bn.

(c) Conclude that f(r) = 0.

27. Adapt the zooming argument on page ?? and the argu-

ment in Problem 26 to prove the Intermediate Value The-

orem: If f is continuous on [a, b] and k is between f(a)
and f(b), there is a point c in [a, b] with f(c) = k. [Hint:

Consider g(x) = f(x)− k and look for a zero of g.]

E DIFFERENTIABILITY AND LINEAR APPROXIMATION

In this section we analyze the tangent line approximation and its error. This leads us to a different

way of looking at differentiability. Recall that:

A function f is said to be differentiable at x = a if f ′(a) exists.

Most functions we deal with have a derivative at every point in their domain; they are said to be

differentiable everywhere.

How Can We Recognize Whether a Function Is Differentiable?

If a function has a derivative at a point, its graph must have a tangent line there; the slope of the

tangent line is the derivative. When we zoom in on the graph of the function, we see a nonvertical

straight line.

Occasionally we meet a function which fails to have a derivative at a few points. For example, a

discontinuous function whose graph has a break at some point cannot have a derivative at that point.

Some of the ways in which a function can fail to be differentiable at a point are if:

• The function is not continuous at the point.

• The graph has a sharp corner at that point.

• The graph has a vertical tangent line.
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Figure E.12 shows a function which appears to be differentiable at all points except x = a and

x = b. There is no tangent at A because the graph has a corner there. As x approaches a from the

left, the slope of the line joining P to A converges to some positive number. As x approaches a from

the right, the slope of the line joining P to A converges to some negative number. Thus the slopes

approach different numbers as we approach x = a from different sides. Therefore the function is not

differentiable at x = a. At B, there is no sharp corner, but as x approaches b, the slope of the line

joining B to Q does not converge; it just keeps growing larger and larger. This reflects the fact that

the graph has a vertical tangent at B. Since the slope of a vertical line is not defined, the function is

not differentiable at x = b.

a b
x

f

P

A

Q

B

Figure E.12: A function which is not differentiable at A or B

f(x) = |x|

x

Figure E.13: Graph of absolute value function,

showing point of non-differentiability at x = 0

Examples of Nondifferentiable Functions

The best-known function with a corner is the absolute value function defined as follows:

f(x) = |x| =
{
x if x ≥ 0,

−x if x < 0.

The graph of this function is in Figure E.13. Near x = 0, even close-up views of the graph of f(x)
look the same, so this is a corner which can’t be straightened out by zooming in.

Example 1 Try to compute the derivative of the function f(x) = |x| at x = 0. Is f differentiable there?

Solution To find the slope at x = 0, we want to look at

lim
h→0

f(h)− f(0)

h
= lim

h→0

|h| − 0

h
= lim

h→0

|h|
h
.

As h approaches 0 from the right, h is always positive, so |h| = h, and the ratio is always 1. As

h approaches 0 from the left, h is negative, so |h| = −h, and the ratio is −1. Since the limits are

different from each side, the limit of the difference quotient does not exist. Thus, the absolute value

function is not differentiable at x = 0. The limits of 1 and −1 correspond to the fact that the slope

of the right-hand part of the graph is 1, and the slope of the left-hand part is −1.

Example 2 Investigate the differentiability of f(x) = x1/3 at x = 0.
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Solution This function is smooth at x = 0 (no sharp corners) but appears to have a vertical tangent there.

(See Figure E.14.) Looking at the difference quotient at x = 0, we see

lim
h→0

(0 + h)1/3 − 01/3

h
= lim

h→0

h1/3

h
= lim

h→0

1

h2/3
.

As h → 0 the denominator becomes small, so the fraction grows without bound. Hence, the function

fails to have a derivative at x = 0.

−8 −4 4 8

−2

2

x

f(x) = x1/3

Figure E.14: Continuous function not

differentiable at x = 0: Vertical tangent

1 2 3

2

4

6

x

g(x)

Figure E.15: Continuous

function not differentiable at

x = 1

Example 3 Consider the function given by the formulas

g(x) =
{
x+ 1 if x ≤ 1
3x− 1 if x > 1.

This kind of function is called piecewise linear because each part of it is linear. Draw the graph of

g. Is g continuous? Is g differentiable at x = 1?

Solution The graph in Figure E.15 has no breaks in it, so the function is continuous. However, the graph has

a corner at x = 1 which no amount of magnification will remove. To the left of x = 1, the slope

is 1; to the right of x = 1, the slope is 3. Thus, the difference quotient at x = 1 will fail to have a

limit, and so the function g is not differentiable at x = 1.

A great deal of interest has been sparked in the last few years in the study of curves which do

not possess derivatives anywhere. These curves, known as fractals, arise in the modeling of natural

processes that are random and chaotic, such as the path of a water molecule in a glass of water.

As the molecule bounces off of its neighbors haphazardly, it traces out a path with many jagged,

nondifferentiable corners. Although the path may be smooth between collisions, it can be modeled

effectively by a curve that is not differentiable anywhere. The coastlines of Maine and Washington

are also examples. They never straighten out, no matter how close we look.

Differentiability and Linear Approximation

When we zoom in on the graph of a differentiable function, it looks like a straight line. In fact, the

graph is not exactly a straight line when we zoom in; however, its deviation from straightness is so

small that it can’t be detected by the naked eye. Let’s examine what this means. The straight line that

we think we see when we zoom in on the graph of f(x) at x = a has slope equal to the derivative,

f ′(a), so the equation is

y = f(a) + f ′(a)(x − a).
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The fact that the graph looks like a line means that y is a good approximation to f(x). (See Fig-

ure E.16.) This suggests the following definition:

The Tangent Line Approximation

Suppose f is differentiable at a. Then, for values of x near a, the tangent line approximation

to f(x) is

f(x) ≈ f(a) + f ′(a)(x − a).

The expression f(a) + f ′(a)(x− a) is called the local linearization of f near x = a. We are

thinking of a as fixed, so that f(a) and f ′(a) are constant.

The error, E(x), in the approximation is defined by

E(x) = f(x)− f(a)− f ′(a)(x− a).

It can be shown that the tangent line approximation is the best linear approximation to f near a. See

Problem 15.

a x
x

Tangent
line

✻

❄

✠

Error E(x)

✻

❄
f(a)

✻

❄
f(a)

✲✛ x− a

✻
❄
f ′(a)(x− a)

True value f(x)

✛ Approximation

Figure E.16: The tangent line approximation and its error

Example 4 What is the tangent line approximation for f(x) = sinx near x = 0? Assume that f ′(0) = 1.

Solution The tangent line approximation of f near x = 0 is

f(x) ≈ f(0) + f ′(0)(x− 0).

If f(x) = sinx, then f(0) = sin 0 = 0. Using the given fact that f ′(0) = 1, the approximation is

sinx ≈ x.

This means that, near x = 0, the function f(x) = sinx is well approximated by the function y = x.

If we zoom in on the graphs of the functions sinx and x near the origin, we won’t be able to tell

them apart. (See Figure E.17.)
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−π
2

π
2

y = sin x

y = x

−1

1

x

y

Figure E.17: Tangent line approximation to

y = sin x

Estimating the Error in the Approximation

Let us look at the error, E(x), which is the difference between f(x) and the local linearization.

(Look back at Figure E.16.) The fact that the graph of f looks like a line as we zoom in means that

not only is E(x) small for x near a, but also that E(x) is small relative to (x − a). To demonstrate

this, we prove the following theorem about the ratio E(x)/(x− a).

Theorem: Differentiability and Local Linearity

Suppose f is differentiable at x = a and E(x) is the error in the tangent line approximation,

that is:

E(x) = f(x)− f(a)− f ′(a)(x− a).

Then

lim
x→a

E(x)

x− a
= 0.

Proof Using the definition of E(x), we have

E(x)

x− a
=

f(x)− f(a)− f ′(a)(x− a)

x− a
=

f(x)− f(a)

x− a
− f ′(a).

Taking the limit as x → a and using the definition of the derivative, we see that

lim
x→a

E(x)

x− a
= lim

x→a

(
f(x) − f(a)

x− a
− f ′(a)

)

= f ′(a)− f ′(a) = 0.

Why Differentiability Makes A Graph Look Straight

We can use the error E(x) to understand why differentiability makes a graph look straight when we

zoom in.



Theory Supplement Section E 23

Example 5 Consider the graph of f(x) = sinx near x = 0, and its linear approximation computed in Exam-

ple 4. Show that there is an interval around 0 with the property that the distance from f(x) = sinx
to the linear approximation is less than 0.1|x| for all x in the interval.

Solution The linear approximation of f(x) = sinx near 0 is y = x, so we write

sinx = x+ E(x).

Since sinx is differentiable at x = 0, the theorem tells us that

lim
x→0

E(x)

x
= 0.

If we take ǫ = 1/10, then the definition of limit guarantees that there is a δ > 0 such that

∣
∣
∣
∣

E(x)

x

∣
∣
∣
∣
< 0.1 for all |x| < δ.

In other words, for x in the interval (−δ, δ), we have |x| < δ, so

|E(x)| < 0.1|x|.

(See Figure E.18.)

−δ δ0

✻❄|E(x)| < 0.1|x|

✛ y = x
❄

y = sin x

x

Figure E.18: Graph of y = sin x and its linear

approximation y = x, showing a window in which the

magnitude of the error, |E(x)|, is less than 0.1|x| for all

x in the window

We can generalize from this example to explain why differentiability makes the graph of f look

straight when viewed over a small graphing window. Suppose f is differentiable at x = a. Then we

know lim
x→a

∣
∣
∣
∣

E(x)

x− a

∣
∣
∣
∣
= 0. So, for any ǫ > 0, we can find a δ small enough so that

∣
∣
∣
∣

E(x)

x− a

∣
∣
∣
∣
< ǫ, for a− δ < x < a+ δ.

So, for any x in the interval (a− δ, a+ δ), we have

|E(x)| < ǫ|x− a|.

Thus, the error, E(x), is less than ǫ times |x − a|, the distance between x and a. So, as we zoom in

on the graph by choosing smaller ǫ, the deviation, |E(x)|, of f from its tangent line shrinks, even

relative to the scale on the x-axis. So, zooming makes a differentiable function look straight.
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Differentiability and Continuity

The fact that a function which is differentiable at a point has a tangent line suggests that the function

is continuous there, as the next theorem shows.

Theorem: A Differentiable Function Is Continuous

If f(x) is differentiable at a point x = a, then f(x) is continuous at x = a.

Proof We assume f(x) is differentiable at x = a. Then we know

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

So we must have

lim
x→a

(f(x)− f(a)) = lim
x→a

(

(x− a)
f(x)− f(a)

x− a

)

=
(

lim
x→a

(x− a)
)

·
(

lim
x→a

f(x)− f(a)

x− a

)

= 0 · f ′(a) = 0.

Then,

lim
x→a

f(x) = f(a),

which means f(x) is continuous at x = a.

Problems for Section E

1. For each of the graphs in Figure E.19, list the x-values

for which the function appears to be

(i) Not continuous and (ii) Not differentiable.

1 2 3 4 5

f(x)

x

(a)

1 2 3 4 5 6

g(x)

x

(b)

Figure E.19

2. Look at the graph of f(x) = (x2 +0.0001)1/2 shown in

Figure E.20. The graph of f appears to have a sharp cor-

ner at x = 0. Do you think f has a derivative at x = 0?

−20 −10 0 10 20

10

20

x

f(x)

Figure E.20

Decide if the functions in Problems 3–5 are differentiable at

x = 0. Try zooming in on a graphing calculator, or calculating

the derivative f ′(0) from the definition.

3. f(x) = (x+ |x|)2 + 1

4. f(x) =

{

x sin(1/x) + x for x 6= 0

0 for x = 0

5. f(x) =

{

x2 sin(1/x) for x 6= 0

0 for x = 0
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6. An electric charge, Q, in a circuit is given as a function

of time, t, by

Q =
{
C for t ≤ 0
Ce−t/RC for t > 0,

where C and R are positive constants. The electric cur-

rent, I , is the rate of change of charge, so

I =
dQ

dt
.

(a) Is the charge, Q, a continuous function of time?

(b) Do you think the current, I , is defined for all times,

t? [Hint: To graph this function, take, for example,

C = 1 and R = 1.]

7. A magnetic field, B, is given as a function of the distance,

r, from the center of a wire as follows:

B =







r

r0
B0 for r ≤ r0

r0
r
B0 for r > r0.

(a) Sketch a graph of B against r. What is the meaning

of the constant B0?

(b) Is B continuous at r = r0? Give reasons.

(c) Is B differentiable at r = r0? Give reasons.

8. A cable is made of an insulating material in the shape of

a long, thin cylinder of radius r0. It has electric charge

distributed evenly throughout it. The electric field, E, at

a distance r from the center of the cable is given by

E =

{
kr for r ≤ r0

k
r20
r

for r > r0.

(a) Is E continuous at r0?

(b) Is E differentiable at r0?

(c) Sketch a graph of E as a function of r.

9. Graph the function defined by

g(r) =
{
1 + cos (πr/2) for −2 ≤ r ≤ 2
0 for r < −2 or r > 2.

(a) Is g continuous at r = 2? Explain your answer.

(b) Do you think g is differentiable at r = 2? Explain

your answer.

10. The potential, φ, of a charge distribution at a point on the

y-axis is given by

φ =







2πσ
(√

y2 + a2 − y
)

for y ≥ 0

2πσ
(√

y2 + a2 + y
)

for y < 0

where σ and a are positive constants. [Hint: To graph this

function, take, for example, 2πσ = 1 and a = 1.]

(a) Is φ continuous at y = 0?

(b) Do you think φ is differentiable at y = 0?

11. Consider the function f(x) =
√
x. Assume f ′(4) =

1/4.

(a) Find and sketch f(x) and the tangent line approxi-

mation to f(x) near x = 4.

(b) Compare the true value of f(4.1) with the value ob-

tained by using the tangent line approximation.

(c) Compare the true and approximate values of f(16).
(d) Using a graph, explain why the tangent line approx-

imation is a good one when x = 4.1 but not when

x = 16.

12. Local linearization will give values too small for the

function x2 and too large for the function
√
x. Draw pic-

tures to explain why.

13. Find the local linearization of f(x) = x2 near x = 1.

14. Consider the graph of f(x) = x2 near x = 1. Find an in-

terval around x = 1 with the property that in any smaller

interval, the graph of f(x) = x2 never diverges from its

local linearization by more than 0.1|x−1| for all x in the

interval.

15. Consider a function f and a point a. Suppose there is a

number L such that the linear function g

g(x) = f(a) + L(x− a)

is a good approximation to f . By good approximation,

we mean that

lim
x→a

EL(x)

x− a
= 0,

where EL(x) is the approximation error defined by

f(x) = g(x) + EL(x) = f(a) + L(x− a) + EL(x).

Show that f is differentiable at x = a and that f ′(a) =
L. Thus the tangent line approximation is the only good

linear approximation.

F THE DEFINITE INTEGRAL

Recall that if f is continuous on [a, b] the definite integral is given by a limit of left or right sums:

∫ b

a

f(x) dx = lim
n→∞

n−1∑

i=0

f(xi)∆x = lim
x→∞

n∑

i=1

f(xi)∆x.
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This provides a method for approximating definite integrals numerically.5 In this section we give a

formal definition of the definite integral that makes use of more general sums.

A Special Case: Monotonic Functions

A function which is either increasing throughout an interval or decreasing throughout that interval

is said to be monotonic on the interval. In Section 5.1 we saw that if f is monotonic, the left and

right sums trap the exact value of the integral between them. Let us consider Example 1 on page 283

of the textbook, which looks at the value of

∫ 2

1

1

t
dt.

The left- and right-hand sums for n = 2, 10, 50, and 250 are listed in Table F.1.

Because the function f(t) = 1/t is decreasing, the left-hand sums converge to the integral from

above, and the right-hand sums converge from below. From the last row of the table we can deduce

that

0.6921 <

∫ 2

1

1

t
dt < 0.6941,

so
∫ 2

1
1
t dt ≈ 0.69 to two decimal places.

The Difference Between the Upper and Lower Estimates

To be sure that the left- and right-hand sums trap a unique number between them, we need to

know that the difference between them approaches zero. On page 277 we saw that for a monotonic

function f on the interval [a, b]:

∣
∣
∣
∣
∣

Difference between

upper and lower estimates

∣
∣
∣
∣
∣
= |f(b)− f(a)| ·∆t,

where ∆t = (b − a)/n. We can make this difference as small as we like by choosing ∆t small

enough.

When f Is Not Monotonic

If f is not monotonic, the definite integral is not always bracketed between the left- and right-

hand sums. For example, Table F.2 gives sums for the integral
∫ 2.5

0 sin(t2) dt. Although sin (t2)
is certainly not monotonic on [0, 2.5], by the time we get to n = 250, it is pretty clear that
∫ 2.5

0
sin (t2) dt ≈ 0.43 to two decimal places. Notice, however, that 0.43 does not lie between

1.2500 and 1.2085, the left- and right-hand sums for n = 2, or even between 0.4614 and 0.4531,

the two sums for n = 10. If the integrand is not monotonic, the left- and right-hand sums may both

be larger (or smaller) than the integral. (See Problems 2 and 3 for more examples of this behavior.)

Table F.1 Left- and right-hand sums for
∫ 2

1
1
t dt

n Left-hand sum Right-hand sum

2 0.8333 0.5833

10 0.7188 0.6688

50 0.6982 0.6882

250 0.6941 0.6921

5In practice, we often approximate integrals using more sophisticated numerical methods.



Theory Supplement Section F 27

Table F.2 Left- and right-hand sums for
∫ 2.5

0
sin(t2) dt

n Left-hand sum Right-hand sum

2 1.2500 1.2085

10 0.4614 0.4531

50 0.4324 0.4307

250 0.4307 0.4304

1000 0.4306 0.4305

Defining The Definite Integral by Upper and Lower Sums

When f is not monotonic, it is difficult to get upper and lower bounds for
∫ b

a f(x) dx from left and

right sums. So instead we take the following approach for any function, f . If f is continuous, this

new approach agrees with the previous approach. As before, we consider a subdivision of [a, b] into

n intervals; however, now we allow the subintervals to have different lengths. We let ∆xi be the

length of the i-th interval, and make the following definition:

Suppose that f is bounded above and below on [a, b]. A lower sum for f on the interval [a, b]
is a sum

n∑

i=1

mi∆xi,

where mi is the greatest lower bound for f on the i-th interval. An upper sum is

n∑

i=1

Mi∆xi,

where Mi is the least upper bound for f on the i-th interval.

See Figure F.21. Now instead of taking a limit as n → ∞, we consider the least upper and

greatest lower bounds of these sums. We make the following definition.

Definition of the Definite Integral

Suppose that f is bounded above and below on [a, b]. Let L be the least upper bound for all

the lower sums for f on [a, b], and let U be the greatest lower bound for all the upper sums. If

L = U , then we say that f is integrable and we define
∫ b

a f(x) dx to be equal to the common

value of L and U .

a b

Upper Sum (area
of dark and
light rectangles)

Lower Sum
(area of dark
rectangles)

x
xi xi+1

f(x)

✲✛∆x

✻

❄

Mi

✻

❄

mi

Figure F.21: Lower and upper sums approximating
∫ b

a
f(x) dx
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Using the Definition in a Proof

As an example, we will prove the theorem stated on page 306 of the textbook:

Theorem: The Mean Value Inequality for Integrals

If m ≤ f(x) ≤ M for all x in [a, b], and if f is integrable on [a, b], then

m(b− a) ≤
∫ b

a

f(x) dx ≤ M(b− a).

Geometrically, if f is positive, this theorem says that the area under the graph of f is less than

the area of the rectangle of height M , and greater than the area of the rectangle of height m. See

Figure ?? on page ?? of the textbook.

Proof The simplest subdivision of [a, b] is the one that consists of one subinterval, namely, [a, b] itself.

Although it does not give a very good approximation for the definite integral, it still counts as a

subdivision. The least upper bound for f on [a, b] is less than or equal to M , and the length of the

only subinterval in the subdivision is b − a. So the upper sum for this subdivision is less than or

equal to M(b− a). Since every upper sum is an upper estimate for
∫ b

a f(x) dx, we have

∫ b

a

f(x) dx ≤ Upper sum ≤ M(b− a).

The argument for the other inequality is similar, using lower sums. (See Problem 19.)

Problem 20 gives another example of a proof using the definition of the definite integral.

Continuous Functions Are Integrable

In this section we will prove the following:

Theorem: Continuous Functions are Integrable

If f is continuous on [a, b], then
∫ b

a
f(x) dx exists.

The Key Question

It can be shown (for example, using the Extreme Value Theorem on page 196) that a continuous

function on a finite interval is bounded above and below. Since any lower sum is less than or equal

to any upper sum (see Problems 13–17), it follows that L ≤ U . (See Problem 18.) To show that f is

integrable, we need only show that L = U , so the question is the following:

Can we find a subdivision where the lower sum is as close as we like to the upper sum?

If we could, then L < U would not be a possibility, since then U − L would be a positive number,

and we would be able to find lower and upper sums less than U − L apart. In that case, either the

lower sum would be bigger than L or the upper sum less than U . This can’t happen, since L is an

upper bound for the lower sums, and U is a lower bound for the upper sums.

We have already seen that if f is monotonic we can find upper and lower sums that are arbitrar-

ily close; just take the left and right sums. This proves that monotonic functions are integrable. If f
is not monotonic, we proceed differently.
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Squeezing the Integral Between Lower and Upper Sums

For a subdivision of [a, b] we have

Difference between upper and lower sums =

n∑

i=1

(Mi −mi)∆xi,

where Mi is the least upper bound for f on the i-th subinterval and mi is the greatest lower bound.

The number Mi − mi represents the amount by which f varies on the i-th subinterval; we call

Mi − mi the variation6 of f on this subinterval. Suppose that we could choose the subdivision so

that the variation on each subinterval was less than some small positive number ǫ. Then

Difference between upper and lower sums <

n∑

i=1

ǫ∆xi = ǫ

n∑

i=1

∆xi = ǫ(b− a).

By choosing ǫ small enough we would be able to make the difference as small as we liked. Thus the

next question is:

Can we find a subdivision where the maximum variation of f

on each of the subintervals is as small as we like?

Making the Variation Small on Each Subinterval

Let ǫ be a positive number, as small as we like. We want to prove that there is a subdivision of [a, b]
such that the variation of f on each subinterval is less than ǫ. We will give an indirect proof: we

assume that there is no such subdivision, and show that this leads to impossible consequences.

Divide the interval [a, b] into two halves. If each half has a subdivision where the maximum

variation on subintervals is less than ǫ, we can put the two subdivisions together to form a subdivi-

sion of [a, b] with the same property.

So if [a, b] fails to have such a subdivision, then so does one of the halves. Choose a half that

does not have such a subdivision and divide it in half again. Once more, one of the halves must fail

to have a subdivision where the variation of f on each subinterval is less than ǫ. Continuing in this

way we find a nested sequence of intervals, each of which fails to have such a subdivision.

By the Nested Interval Theorem on page ??, these intervals all contain some number c. Since f
is continuous at c, we can find an interval around c on which the variation is less than ǫ. One of our

nested intervals must be contained in this interval, since they get arbitrarily small. So the variation

of f on one of the nested intervals is less than ǫ. This is impossible, given the way we chose each

nested interval. So our supposition that [a, b] fails to have the required subdivision is false; there

must be a subdivision of [a, b] such that the variation of f on each subinterval is less than ǫ.

Summary

We have shown by contradiction that for every positive number ǫ, no matter how small, there is a

subdivision of [a, b] such that the variation of f on each subinterval is less than ǫ. This means we

can make the upper and lower sums as close as we like; hence L = U and
∫ b

a
f(x) dx = U = L.

That is, the continuous function f is integrable.

More General Riemann Sums

Left- and right-hand sums are special cases of Riemann sums. For a general Riemann sum, as with

upper and lower sums, we allow subdivisions to have different lengths. Also, instead of evaluating

6This is not the same as the total variation used in more advanced texts.
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f only at the left or right endpoint of each subdivision, we allow it to be evaluated anywhere in the

subdivision. Thus, a general Riemann sum has the form

n∑

i=1

(Value of f at some point in i-th subdivision) · (Length of i-th subdivision).

(See Figure F.22.) As before, we let x0, x1, . . . , xn be the endpoints of the subdivisions, so the

length of the i-th subdivision is ∆xi = xi − xi−1. For each i we choose a point ci in the i-th
subinterval at which to evaluate f , leading to the following definition:

A general Riemann sum for f on the interval [a, b] is a sum of the form

n∑

i=1

f(ci)∆xi,

where a = x0 < x1 < · · · < xn = b, and, for i = 1, . . . , n, ∆xi = xi − xi−1, and

xi−1 ≤ ci ≤ xi.

We define the error in an approximation to be the magnitude of the difference between the

approximate and the true values. (Notice that error doesn’t mean mistake here.) Since the true value

of the integral is between any upper estimate and any lower estimate, the error in approximating a

definite integral by a Riemann sum must be less than the difference between the upper and lower

sums using the same subdivision. If
∫ b

a
f(x) dx exists, there is a subdivision for which the upper

and lower sums are as close as we like. So we can approximate the integral arbitrarily closely by

Riemann sums.

a xi ci xi+1 b

f(x)

✲✛∆x

✻

❄

f(ci)

x

Figure F.22: A general Riemann sum approximating
∫ b

a
f(x) dx

Problems for Section F

1. Write a few sentences in support of or in opposition to

the following statement:

“If a left-hand sum underestimates a definite integral

by a certain amount, then the corresponding right-hand

sum will overestimate the integral by the same amount.”

2. Using the graph of 2 + cosx, for 0 ≤ x ≤ 4π, list the

following quantities in increasing order: the value of the

integral
∫ 4π

0
(2+cos x) dx, the left-hand sum with n = 2

subdivisions, and the right-hand sum with n = 2 subdi-

visions.

3. Sketch the graph of a function f (you do not need to give

a formula for f ) on an interval [a, b] with the property

that with n = 2 subdivisions,

∫ b

a

f(x) dx < Left-hand sum < Right-hand sum.

For Problems 4–12, find a subdivision using subintervals of
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equal length for which the lower and upper sums differ by

less than 0.1. Give these sums and an estimate for the integral

which is within 0.05 of the true value. Explain your reason-

ing. [Except for Problem 12, each function is monotonic over

the given interval.]

4.

∫ 5

0

x2 dx 5.

∫ 2

1

2x dx

6.

∫ 4

1

1√
1 + x2

dx 7.

∫ 1.5

1

sin x dx

8.

∫ π/4

0

dθ

cos θ
9.

∫ −1

−2

cos3 y dy

10.

∫ 5

1

(ln x)2 dx 11.

∫ 1.7

1.1

et ln t dt

12.

∫ 3

−3

e−t2 dt

In Problems 13–17 you will show that every lower sum for a

given bounded function f on an interval [a, b] is less than ev-

ery upper sum, using the idea of a refinement of a subdivision.

Given a subdivision of the interval [a, b], we can subdivide one

or more of its subintervals to obtain a new subdivision. We say

that the new subdivision is a refinement of the old one. Notice

that if one subdivision’s set of endpoints contains another’s,

then the first is a refinement of the second.

13. Show that the lower sum for f on [a, b] using a given sub-

division is less than or equal to the upper sum using the

same subdivision.

14. In this problem we will show that refining a subdivision

results in a lower sum which is larger than the original.

Let f be a function defined and bounded from below on

[a, b], and choose a subdivision of [a, b], with endpoints

a = x0 < x1 < · · · < xn−1 < xn = b.

(a) Suppose xi−1 ≤ y ≤ xi. Let mi be the greatest

lower bound for f on [xi−1, xi]. Show that mi is

less than or equal to the greatest lower bound for f
on [xi−1, y] and the greatest lower bound for f on

[y, xi].
(b) Show that the lower sum for f using the subdivision

a = x0 < x1 < · · · < xn−1 < xn = b is less than

or equal to the lower sum using the same subdivision

with y included.

(c) Show that the lower sum for f using the subdivision

a = x0 < x1 < · · · < xn−1 < xn = b is less

than or equal to the lower sum using any refinement

of the subdivision.

15. In this problem we will show that refining a subdivision

results in an upper sum which is smaller than the original.

Let f be a function defined and bounded from above on

[a, b], and choose a subdivision of [a, b], with endpoints

a = x0 < x1 < · · · < xn−1 < xn = b.

(a) Suppose xi−1 ≤ y ≤ xi. Let Mi be the least

upper bound for f on [xi−1, xi]. Show that Mi is

greater than or equal to the least upper bound for

f on [xi−1, y] and the least upper bound for f on

[y, xi].
(b) Show that the upper sum for f using the subdivision

a = x0 < x1 < · · · < xn−1 < xn = b is greater

than or equal to the upper sum using the same sub-

division with y included.

(c) Show that the upper sum for f using the subdivision

a = x0 < x1 < · · · < xn−1 < xn = b is greater

than or equal to the upper sum using any refinement

of the subdivision.

16. Given two subdivisions of [a, b], show that there is a third

one which is a refinement of both.

17. Show that any lower sum for f on [a, b] is less than or

equal to any upper sum. [Hint: The lower sum uses one

subdivision of [a, b]; the upper sum uses another. Use

Problem 16 to choose a common refinement of the two

subdivisions and then use Problems 13–15.]

18. Let f be a function defined and bounded on [a, b], let L
be the least upper bound for all the lower sums for f on

[a, b], and let U be the greatest lower bound for all the

upper sums.

(a) Show that if L were strictly greater than U , then

there would be a lower sum that was strictly greater

than an upper sum. [Hint: Let ǫ = L−U , and find a

lower sum within ǫ/3 of L and an upper sum within

ǫ/3 of U .]

(b) Deduce that L ≤ U .

19. On page ?? we proved one half of the Mean Value In-

equality for Integrals. Prove the other half: that is, if f is

continuous on [a, b] and f(x) ≥ m for x in [a, b], then

m(b− a) ≤
∫ b

a
f(x) dx.

20. In this problem we will prove that if f is continuous on

[a, b] and if c is in [a, b], then

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

(a) Show that if ℓ1 is a lower sum for f on [a, c], and if

ℓ2 is a lower sum for f on [c, b], then ℓ1 + ℓ2 is a

lower sum for f on [a, b].
(b) Show that if ℓ is a lower sum for f on [a, b], then

there is a lower sum ℓ1 for f on [a, c] and a lower

sum ℓ2 for f on [c, b] such that ℓ ≤ ℓ1 + ℓ2.

(c) Let L be the least upper bound of all the lower sums

on [a, b], let L1 be the least upper bound of all the

lower sums on [a, c], and let L2 be the least upper

bound of all the lower sums on [c, a]. Use parts (a)

and (b) to show that L = L1 + L2.

Since f is continuous on [a, b], L =
∫ b

a
f(x) dx, L1 =

∫ c

a
f(x) dx, and L2 =

∫ b

c
f(x) dx. Thus you have

proved the required statement.
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G THEOREMS ABOUT CONTINUOUS AND DIFFERENTIABLE FUNCTIONS

In Chapter 4 of the textbook we used some basic facts without proof: for example, that a continuous

function has a maximum on a bounded, closed interval, or that a function whose derivative is positive

on an interval is increasing on that interval.

From a geometric point of view, these facts seem obvious. If we draw the graph of a continuous

function, starting at one end of a bounded, closed interval and going to the other, it seems obvious

that we must pass a highest point on the way. And if the derivative of a function is positive, then its

graph must be sloping up, so the function has to be increasing.

However, this sort of graphical reasoning is not a rigorous proof, for two reasons. First, no

matter how many pictures we imagine, we can’t be sure we have covered all possibilities. Second,

our pictures often depend on the theorems we are trying to prove.

A Continuous Function on a Closed Interval Has a Maximum

The Extreme Value Theorem

If f is continuous on the interval [a, b], then f has a global maximum and a global minimum

on that interval.

Our proof has two parts: The first is to show that f has an upper bound on [a, b], the second is to

show that if f has an upper bound then it has a global maximum on the interval. Here we prove the

second part; the first part is proved in Problems 15 and 16. Then in Problem 5 we extend the result

from maxima to minima.

Proof We assume that f is continuous and has an upper bound on the interval [a, b]. This means f has a

least upper bound M on [a, b]. Divide [a, b] into two halves. Then, on one of the halves, the least

upper bound for f is M , for if it were less than M on both halves, it would be less than M on the

whole. Choose a half on which the least upper bound is equal to M . Continue bisecting and at each

stage choose the half-interval where the least upper bound for f is M . See Figure G.23. This results

in a sequence of nested intervals. By the Nested Interval Theorem on page ??, there is a number c
in [a, b] which is contained in all these intervals.

Since M is the least upper bound for f , we have f(c) ≤ M . It is not possible that f(c) < M .

For if f(c) < M , then f(c) < M0 for some number M0 < M . (For example, we could take M0

to be half-way between M and f(c).) But then, since f is continuous, there would be a δ > 0 such

that f(x) < M0 for all x in [a, b] with c − δ < x < c + δ. (See Problem 14.) Since the nested

intervals we constructed above have width tending to zero, one of them would be contained in the

interval c − δ < x < c + δ. Therefore, f would be bounded above by M0 on one of the nested

a b

✲✛

Second
half-interval

✲✛
First

half-interval

M
f

x

Figure G.23: Successively choosing the half-interval where the least upper bound of f is M
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intervals. However, we chose each nested interval so that the least upper bound for f is M . This is

a contradiction of M0 < M.
So it is not possible that f(c) < M ; we must have f(c) = M . Thus, M is the global maximum

of f on [a, b], which is what we wanted to show.

The Extreme Value Theorem guarantees the existence of global maxima (and minima) on an

interval. To actually find the global maxima, we look at all the local maxima. The following theorem

tells us that inside an interval, local maxima only occur at critical points, where the derivative is

either zero or undefined.

Theorem: Local Extrema and Critical Points

Suppose f is defined on an interval and has a local maximum or minimum at the point x = a,
which is not an endpoint of the interval. If f is differentiable at x = a, then f ′(a) = 0.

Proof We start with the definition of the derivative:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

Remember that this is a two-sided limit:

f ′(a) = lim
h→0−

f(a+ h)− f(a)

h
= lim

h→0+

f(a+ h)− f(a)

h
.

Suppose that f has a local maximum at x = a. By the definition of local maximum, f(a+h) ≤ f(a)
for all sufficiently small h. Thus f(a+ h)− f(a) ≤ 0 for sufficiently small h. The denominator, h,
is positive when we take the limit from the right and negative when we take the limit from the left.

Thus

lim
h→0−

f(a+ h)− f(a)

h
≥ 0 and lim

h→0+

f(a+ h)− f(a)

h
≤ 0.

Since both these limits are equal to f ′(a), we have f ′(a) ≥ 0 and f ′(a) ≤ 0, so we must have

f ′(a) = 0.

A Relationship Between Local and Global: The Mean Value Theorem

We often want to infer a global conclusion (for example, f is increasing on an interval) from local

information (f ′ is positive.) The following theorem relates the average rate of change of a function

on an interval (global information) to the instantaneous rate of change at a point in the interval (local

information).

The Mean Value Theorem

If f is continuous on [a, b] and differentiable on (a, b), then there exists a number c, with

a < c < b, such that

f ′(c) =
f(b)− f(a)

b− a
.

In other words, f(b)− f(a) = f ′(c)(b − a).
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To understand what this theorem is saying geometrically, consider the graph in Figure G.24.

Join the points on the curve where x = a and x = b with a line and observe that the slope of this

secant line AB is given by

m =
f(b)− f(a)

b− a
.

Now consider the tangent line drawn to the curve at each point between x = a and x = b. In general,

these lines will have different slopes. For the curve shown in Figure G.24, the tangent line at x = a
is flatter than the secant line from A to B. Similarly, the tangent line at x = b is steeper than the

secant line. However, there is at least one point between a and b where the slope of the tangent line

to the curve is precisely the same as the slope of the secant line. Suppose this occurs at x = c. Then

f ′(c) = m =
f(b)− f(a)

b− a
.

The Mean Value Theorem tells us that the point x = c exists, but it does not tell us how to find c.
Problems 17 and 18 show how the Mean Value Theorem can be deduced from the Extreme

Value Theorem.

a c b
x

❘

Slope =
f(b) − f(a)

b− a

✻
Slope
= f ′(c)

(a, f(a))

(b, f(b))

f(x)

Figure G.24: The point c with f ′(c) = f(b)−f(a)
b−a

The Increasing Function Theorem

We say that a function f is increasing on an interval if, for any two numbers x1 and x2 in the

interval such that x1 < x2, we have f(x1) < f(x2). If instead we have f(x1) ≤ f(x2), we say f is

nondecreasing.

The Increasing Function Theorem

Suppose that f is continuous on [a, b] and differentiable on (a, b).
• If f ′(x) > 0 on (a, b), then f is increasing on [a, b].

• If f ′(x) ≥ 0 on (a, b), then f is nondecreasing on [a, b].

Proof Suppose a ≤ x1 < x2 ≤ b. By the Mean Value Theorem, there is a number c, with x1 < c < x2,
such that

f(x2)− f(x1) = f ′(c)(x2 − x1).

If f ′(c) > 0, this says f(x2) − f(x1) > 0, which means f is increasing. If f ′(c) ≥ 0, this says

f(x2)− f(x1) ≥ 0, which means f is nondecreasing.

It may seem that something as simple as the Increasing Function Theorem should follow im-

mediately from the definition of the derivative, and that the use of the Mean Value Theorem (which

in turn depends on the Extreme Value Theorem) is surprising. It is possible to give a proof which

does not use the Mean Value Theorem, but not a simple one.



Theory Supplement Section G 35

The Constant Function Theorem

If f is constant on an interval, then we know that f ′(x) = 0 on the interval. The following theorem

is the converse.

The Constant Function Theorem

Suppose that f is continuous on [a, b] and differentiable on (a, b). If f ′(x) = 0 on (a, b),
then f is constant on [a, b].

Proof The proof is the same as for the Increasing Function Theorem, only in this case f ′(c) = 0 so

f(x2)− f(x1) = 0. Thus f(x2) = f(x1) for a ≤ x1 < x2 ≤ b, so f is constant.

A proof of the Constant Function Theorem using the Increasing Function Theorem is given in

Problems 6 and 8.

The Racetrack Principle

The Racetrack Principle7

Suppose that g and h are continuous on [a, b] and differentiable on (a, b), and that g′(x) ≤
h′(x) for a < x < b.
• If g(a) = h(a), then g(x) ≤ h(x) for a ≤ x ≤ b.

• If g(b) = h(b), then g(x) ≥ h(x) for a ≤ x ≤ b.

The Racetrack Principle has the following interpretation. We can think of g(x) and h(x) as the

positions of two racehorses at time x, with horse h always moving faster than horse g. If they start

together, horse h is ahead during the whole race. If they finish together, horse g was ahead during

the whole race.

Proof Consider the function f(x) = h(x) − g(x). Since f ′(x) = h′(x) − g′(x) ≥ 0, we know that f is

nondecreasing by the Increasing Function Theorem. So f(x) ≥ f(a) = h(a) − g(a) = 0. Thus

g(x) ≤ h(x) for a ≤ x ≤ b. This proves the first part of the Racetrack Principle. Problem 7 asks

for a proof of the second part.

Example 1 Explain graphically why ex ≥ 1 + x for all values of x. Then use the Racetrack Principle to prove

the inequality.

Solution The graph of the function f(x) = ex is concave up everywhere and the equation of its tangent line

at the point (0, 1) is y = x+1. (See Figure G.25.) Since the graph always lies above its tangent, we

have the inequality

ex ≥ 1 + x.

Now we prove the inequality using the Racetrack Principle. Let g(x) = 1 + x and h(x) = ex.

Then g(0) = h(0) = 1. Furthermore, g′(x) = 1 and h′(x) = ex. Hence g′(x) ≤ h′(x) for x ≥ 0.

So by the Racetrack Principle, with a = 0, we have g(x) ≤ h(x), that is, 1 + x ≤ ex.

For x ≤ 0 we have h′(x) ≤ g′(x). So by the Racetrack Principle, with b = 0, we have

g(x) ≤ h(x), that is, 1 + x ≤ ex.

7Based on the Racetrack Principle in Calculus&Mathematica, by William Davis, Horacio Porta, Jerry Uhl (Reading:

Addison Wesley, 1994).
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1

x

y
y = ex

y = x+ 1

Figure G.25: Graph showing that ex ≥ 1 + x

Problems for Section G

1. Use the Racetrack Principle and the fact that sin 0 = 0
to show that sin x ≤ x for all x ≥ 0.

2. Use the Racetrack Principle to show that ln x ≤ x− 1.

3. Use the fact that ln x and ex are inverse functions to show

that the inequalities ex ≥ 1+x and ln x ≤ x−1 are

equivalent for x > 0.

4. Suppose that the position of a particle moving along the

x-axis is given by s = f(t), and that the initial po-

sition and velocity of the particle are f(0) = 3 and

f ′(0) = 4. Suppose that the acceleration is bounded by

5 ≤ f ′′(t) ≤ 7 for 0 ≤ t ≤ 2. What can we say about

the position f(2) of the particle at t = 2?

5. Show that if every continuous function on an interval

[a, b] has a global maximum, then every continuous func-

tion has a global minimum as well. [Hint: Consider −f .]

6. State a Decreasing Function Theorem, analogous to

the Increasing Function Theorem. Deduce your theorem

from the Increasing Function Theorem. [Hint: Apply the

Increasing Function Theorem to −f .]

7. Suppose that g and h are continuous on [a, b] and dif-

ferentiable on (a, b). Prove that if g′(x) ≤ h′(x) for

a < x < b and g(b) = h(b), then h(x) ≤ g(x) for

a ≤ x ≤ b.

8. Deduce the Constant Function Theorem from the In-

creasing Function Theorem and the Decreasing Function

Theorem (see problem 6).

9. Prove that if f ′(x) = g′(x) for all x in (a, b), then

there is a constant C such that f(x) = g(x) + C on

(a, b). [Hint: Apply the Constant Function Theorem to

h(x) = f(x)− g(x).]

10. Suppose that f ′(x) = f(x) for all x. Prove that f(x) =
Cex for some constant C. [Hint: Consider the function

f(x)/ex.]

11. Suppose that f is continuous on [a, b] and differentiable

on (a, b) and that m ≤ f ′(x) ≤ M on (a, b). Use

the Racetrack Principle to prove that f(x) − f(a) ≤
M(x − a) for all x in [a, b], and that m(x − a) ≤
f(x) − f(a) for all x in [a, b]. Conclude that m ≤
(f(b) − f(a))/(b − a) ≤ M . This is called the Mean

Value Inequality. In words: If the instantaneous rate of

change of f is between m and M on an interval, so is the

average rate of change of f over the interval.

12. Suppose that f ′′(x) ≥ 0 for all x in (a, b). We will show

the graph of f lies above the tangent line at (c, f(c)) for

any c with a < c < b.

(a) Use the Increasing Function Theorem to prove that

f ′(c) ≤ f ′(x) for c ≤ x < b and that f ′(x) ≤
f ′(c) for a < x ≤ c.

(b) Use (a) and the Racetrack Principle to conclude that

f(c) + f ′(c)(x− c) ≤ f(x), for a < x < b.

13. In this problem we use the Mean Value Theorem to give

a proof of the Fundamental Theorem of Calculus. Let f
be continuous, with antiderivative F .

(a) Let [a, b] be an interval contained in the domain of

f , and let

a = x0 < x1 < · · · < xn−1 < xn = b

be a subdivision of [a, b]. Show that there is a Rie-

mann sum for f using this subdivision which is

equal to F (b)−F (a). [Hint: Apply the Mean Value

Theorem to

F (b)− F (a) = ((F (b)− F (xn−1))

+(F (xn−1)− F (xn−2)) + · · ·
+(F (x1)− F (a)).

(b) Deduce that F (b)− F (a) =
∫ b

a
f(x) dx.
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14. Suppose that f is continuous on [a, b], and let c be in

[a, b]. Show that if f(c) < M , then there is a δ such that

f(x) < M for all x in [a, b] such that c−δ < x < c+δ.

[Hint: Let ǫ = M − f(c), and choose δ such that

|f(x)− f(c)| < ǫ if |x− c| < δ.]

On page 196 we proved that a continuous function f has a

global maximum on the interval [a, b] under the assumption

that f has an upper bound on [a, b]. In Problems 15–16 we

prove this claim.

15. (a) Suppose that f has no upper bound on [a, b]. Bisect

[a, b] into two halves. Deduce that f has no upper

bound on at least one of the halves. Call that half

[a1, b1].
(b) Continue bisecting so that at the nth stage you ob-

tain an interval [an, bn] on which f has no upper

bound. By the Nested Interval Theorem on page ??,

there is a point c in all the intervals [an, bn].
(c) Use continuity of f at c to deduce that f has an up-

per bound on [an, bn] for n sufficiently large. This

contradicts the original supposition, so f must have

an upper bound on [a, b].

16. (a) Show that if y ≥ 0, then y/(1 + y) < 1.

(b) Suppose that f is continuous on [a, b] and that

f(x) ≥ 0 on [a, b]. Define a function g by g(x) =
f(x)/(1 + f(x)). Show that g is continuous and

bounded on [a, b]. It follows from the partial proof

of the Extreme Value Theorem on page 196 that g
has a global maximum on [a, b] at some point x = c.

(c) Suppose that y1 ≥ 0 and y2 ≥ 0, and that y1/(1 +
y1) ≤ y2/(1 + y2). Show that y1 ≤ y2.

(d) Use parts (c) and (d) to show that f has a global

maximum at x = c.

(e) We have shown that if f is continuous and non-

negative on [a, b], then it is bounded above on [a, b].
Now suppose that f is continuous, but not necessar-

ily non-negative. By applying the argument to |f |,
deduce that f is also bounded above.

17. In this problem we prove a special case of the Mean

Value Theorem where f(a) = f(b) = 0. This special

case is called Rolle’s Theorem: If f is continuous on

[a, b] and differentiable on (a, b), and if f(a) = f(b) =
0, then there is a number c, with a < c < b, such that

f ′(c) = 0.

By the Extreme Value Theorem, f has a global maximum

and a global minimum on [a, b].

(a) Prove Rolle’s theorem in the case that both the

global maximum and the global minimum are at

endpoints of [a, b]. [Hint: f(x) must be a very sim-

ple function in this case.]

(b) Prove Rolle’s theorem in the case that either the

global maximum or the global minimum is not at

an endpoint. [Hint: Think about local maxima and

minima.]

18. Use Rolle’s Theorem to prove the Mean Value Theorem.

Suppose that f(x) is continuous on [a, b] and differen-

tiable on (a, b).

a b

❄

Secant
line

✻❄■
g(x)

y = f(x)

y = f(a) +

(
f(b) − f(a)

b− a

)

(x− a)

x

y

Figure G.26: g(x) is the difference between the secant line and the

graph of f(x)

(a) Let g(x) be the difference between f(x) and the

y-value on the secant line joining (a, f(a)) to

(b, f(b)). See Figure G.26. Show that

g(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a).

(b) Use Rolle’s Theorem to show that there must be a

point c in (a, b) such that g′(c) = 0.

(c) Show that if c is the point in part (b), then

f ′(c) =
f(b)− f(a)

b− a
.

H LIMITS AND CONTINUITY FOR FUNCTIONS OF MANY VARIABLES

The sheer vertical face of Half Dome, in Yosemite National Park in California, was caused by

glacial activity during the Ice Age. (See Figure H.27.) The height of the terrain rises abruptly by

nearly 1000 feet as we scale the rock from the west, whereas it is possible to make a gradual climb

to the top from the east.

If we consider the function h giving the height of the terrain above sea level in terms of lon-

gitude and latitude, then h has a discontinuity along the path at the base of the cliff of Half Dome.

Looking at the contour map of the region in Figure H.28, we see that in most places a small change

in position results in a small change in height, except near the cliff. There, no matter how small a
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Figure H.27: Half Dome in Yosemite

National Park
Figure H.28: A contour map of Half Dome

step we take, we get a large change in height. (You can see how crowded the contours get near the

cliff; some end abruptly along the discontinuity.)

This geological feature illustrates the ideas of continuity and discontinuity. Roughly speaking,

a function is said to be continuous at a point if its values at places near the point are close to the

value at the point. If this is not the case, the function is said to be discontinuous.

The property of continuity is one that, practically speaking, we usually assume of the functions

we are studying. Informally, we expect (except under special circumstances) that values of a function

do not change drastically when making small changes to the input variables. Whenever we model a

one-variable function by an unbroken curve, we are making this assumption. Even when functions

come to us as tables of data, we usually make the assumption that the missing function values

between data points are close to the measured ones.

In this section we study limits and continuity a bit more formally in the context of functions

of several variables. For simplicity we study these concepts for functions of two variables, but our

discussion can be adapted to functions of three or more variables.

One can show that sums, products, and compositions of continuous functions are continuous,

while the quotient of two continuous functions is continuous everywhere the denominator function

is nonzero. Thus, each of the functions

cos(x2y), ln(x2 + y2),
ex+y

x+ y
, ln(sin(x2 + y2))

is continuous at all points (x, y) where it is defined. As for functions of one variable, the graph of a

continuous function over an unbroken domain is unbroken—that is, the surface has no holes or rips

in it.

Example 1 From Figures H.29–H.32, which of the following functions appear to be continuous at (0, 0)?

(a) f(x, y) =







x2y

x2 + y2
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).
(b) g(x, y) =







x2

x2 + y2
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).
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x
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z

Figure H.29: Graph of z = x2y/(x2 + y2)
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Figure H.30: Contour diagram of z = x2y/(x2 + y2)
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Figure H.31: Graph of z = x2/(x2 + y2)
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Figure H.32: Contour diagram of z = x2/(x2 + y2)

Solution (a) The graph and contour diagram of f in Figures H.29 and H.30 suggest that f is close to 0 when

(x, y) is close to (0, 0). That is, the figures suggest that f is continuous at the point (0, 0); the

graph appears to have no rips or holes there.

However, the figures cannot tell us for sure whether f is continuous. To be certain we must

investigate the limit analytically, as is done in Example 2(a) on page 40.

(b) The graph of g and its contours near (0, 0) in Figure H.31 and H.32 suggest that g behaves

differently from f : The contours of g seem to “crash” at the origin and the graph rises rapidly

from 0 to 1 near (0, 0). Small changes in (x, y) near (0, 0) can yield large changes in g, so we

expect that g is not continuous at the point (0, 0). Again, a more precise analysis is given in

Example 2(b) on page 40.

The previous example suggests that continuity at a point depends on a function’s behavior near

the point. To study behavior near a point more formally we need to define the limit of a function

of two variables. Suppose that f(x, y) is a function defined on a set in 2-space, not necessarily

containing the point (a, b), but containing points (x, y) arbitrarily close to (a, b); suppose that L is

a number.
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The function f has a limit L at the point (a, b), written

lim
(x,y)→(a,b)

f(x, y) = L,

if the difference |f(x, y) − L| is as small as we wish whenever the distance from the point

(x, y) to the point (a, b) is sufficiently small, but not zero.

We define continuity for functions of two variables in the same way as for functions of one

variable:

A function f is continuous at the point (a, b) if

lim
(x,y)→(a,b)

f(x, y) = f(a, b).

A function is continuous if it is continuous at each point of its domain.

Thus, if f is continuous at the point (a, b), then f must be defined at (a, b) and the limit,

lim(x,y)→(a,b) f(x, y), must exist and be equal to the value f(a, b). If a function is defined at a point

(a, b) but is not continuous there, then we say that f is discontinuous at (a, b).
We now apply the definition of continuity to the functions in Example 1, showing that f is

continuous at (0, 0) and that g is discontinuous at (0, 0).

Example 2 Let f and g be the functions defined everywhere on 2-space except at the origin as follows (a) f(x, y) =
x2y

x2 + y2
(b) g(x, y) =

x2

x2 + y2

Use the definition of the limit to show that lim
(x,y)→(0,0)

f(x, y) = 0 and that lim
(x,y)→(0,0)

g(x, y)

does not exist.

Solution (a) The graph and contour diagram of f both suggest that lim
(x,y)→(0,0)

f(x, y) = 0. To use the

definition of the limit, we must estimate |f(x, y)− L| with L = 0:

|f(x, y)− L| =
∣
∣
∣
∣

x2y

x2 + y2
− 0

∣
∣
∣
∣
=

∣
∣
∣
∣

x2

x2 + y2

∣
∣
∣
∣
|y| ≤ |y| ≤

√

x2 + y2,

Now
√

x2 + y2 is the distance from (x, y) to (0, 0). Thus, to make |f(x, y)− 0| < 0.001,

for example, we need only require (x, y) be within 0.001 of (0, 0). More generally, for any

positive number u, no matter how small, we are sure that |f(x, y)− 0| < u whenever (x, y) is

no farther than u from (0, 0). This is what we mean by saying that the difference |f(x, y) − 0|
can be made as small as we wish by choosing the distance to be sufficiently small. Thus, we

conclude that

lim
(x,y)→(0,0)

x2y

x2 + y2
= 0.

Notice that the function f has a limit at the point (0, 0) even though f was not defined at (0, 0).
To make f continuous at (0, 0) we must define its value there to be 0, as we did in Example 1.

(b) Although the formula defining the function g looks similar to that of f , we saw in Example 1

that g’s behavior near the origin is quite different. If we consider points (x, 0) lying along the

x-axis near (0, 0), then the values g(x, 0) are equal to 1, while if we consider points (0, y) lying

along the y-axis near (0, 0), then the values g(0, y) are equal to 0. Thus, within any disk (no

matter how small) centered at the origin, there are points where g = 0 and points where g = 1.

Therefore the limit lim(x,y)→(0,0) g(x, y) does not exist.
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While the notions of limit and continuity look formally the same for one- and two-variable

functions, they are somewhat more subtle in the multivariable case. The reason for this is that on the

line (1-space), we can approach a point from just two directions (left or right) but in 2-space there

are an infinite number of ways to approach a given point.

Problems for Section H

1. Show that the function f does not have a limit at (0, 0)
by examining the limits of f as (x, y) → (0, 0) along the

curve y = kx2 for different values of k. The function is

given by

f(x, y) =
x2

x2 + y
, x2 + y 6= 0.

2. Show that the function f does not have a limit at (0, 0)
by examining the limits of f as (x, y) → (0, 0) along the

line y = x and along the parabola y = x2. The function

is given by

f(x, y) =
x2y

x4 + y2
, (x, y) 6= (0, 0).

3. Consider the following function:

f(x, y) =

{
xy(x2 − y2)

x2 + y2
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

(a) Use a computer to draw the graph and the contour

diagram of f .

(b) Do your answers to part (a) suggest that f is contin-

uous at (0, 0)? Explain your answer.

4. Consider the function f , whose graph and contour dia-

gram are in Figures H.33 and H.34, and which is given

by

f(x, y) =

{
xy

x2 + y2
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

(a) Show that f(0, y) and f(x, 0) are each continuous

functions of one variable.

(b) Show that rays emanating from the origin are con-

tained in contours of f .

(c) Is f continuous at (0, 0)?

x

y

z

Figure H.33: Graph of z = xy/(x2 + y2)
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Figure H.34: Contour diagram of

z = xy/(x2 + y2)

For Problems 5–9 compute the limits of the functions f(x, y)
as (x, y) → (0, 0). You may assume that polynomials, expo-

nentials, logarithmic, and trigonometric functions are contin-

uous.

5. f(x, y) = x2 + y2 6. f(x, y) = e−x−y

7. f(x, y) =
x

x2 + 1
8. f(x, y) =

x+ y

(sin y) + 2

9. f(x, y) =
sin(x2 + y2)

x2 + y2
[Hint: You may assume that

limt→0(sin t)/t = 1.]

For the functions in Problems 10–12, show that

lim(x,y)→(0,0) f(x, y) does not exist.
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10. f(x, y) =
x+ y

x− y
, x 6= y

11. f(x, y) =
x2 − y2

x2 + y2

12. f(x, y) =
xy

|xy| , x 6= 0 and y 6= 0

13. Show that the contours of the function g defined in Exam-

ple 1(b) on page 38 are rays emanating from the origin.

Find the slope of the contour g(x, y) = c.
14. Explain why the following function is not continuous

along the line y = 0.

f(x, y) =

{

1− x, y ≥ 0,

−2, y < 0,

In Problems 15–16, determine whether there is a value for c
making the function continuous everywhere. If so, find it. If

not, explain why not.

15. f(x, y) =

{

c+ y, x ≤ 3,

5− y, x > 3.

16. f(x, y) =

{

c+ y, x ≤ 3,

5− x, x > 3.

I DIFFERENTIABILITY FOR FUNCTIONS OF MANY VARIABLES

In Section 14.3 of the textbook we gave an informal introduction to the concept of differentiability.

We called a function f(x, y) differentiable at a point (a, b) if it is well-approximated by a linear

function near (a, b). This section focuses on the precise meaning of the phrase “well-approximated.”

By looking at examples, we shall see that local linearity requires the existence of partial derivatives,

but they do not tell the whole story. In particular, existence of partial derivatives at a point is not

sufficient to guarantee local linearity at that point.

We begin by discussing the relation between continuity and differentiability. As an illustration,

take a sheet of paper, crumple it into a ball and smooth it out again. Wherever there is a crease it

would be difficult to approximate the surface by a plane—these are points of nondifferentiability

of the function giving the height of the paper above the floor. Yet the sheet of paper models a

graph which is continuous—there are no breaks. As in the case of one-variable calculus, continuity

does not imply differentiability. But differentiability does require continuity: there cannot be linear

approximations to a surface at points where there are abrupt changes in height.

Differentiability For Functions Of Two Variables

For a function of two variables, as for a function of one variable, we define differentiability at a

point in terms of the error and the distance from the point. If the point is (a, b) and a nearby point is

(a+ h, b+ k), the distance between them is
√
h2 + k2. (See Figure I.35.)

A function f(x, y) is differentiable at the point (a, b) if there is a linear function L(x, y) =
f(a, b) +m(x− a) + n(y − b) such that if the error E(x, y) is defined by

f(x, y) = L(x, y) + E(x, y),

and if h = x− a, k = y − b, then the relative error E(a+ h, b+ k)/
√
h2 + k2 satisfies

lim
h→0

k→0

E(a+ h, b+ k)√
h2 + k2

= 0.

The function f is differentiable if it is differentiable at each point of its domain. The

function L(x, y) is called the local linearization of f(x, y) near (a, b).
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x

y

z

(a, b)

✛ Distance =
√
h2 + k2

L(x, y)

f(x, y)

❄

E(x, y) = E(a+ h, b+ k)

✻

(a+ h, b+ k)

✛

✛

Figure I.35: Graph of function z = f(x, y) and its local linearization

z = L(x, y) near the point (a, b)

Partial Derivatives and Differentiability

In the next example, we show that this definition of differentiability is consistent with our previous

notion — that is, that m = fx and n = fy and that the graph of L(x, y) is the tangent plane.

Example 1 Show that if f is a differentiable function with local linearization L(x, y) = f(a, b) +m(x− a) +
n(y − b), then m = fx(a, b) and n = fy(a, b).

Solution Since f is differentiable, we know that the relative error in L(x, y) tends to 0 as we get close to

(a, b). Suppose h > 0 and k = 0. Then we know that

0 = lim
h→0

E(a+ h, b)√
h2 + k2

= lim
h→0

E(a+ h, b)

h
= lim

h→0

f(a+ h, b)− L(a+ h, b)

h

= lim
h→0

f(a+ h, b)− f(a, b)−mh

h

= lim
h→0

(
f(a+ h, b)− f(a, b)

h

)

−m = fx(a, b)−m.

A similar result holds if h < 0, so we have m = fx(a, b). The result n = fy(a, b) is found in a

similar manner.

The previous example shows that if a function is differentiable at a point, it has partial deriva-

tives there. Therefore, if any of the partial derivatives fail to exist, then the function cannot be

differentiable. This is what happens in the following example of a cone.

Example 2 Consider the function f(x, y) =
√

x2 + y2. Is f differentiable at the origin?
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x y

z

✿

Figure I.36: The function f(x, y) =
√

x2 + y2 is not locally linear at (0, 0): Zooming in around

(0, 0) does not make the graph look like a plane

Solution If we zoom in on the graph of the function f(x, y) =
√

x2 + y2 at the origin, as shown in Fig-

ure I.36, the sharp point remains; the graph never flattens out to look like a plane. Near its vertex,

the graph does not look like it is well approximated (in any reasonable sense) by any plane.

Judging from the graph of f , we would not expect f to be differentiable at (0, 0). Let us check

this by trying to compute the partial derivatives of f at (0, 0):

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

√
h2 + 0− 0

h
= lim

h→0

|h|
h
.

Since |h|/h = ±1, depending on whether h approaches 0 from the left or right, this limit does

not exist and so neither does the partial derivative fx(0, 0). Thus, f cannot be differentiable at the

origin. If it were, both of the partial derivatives, fx(0, 0) and fy(0, 0), would exist.

Alternatively, we could show directly that there is no linear approximation near (0, 0) that

satisfies the small relative error criterion for differentiability. Any plane passing through the point

(0, 0, 0) has the form L(x, y) = mx + ny for some constants m and n. If E(x, y) = f(x, y) −
L(x, y), then

E(x, y) =
√

x2 + y2 −mx− ny.

Then for f to be differentiable at the origin, we would need to show that

lim
h→0

k→0

√
h2 + k2 −mh− nk√

h2 + k2
= 0.

Taking k = 0 gives

lim
h→0

|h| −mh

|h| = 1−m lim
h→0

h

|h| .

This limit exists only if m = 0 for the same reason as before. But then the value of the limit is 1

and not 0 as required. Thus, we again conclude f is not differentiable.

In Example 2 the partial derivatives fx and fy did not exist at the origin and this was sufficient

to establish nondifferentiability there. We might expect that if both partial derivatives do exist, then

f is differentiable. But the next example shows that this not necessarily true: the existence of both

partial derivatives at a point is not sufficient to guarantee differentiability.

Example 3 Consider the function f(x, y) = x1/3y1/3. Show that the partial derivatives fx(0, 0) and fy(0, 0)
exist, but that f is not differentiable at (0, 0).
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x

y

z

Figure I.37: Graph of z = x1/3y1/3 for z ≥ 0

Solution See Figure I.37 for the part of the graph of z = x1/3y1/3 when z ≥ 0. We have f(0, 0) = 0 and we

compute the partial derivatives using the definition:

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0,

and similarly

fy(0, 0) = 0.

So, if there did exist a linear approximation near the origin, it would have to be L(x, y) = 0. But

we can show that this choice of L(x, y) doesn’t result in the small relative error that is required for

differentiability. In fact, since E(x, y) = f(x, y)− L(x, y) = f(x, y), we need to look at the limit

lim
h→0

k→0

h1/3k1/3√
h2 + k2

.

If this limit exists, we get the same value no matter how h and k approach 0. Suppose we take

k = h > 0. Then the limit becomes

lim
h→0

h1/3h1/3

√
h2 + h2

= lim
h→0

h2/3

h
√
2
= lim

h→0

1

h1/3
√
2
.

But this limit does not exist, since small values for h will make the fraction arbitrarily large. So the

only possible candidate for a linear approximation at the origin does not have a sufficiently small

relative error. Thus, this function is not differentiable at the origin, even though the partial derivatives

fx(0, 0) and fy(0, 0) exist. Figure I.37 confirms that near the origin the graph of z = f(x, y) is not

well approximated by any plane.

In summary,

• If a function is differentiable at a point, then both partial derivatives exist there.

• Having both partial derivatives at a point does not guarantee that a function is differen-

tiable there.

Continuity and Differentiability

We know that differentiable functions of one variable are continuous. Similarly, it can be shown that

if a function of two variables is differentiable at a point, then the function is continuous there.

In Example 3 the function f was continuous at the point where it was not differentiable. Ex-

ample 4 shows that even if the partial derivatives of a function exist at a point, the function is not

necessarily continuous at that point if it is not differentiable there.
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Example 4 Suppose that f is the function of two variables defined by

f(x, y) =

{ xy

x2 + y2
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

Problem 4 on page 41 showed that f(x, y) is not continuous at the origin. Show that the partial

derivatives fx(0, 0) and fy(0, 0) exist. Could f be differentiable at (0, 0)?

Solution From the definition of the partial derivative we see that

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

(
1

h
· 0

h2 + 02

)

= lim
h→0

0

h
= 0,

and similarly

fy(0, 0) = 0.

So, the partial derivatives fx(0, 0) and fy(0, 0) exist. However, f cannot be differentiable at the

origin since it is not continuous there.

In summary,

• If a function is differentiable at a point, then it is continuous there.

• Having both partial derivatives at a point does not guarantee that a function is continuous

there.

How Do We Know If a Function Is Differentiable?

Can we use partial derivatives to tell us if a function is differentiable? As we see from Examples 3

and 4, it is not enough that the partial derivatives exist. However, the following condition does

guarantee differentiability:

If the partial derivatives, fx and fy, of a function f exist and are continuous on a small disk

centered at the point (a, b), then f is differentiable at (a, b).

We will not prove this fact, although it provides a criterion for differentiability which is often

simpler to use than the definition. It turns out that the requirement of continuous partial derivatives

is more stringent than that of differentiability, so there exist differentiable functions which do not

have continuous partial derivatives. However, most functions we encounter will have continuous

partial derivatives. The class of functions with continuous partial derivatives is given the name C1.

Example 5 Show that the function f(x, y) = ln(x2 + y2) is differentiable everywhere in its domain.

Solution The domain of f is all of 2-space except for the origin. We shall show that f has continuous partial

derivatives everywhere in its domain (that is, the function f is in C1). The partial derivatives are

fx =
2x

x2 + y2
and fy =

2y

x2 + y2
.

Since each of fx and fy is the quotient of continuous functions, the partial derivatives are con-

tinuous everywhere except the origin (where the denominators are zero). Thus, f is differentiable

everywhere in its domain.
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Most functions built up from elementary functions have continuous partial derivatives, except

perhaps at a few obvious points. Thus, in practice, we can often identify functions as being C1

without explicitly computing the partial derivatives.

The Error in Linear and Quadratic Taylor Approximations

On page 809 of the textbook, we saw how to approximate a function f(x, y) by Taylor polynomials.

(The Taylor polynomial of degree 1 is the local linearization.) We now compare the magnitudes of

the errors in the linear and quadratic approximations.

Let’s return to the function f(x, y) = cos(2x+y)+sin(x+y). The contour plots in Example 4

on page 810 of the textbook suggest that the quadratic approximation, Q(x, y), is a better approxi-

mation to f than the linear approximation, L(x, y). Consider approximations about the point (0, 0).
The errors in the linear and the quadratic approximations are defined as

EL = f(x, y)− L(x, y) EQ = f(x, y)−Q(x, y).

Table I.3 shows how the magnitudes of these errors, |EL| and |EQ|, depend on the distance, d(x, y) =
√

x2 + y2, of the point (x, y) from (0, 0). The values in Table I.3 suggest that, in this example,

EL is proportional to d2 and EQ is proportional to d3.

In general, the errors EL and EQ can be shown to be proportional to d2 and d3, respectively.

Table I.3 Magnitude of the error in the linear and quadratic

approximations to f(x, y) = cos(2x+ y) + sin(x+ y)

Point, (x, y) Distance, d Error, |EL| Error, |EQ|
x = y = 0 0 0 0

x = y = 10−1 1.4 · 10−1 5 · 10−2 4 · 10−3

x = y = 10−2 1.4 · 10−2 5 · 10−4 4 · 10−6

x = y = 10−3 1.4 · 10−3 5 · 10−6 4 · 10−9

x = y = 10−4 1.4 · 10−4 5 · 10−8 4 · 10−12

To use these approximations in practice, we need bounds on the magnitudes of the errors. If the

distance between (x, y) and (a, b) is represented by d(x, y) =
√

(x − a)2 + (y − b)2, it can be

shown that the following results hold:

Error Bound for Linear Approximation

Suppose f(x, y) is a function with continuous second-order partial derivatives such that for

d(x, y) ≤ d0,

|fxx|, |fxy|, |fyy| ≤ ML.

Suppose

f(x, y) = L(x, y) + EL(x, y)

= f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b) + EL(x, y).

Then we have

|EL(x, y)| ≤ 2MLd(x, y)
2 for d(x, y) ≤ d0.

Note that the upper bound for the error term EL(x, y) has a form reminiscent of the second-

order term in the Taylor formula for f(x, y).
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Error Bound for Quadratic Approximation

Suppose f(x, y) is a function with continuous third-order partial derivatives such that for

d(x, y) ≤ d0,

|fxxx|, |fxxy|, |fxyy|, |fyyy| ≤ MQ.

Suppose

f(x, y) = Q(x, y) + EQ(x, y)

= f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

+
fxx(a, b)

2
(x− a)2 + fxy(a, b)(x− a)(y − b) +

fyy(a, b)

2
(y − b)2 + EQ(x, y).

Then we have

|EQ(x, y)| ≤
4

3
MQd(x, y)

3 for d(x, y) ≤ d0.

Problem 15 shows how these error estimates and the coefficients (2 and 4/3) are obtained. The

important thing to notice is the fact that, for small d, the magnitude of EL is much smaller than d
and the magnitude of EQ is much smaller than d2. In other words we have the following result:

As d(x, y) → 0:

EL(x, y)

d(x, y)
→ 0 and

EQ(x, y)

(d(x, y))2
→ 0.

This means that near the point (a, b), we can view the original function and the approximation

as indistinguishable and behaving the same way.

Example 6 Suppose that the Taylor polynomial of degree 2 for f at (0, 0) is Q(x, y) = 5x2 +3y2. Suppose we

are also told that

|fxxx|, |fxxy|, |fxyy|, |fyyy| ≤ 9.

Notice that Q(x, y) > 0 for all (x, y) except (0, 0). Show that, except at (0, 0), we have

f(x, y) > 0 for all (x, y) such that
√

x2 + y2 = d < 0.25.

Solution By the error bound for the Taylor polynomial of degree 2, we have

|EQ(x, y)| = |f(x, y)−Q(x, y)| ≤ 4

3
(9)d3 = 12d3

which can be written as

−12d3 ≤ f(x, y)−Q(x, y) ≤ 12d3.

Therefore we know that

Q(x, y)− 12d3 ≤ f(x, y).

Since Q(x, y) = 5x2 + 3y2, we have

5x2 + 3y2 − 12d3 ≤ f(x, y).
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Since 5x2 + 3y2 ≥ 3x2 + 3y2 = 3d2, we have

3d2 − 12d3 ≤ f(x, y).

Now d3 approaches 0 faster than d2, so when d is small, we have

0 ≤ 3d2 − 12d3 ≤ f(x, y).

In fact, writing 3d2 − 12d3 = 3d2(1− 4d) shows that d < 1/4 ensures that f(x, y) > 0, except at

(0, 0) where f = 0. Thus, f has the same sign as Q for points near (0, 0).

Problems for Section I

For the functions f in Problems 1–4 answer the following

questions. Justify your answers.

(a) Use a computer to draw a contour diagram for f .

(b) Is f differentiable at all points (x, y) 6= (0, 0)?

(c) Do the partial derivatives fx and fy exist and are they

continuous at all points (x, y) 6= (0, 0)?

(d) Is f differentiable at (0, 0)?

(e) Do the partial derivatives fx and fy exist and are they

continuous at (0, 0)?

1. f(x, y) =







x

y
+

y

x
, x 6= 0 and y 6= 0,

0, x = 0 or y = 0.

2. f(x, y) =

{
2xy

(x2 + y2)2
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

3. f(x, y) =

{ xy
√

x2 + y2
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

4. f(x, y) =

{
x2y

x4 + y2
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

5. Consider the function

f(x, y) =

{
xy2

x2 + y2
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

(a) Use a computer to draw the contour diagram for f .

(b) Is f differentiable for (x, y) 6= (0, 0)?
(c) Show that fx(0, 0) and fy(0, 0) exist.

(d) Is f differentiable at (0, 0)?
(e) Suppose x(t) = at and y(t) = bt, where a and b

are constants, not both zero. If g(t) = f(x(t), y(t)),
show that

g′(0) =
ab2

a2 + b2
.

(f) Show that

fx(0, 0)x
′(0) + fy(0, 0)y

′(0) = 0.

Does the chain rule hold for the composite function

g(t) at t = 0? Explain.

(g) Show that the directional derivative f~u (0, 0) exists

for each unit vector ~u . Does this imply that f is dif-

ferentiable at (0, 0)?

6. Consider the function

f(x, y) =

{
xy2

x2 + y4
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

(a) Use a computer to draw the contour diagram for f .

(b) Show that the directional derivative f~u (0, 0) exists

for each unit vector ~u .

(c) Is f continuous at (0, 0)? Is f differentiable at

(0, 0)? Explain.

7. Consider the function f(x, y) =
√

|xy|.

(a) Use a computer to draw the contour diagram for f .

Does the contour diagram look like that of a plane

when we zoom in on the origin?

(b) Use a computer to draw the graph of f . Does the

graph look like a plane when we zoom in on the ori-

gin?

(c) Is f differentiable for (x, y) 6= (0, 0)?
(d) Show that fx(0, 0) and fy(0, 0) exist.

(e) Is f differentiable at (0, 0)? [Hint: Consider the di-

rectional derivative f~u (0, 0) for ~u = (~i +~j )/
√
2.]

8. Suppose a function f is differentiable at the point (a, b).
Show that f is continuous at (a, b).

9. Suppose f(x, y) is a function such that fx(0, 0) = 0 and

fy(0, 0) = 0, and f~u (0, 0) = 3 for ~u = (~i +~j )/
√
2.

(a) Is f differentiable at (0, 0)? Explain.

(b) Give an example of a function f defined on 2-space

which satisfies these conditions. [Hint: The function

f does not have to be defined by a single formula

valid over all of 2-space.]



50 Theory Supplement Section J

10. Consider the following function:

f(x, y) =

{
xy(x2 − y2)

x2 + y2
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

The graph of f is shown in Figure I.38, and the contour

diagram of f is shown in Figure I.39.

x y

z

Figure I.38: Graph of
xy(x2 − y2)

x2 + y2
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−
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−.85

.25

−.25

.25

−.25
−
.25

.25
x

y

Figure I.39: Contour diagram of

xy(x2 − y2)

x2 + y2

(a) Find fx(x, y) and fy(x, y) for (x, y) 6= (0, 0).
(b) Show that fx(0, 0) = 0 and fy(0, 0) = 0.

(c) Are the functions fx and fy continuous at (0, 0)?
(d) Is f differentiable at (0, 0)?

For Problems 11–14:

(a) Find the local linearization, L(x, y), to the function

f(x, y) at the origin. Estimate the error EL(x, y) =
f(x, y)− L(x, y) if |x| ≤ 0.1 and |y| ≤ 0.1.

(b) Find the degree 2 Taylor polynomial, Q(x, y), for

the function f(x, y) at the origin. Estimate the error

EQ(x, y) = f(x, y) − Q(x, y) if |x| ≤ 0.1 and |y| ≤
0.1.

(c) Use a calculator to compute exactly f(0.1, 0.1) and the

errors EL(0.1, 0.1) and EQ(0.1, 0.1). How do these val-

ues compare with the errors predicted in parts (a) and

(b)?

11. f(x, y) = (cos x)(cos y)

12. f(x, y) = (ex − x) cos y

13. f(x, y) = ex+y

14. f(x, y) = (x2 + y2)ex+y

15. It is known that if the derivatives of a one-variable func-

tion, g(t), satisfy

|g(n+1)(t)| ≤ K for |t| ≤ d0,

then the error, En, in the nth Taylor approximation,

Pn(x), is bounded as follows:

|En| = |g(t)−Pn(t)| ≤ K

(n+ 1)!
|t|n+1

for |t| ≤ d0.

In this problem, we use this result for g(t) to get the er-

ror bounds for the linear and quadratic Taylor approxi-

mations to f(x, y). For a particular function f(x, y), let

x = ht and y = kt for fixed h and k, and define g(t) as

follows:

g(t) = f(ht, kt) for 0 ≤ t ≤ 1.

(a) Calculate g′(t), g′′(t), and g′′′(t) using the chain

rule.

(b) Show that L(ht, kt) = P1(t) and that Q(ht, kt) =
P2(t), where L is the linear approximation to f at

(0, 0) and Q is the Taylor polynomial of degree 2

for f at (0, 0).
(c) What is the relation between EL = f(x, y) −

L(x, y) and E1? What is the relation between EQ =
f(x, y)−Q(x, y) and E2?

(d) Assuming that the second and third-order partial

derivatives of f are bounded for d(x, y) ≤ d0, show

that |EL| and |EQ| are bounded as on page 47.

J EXISTENCE OF GLOBAL EXTREMA FOR FUNCTIONS OF MANY VARIABLES

Under what circumstances does a function of two variables have a global maximum or minimum?

The next example shows that a function may have both a global maximum and a global minimum

on a region, or just one, or neither.
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Example 1 Investigate the global maxima and minima of the following functions:

(a) h(x, y) = 1 + x2 + y2 on the disk x2 + y2 ≤ 1.

(b) f(x, y) = x2 − 2x+ y2 − 4y + 5 on the xy-plane.

(c) g(x, y) = x2 − y2 on the xy-plane.

Solution (a) The graph of h(x, y) = 1 + x2 + y2 is a bowl shaped paraboloid with a global minimum of 1
at (0, 0), and a global maximum of 2 on the edge of the region, x2 + y2 = 1.

(b) The graph of f in Figure ?? on page ?? of the textbook shows that f has a global minimum

at the point (1, 2) and no global maximum (because the value of f increases without bound as

x → ∞, y → ∞).

(c) The graph of g in Figure ?? on page ?? of the textbook shows that g has no global maximum

because g(x, y) → ∞ as x → ∞ if y is constant. Similarly, g has no global minimum because

g(x, y) → −∞ as y → ∞ if x is constant.

There are, however, conditions that guarantee that a function has a global maximum and min-

imum. For h(x), a function of one variable, the function must be continuous on a closed interval

a ≤ x ≤ b. If h is continuous on a non-closed interval, such as a ≤ x < b or a < x < b, or on an

interval which is not bounded, such as a < x < ∞, then h need not have a maximum or minimum

value. What is the situation for functions of two variables? As it turns out, a similar result is true for

continuous functions defined on regions which are closed and bounded, analogous to the closed and

bounded interval a ≤ x ≤ b. In everyday language we say

• A closed region is one which contains its boundary;

• A bounded region is one which does not stretch to infinity in any direction.

More precise definitions are as follows. Suppose R is a region in 2-space. A point (x0, y0) is a

boundary point of R if, for every r > 0, the disk (x− x0)
2 + (y − y0)

2 < r2 with center (x0, y0)
and radius r contains both points which are in R and points which are not in R. See Figure J.40.

A point (x0, y0) can be a boundary point of the region R without actually belonging to R. A point

(x0, y0) in R is an interior point if it is not a boundary point; thus, for small enough r > 0, the disk

of radius r centered at (x0, y0) lies entirely in the region R. See Figure J.41. The collection of all

the boundary points is the boundary of R and the collection of all the interior points is the interior

of R. The region R is closed if it contains its boundary, while it is open if every point in R is an

interior point.

A region R in 2-space is bounded if the distance between every point (x, y) in R and the origin

is less than or equal to some constant number K . Closed and bounded regions in 3-space are defined

in the same way.

R

(x0, y0)

Figure J.40: Boundary point (x0, y0) of R

R

(x0, y0)

Figure J.41: Interior point (x0, y0) of R
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Example 2 (a) The square −1 ≤ x ≤ 1, −1 ≤ y ≤ 1 is closed and bounded.

(b) The first quadrant x ≥ 0, y ≥ 0 is closed but is not bounded.

(c) The disk x2 + y2 < 1 is open and bounded, but is not closed.

(d) The half-plane y > 0 is open, but is neither closed nor bounded.

The reason that closed and bounded regions are useful is the following result8:

If f is a continuous function on a closed and bounded region R, then f has a global maximum

at some point (x0, y0) in R and a global minimum at some point (x1, y1) in R.

The result is also true for functions of three or more variables.

If f is not continuous or the region R is not closed and bounded, there is no guarantee that f
will achieve a global maximum or global minimum on R. In Example 1, the function g is continuous

but does not achieve a global maximum or minimum in 2-space, a region which is closed but not

bounded. The following example illustrates what can go wrong when the region is bounded but not

closed.

Example 3 Does the following function have a global maximum or minimum on the regionR given by 0 < x2 + y2 ≤ 1?

f(x, y) =
1

x2 + y2

Solution The region R is bounded, but it is not closed since it does not contain the boundary point (0, 0).
We see from the graph of z = f(x, y) in Figure J.42 that f has a global minimum on the circle

x2 + y2 = 1. However, f(x, y) → ∞ as (x, y) → (0, 0), so f has no global maximum.

x y

z

Figure J.42: Graph showing f(x, y) = 1
x2+y2 has no global maximum on 0 < x2 + y2 ≤ 1

K CHANGE OF VARIABLES IN A MULTIPLE INTEGRAL

In Chapter 16 we used polar, cylindrical, and spherical coordinates to simplify iterated integrals.

In this section, we discuss more general changes of variable. In the process, we will see where the

extra factor of r comes from when we change from Cartesian to polar coordinates and the factor

ρ2 sinφ when we change from Cartesian to spherical coordinates.

8For a proof, see W. Rudin, Principles of Mathematical Analysis, 2nd ed., p. 89, (New York: McGraw-Hill, 1976)
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Polar Change of Variables Revisited

Consider the integral
∫

R(x+ y) dA where R is the region in the first quadrant bounded by the circle

x2 + y2 = 16 and the x and y-axes. Writing the integral in Cartesian and polar coordinates we have

∫

R

(x+ y) dA =

∫ 4

0

∫
√
16−x2

0

(x + y) dy dx =

∫ π/2

0

∫ 4

0

(r cos θ + r sin θ)r drdθ.

This is an integral over the rectangle in the rθ-space given by 0 ≤ r ≤ 4, 0 ≤ θ ≤ π/2. The con-

version from polar to Cartesian coordinates changes this rectangle into a quarter-disk. Figure K.43

shows how a typical rectangle (shaded) in the rθ-plane with sides of length ∆r and ∆θ corresponds

to a curved rectangle in the xy-plane with sides of length ∆r and r∆θ. The extra r is needed be-

cause the correspondence between r, θ and x, y not only curves the lines r = 1, 2, 3 . . . into circles,

it also stretches those lines around larger and larger circles.

1 2 3 4

π/8

π/4

3π/8

π/2

θ = π/8

θ = π/4

r = 2 r = 3

r

θ

1 2 3 4

1

2

3

x

y

θ = π/4

θ = π/8

Figure K.43: A grid in the rθ-plane and the corresponding curved grid in the xy-plane

General Change of Variables

We now consider a general change of variable, where x, y coordinates are related to s, t coordinates

by the differentiable functions

x = x(s, t) y = y(s, t).

Just as a rectangular region in the rθ-plane corresponds to a circular region in the xy-plane, a

rectangular region, T , in the st-plane corresponds to a curved region,R, in the xy-plane. We assume

that the change of coordinates is one-to-one, that is, that each point R corresponds to one point in

T .

(s, t) (s+∆s, t)

s

t

Ti,j

(s, t+∆t)

(x(s, t), y(s, t))

(x(s, t+∆t), y(s, t+∆t))

x

y

~b

Ri,j

(x(s+∆s, t), y(s+∆s, t))

~a

Figure K.44: A small rectangle Ti,j in the st-plane and the corresponding region Ri,j of the xy-plane

We divide T into small rectangles Ti,j with sides of length ∆s and ∆t. (See Figure K.44.) The

corresponding piece Ri,j of the xy-plane is a quadrilateral with curved sides. If we choose ∆s and

∆t very small, then by local linearity, Ri,j is approximately a parallelogram.
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Recall from Chapter 13 that the area of the parallelogram with sides ~a and~b is ‖~a ×~b ‖. Thus,

we need to find the sides of Ri,j as vectors. The side of Ri,j corresponding to the bottom side of

Ti,j has endpoints (x(s, t), y(s, t)) and (x(s +∆s, t), y(s+∆s, t)), so in vector form that side is

~a = (x(s+∆s, t)−x(s, t))~i +(y(s+∆s, t)−y(s, t))~j +0~k ≈
(
∂x

∂s
∆s

)

~i +

(
∂y

∂s
∆s

)

~j +0~k .

Similarly, the side of Ri,j corresponding to the left edge of Ti,j is given by

~b ≈
(
∂x

∂t
∆t

)

~i +

(
∂y

∂t
∆t

)

~j + 0~k .

Computing the cross product, we get

Area Ri,j ≈ ‖~a ×~b ‖ ≈
∣
∣
∣
∣

(
∂x

∂s
∆s

)(
∂y

∂t
∆t

)

−
(
∂x

∂t
∆t

)(
∂y

∂s
∆s

)∣
∣
∣
∣

=

∣
∣
∣
∣

∂x

∂s
· ∂y
∂t

− ∂x

∂t
· ∂y
∂s

∣
∣
∣
∣
∆s∆t.

Using determinant notation, we define the Jacobian,
∂(x, y)

∂(s, t)
, as follows

∂(x, y)

∂(s, t)
=

∂x

∂s
· ∂y
∂t

− ∂x

∂t
· ∂y
∂s

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂x
∂s

∂y
∂s

∂x
∂t

∂y
∂t

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Thus, we can write

Area Ri,j ≈
∣
∣
∣
∣

∂(x, y)

∂(s, t)

∣
∣
∣
∣
∆s∆t.

To compute
∫

R f(x, y) dA, where f is a continuous function, we look at the Riemann sum obtained

by dividing the region R into the small curved regions Ri,j , giving

∫

R

f(x, y) dA ≈
∑

i,j

f(xi, yj) · Area of Ri,j ≈
∑

i,j

f(xi, yj)

∣
∣
∣
∣

∂(x, y)

∂(s, t)

∣
∣
∣
∣
∆s∆t.

Each point (xi, yj) corresponds to a point (si, tj), so the sum can be written in terms of s and t:

∑

i,j

f(x(si, tj), y(si, tj))

∣
∣
∣
∣

∂(x, y)

∂(s, t)

∣
∣
∣
∣
∆s∆t.

This is a Riemann sum in terms of s and t, so as ∆s and ∆t approach 0, we get

∫

R

f(x, y) dA =

∫

T

f(x(s, t), y(s, t))

∣
∣
∣
∣

∂(x, y)

∂(s, t)

∣
∣
∣
∣
ds dt.

To convert an integral from x, y to s, t coordinates we make three changes:

1. Substitute for x and y in the integrand in terms of s and t.

2. Change the xy region R into an st region T .

3. Introduce the absolute value of the Jacobian,

∣
∣
∣
∣

∂(x, y)

∂(s, t)

∣
∣
∣
∣
, representing the change in the

area element.
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Example 1 Verify that the Jacobian
∂(x, y)

∂(r, θ)
= r for polar coordinates x = r cos θ, y = r sin θ.

Solution
∂(x, y)

∂(r, θ)
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂x
∂r

∂y
∂r

∂x
∂θ

∂y
∂θ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

cos θ sin θ

−r sin θ r cos θ

∣
∣
∣
∣
∣
= r cos2 θ + r sin2 θ = r.

Example 2 Find the area of the ellipse
x2

a2
+

y2

b2
= 1.

Solution Let x = as, y = bt. Then the ellipse x2/a2 + y2/b2 = 1 in the xy-plane corresponds to the circle

s2 + t2 = 1 in the st-plane. The Jacobian is

∣
∣
∣
∣
∣

a 0

0 b

∣
∣
∣
∣
∣
= ab. Thus, if we let R be the ellipse in the

xy-plane and T the unit circle in the st-plane, we get

Area of xy-ellipse =

∫

R

1 dA =

∫

T

1ab ds dt = ab

∫

T

ds dt = ab · Area of st-circle = πab.

Change of Variables in Triple Integrals

For triple integrals, there is a similar formula. Suppose the differentiable functions

x = x(s, t, u), y = y(s, t, u), z = z(s, t, u)

define a change of variables from a region S in stu-space to a region W in xyz-space. Then, the

Jacobian of this change of variables is given by the determinant

∂(x, y, z)

∂(s, t, u)
=

∣
∣
∣
∣
∣
∣
∣

∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂t

∂y
∂t

∂z
∂t

∂x
∂u

∂y
∂u

∂z
∂u

∣
∣
∣
∣
∣
∣
∣

.

Just as the Jacobian in two dimensions gives us the change in the area element, the Jacobian in three

dimensions represents the change in the volume element. Thus, we have

∫

W

f(x, y, z) dx dy dz =

∫

S

f(x(s, t, u), y(s, t, u), z(s, t, u))

∣
∣
∣
∣

∂(x, y, z)

∂(s, t, u)

∣
∣
∣
∣
ds dt du.

Problem 3 at the end of this section asks you to verify that the Jacobian for the change of

variables for spherical coordinates is ρ2 sinφ. The next example generalizes Example 2 to ellipsoids.

Example 3 Find the volume of the ellipsoid
x2

a2
+

y2

b2
+

z2

c2
= 1.
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Solution Let x = as, y = bt, z = cu. The Jacobian is computed to be abc. The xyz-ellipsoid corresponds

to the stu-sphere s2 + t2 + u2 = 1. Thus, as in Example 2,

Volume of xyz-ellipsoid = abc · Volume of stu-sphere = abc
4

3
π =

4

3
πabc.

Problems for Section K

1. Find the region R in the xy-plane corresponding to the

region T = {(s, t) | 0 ≤ s ≤ 3, 0 ≤ t ≤ 2} under the

change of variables x = 2s−3t, y = s−2t. Check that

∫

R

dx dy =

∫

T

∣
∣
∣
∣

∂(x, y)

∂(s, t)

∣
∣
∣
∣
ds dt.

2. Find the region R in the xy-plane corresponding to the

region T = {(s, t) | 0 ≤ s ≤ 2, s ≤ t ≤ 2} under the

change of variables x = s2, y = t. Check that

∫

R

dx dy =

∫

T

∣
∣
∣
∣

∂(x, y)

∂(s, t)

∣
∣
∣
∣
ds dt.

3. Compute the Jacobian for the change of variables into

spherical coordinates:

x = ρ sin φ cos θ, y = ρ sinφ sin θ, z = ρ cos φ.

4. For the change of variables x = 3s − 4t, y = 5s + 2t,
show that

∂(x, y)

∂(s, t)
· ∂(s, t)

∂(x, y)
= 1

5. Use the change of variables x = 2s + t, y = s − t to

compute the integral
∫

R
(x+y) dA, where R is the paral-

lelogram formed by (0, 0), (3,−3), (5,−2), and (2, 1).

6. Use the change of variables x = 1
2
s, y = 1

3
t to com-

pute the integral
∫

R
(x2 + y2) dA, where R is the region

bounded by the curve 4x2 + 9y2 = 36.

7. Use the change of variables s = xy, t = xy2 to

compute
∫

R
xy2 dA, where R is the region bounded by

xy = 1, xy = 4, xy2 = 1, xy2 = 4.

8. Evaluate the integral

∫

R

cos

(
x− y

x+ y

)

dxdy where R is

the triangle bounded by x+ y = 1, x = 0, and y = 0.

9. Find the area of the metal frames with one or four cutouts

shown in Figure K.45. Start with Cartesian coordinates x,

y aligned along one side. Consider slanted coordinates

u = x − y, v = y in which the frame is “straightened”.

[Hint: First describe the shape of the cut-out in the uv-

plane; second, calculate its area in the uv-plane; third,

using Jacobians, calculate its area in the xy-plane.]

45◦

135◦

✛

✛✛

✛✛

✛✛

✛

12′′ 12′′

8′′ 8′′

45◦ ✛

✛✛

✛

135◦

3” 3”

3” 3”

12′′ 12′′

Figure K.45

10. A river follows the path y = f(x) where x, y are in

kilometers. Near the sea, it widens into a lagoon, then

narrows again at its mouth. See Figure K.46. At the point

(x, y), the depth, d(x, y), of the lagoon is given by

d(x, y) = 40− 160(y − f(x))2 − 40x2
meters.

The lagoon itself is described by d(x, y) ≥ 0. What is

the volume of the lagoon in cubic meters? [Hint: Use new

coordinates u = x/2, v = y − f(x) and Jacobians.]

(1, f(1))

Sea

y

(−1, f(−1)) River, y = f(x)

■

Lagoon

Figure K.46
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L PROOF OF GREEN’S THEOREM

In this section we will give a proof of Green’s Theorem based on the change of variables formula

for double integrals. Assume the vector field ~F is given in components by

~F (x, y) = F1(x, y)~i + F2(x, y)~j .

Proof for Rectangles

We prove Green’s Theorem first when R is a rectangular region, as shown in Figure L.47. The

line integral in Green’s theorem can be written as

∫

C

~F · d~r =

∫

C1

~F · d~r +

∫

C2

~F · d~r +

∫

C3

~F · d~r +

∫

C4

~F · d~r

=

∫ b

a

F1(x, c) dx +

∫ d

c

F2(b, y) dy −
∫ b

a

F1(x, d) dx −
∫ d

c

F2(a, y) dy

=

∫ d

c

(F2(b, y)− F2(a, y)) dy +

∫ b

a

(−F1(x, d) + F1(x, c)) dx.

On the other hand, the double integral in Green’s theorem can be written as an iterated integral.

We evaluate the inside integral using the Fundamental Theorem of Calculus.

∫

R

(
∂F2

∂x
− ∂F1

∂y

)

dx dy =

∫

R

∂F2

∂x
dx dy +

∫

R

−∂F1

∂y
dx dy

=

∫ d

c

∫ b

a

∂F2

∂x
dx dy +

∫ b

a

∫ d

c

−∂F1

∂y
dy dx

=

∫ d

c

(F2(b, y)− F2(a, y)) dy +

∫ b

a

(−F1(x, d) + F1(x, c)) dx.

Since the line integral and the double integral are equal, we have proved Green’s theorem for rect-

angles.

a b

c

d

C1

C4 C2

C3

R

x

y

Figure L.47: A rectangular region R with boundary C broken

into C1, C2, C3, and C4
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Proof for Regions Parameterized by Rectangles

a b

c

d

D1

D4 D2

D3

T

s

t

C4

C3

C2

C1

R

x

y

Figure L.48: A curved region R in the xy-plane corresponding to a rectangular region T in the st-plane

Now we prove Green’s Theorem for a region R which can be transformed into a rectangular

region. Suppose we have a smooth change of coordinates

x = x(s, t), y = y(s, t).

Consider a curved region R in the xy-plane corresponding to a rectangular region T in the st-
plane, as in Figure L.48. We suppose that the change of coordinates is one-to-one on the interior of

T .

We prove Green’s theorem for R using Green’s theorem for T and the change of variables

formula for double integrals given on page ??. First we express the line integral around C
∫

C

~F · d~r ,

as a line integral in the st-plane around the rectangle D = D1 +D2 +D3 +D4. In vector notation,

the change of coordinates is

~r = ~r (s, t) = x(s, t)~i + y(s, t)~j

and so

~F · d~r = ~F (~r (s, t)) · ∂~r
∂s

ds+ ~F (~r (s, t)) · ∂~r
∂t

dt.

We define a vector field ~G on the st-plane with components

G1 = ~F · ∂~r
∂s

and G2 = ~F · ∂~r
∂t

.

Then, if ~u is the position vector of a point in the st-plane, we have ~F ·d~r = G1 ds+G2 dt = ~G ·d~u .
Problem 5 at the end of this section asks you to show that the formula for line integrals along

parameterized paths leads to the following result:
∫

C

~F · d~r =

∫

D

~G · d~u .

In addition, using the product rule and chain rule we can show that

∂G2

∂s
− ∂G1

∂t
=

(
∂F2

∂x
− ∂F1

∂y

)
∣
∣
∣
∣
∣

∂x
∂s

∂y
∂s

∂x
∂t

∂y
∂t

∣
∣
∣
∣
∣
.

(See Problem 6 at the end of this section.) Hence, by the change of variables formula for double

integrals on page ??,

∫

R

(
∂F2

∂x
− ∂F1

∂y

)

dx dy =

∫

T

(
∂F2

∂x
− ∂F1

∂y

)
∣
∣
∣
∣
∣

∂x
∂s

∂y
∂s

∂x
∂t

∂y
∂t

∣
∣
∣
∣
∣
ds dt =

∫

T

(
∂G2

∂s
− ∂G1

∂t

)

ds dt.
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Thus we have shown that ∫

C

~F · d~r =

∫

D

~G · d~u

and that ∫

R

(
∂F2

∂x
− ∂F1

∂y

)

dx dy =

∫

T

(
∂G2

∂s
− ∂G1

∂t

)

ds dt.

The integrals on the right are equal, by Green’s Theorem for rectangles; hence the integrals on the

left are equal as well, which is Green’s Theorem for the region R.

Pasting Regions Together

Lastly we show that Green’s Theorem holds for a region formed by pasting together regions

which can be transformed into rectangles. Figure L.49 shows two regionsR1 andR2 that fit together

to form a region R. We break the boundary of R into C1, the part shared with R1, and C2, the part

shared with R2. We let C be the part of the the boundary of R1 which it shares with R2. So

Boundary of R = C1 + C2, Boundary of R1 = C1 + C, Boundary of R2 = C2 + (−C).

Note that when the curve C is considered as part of the boundary of R2, it receives the opposite

orientation from the one it receives as the boundary of R1. Thus

∫

Boundary of R1

~F · d~r +

∫

Boundary of R2

~F · d~r =

∫

C1+C

~F · d~r +

∫

C2+(−C)

~F · d~r

=

∫

C1

~F · d~r +

∫

C

~F · d~r +

∫

C2

~F · d~r −
∫

C

~F · d~r

=

∫

C1

~F · d~r +

∫

C2

~F · d~r

=

∫

Boundary of R

~F · d~r .

So, applying Green’s Theorem for R1 and R2, we get

∫

R

(
∂F2

∂x
− ∂F1

∂y

)

dx dy =

∫

R1

(
∂F2

∂x
− ∂F1

∂y

)

dx dy +

∫

R2

(
∂F2

∂x
− ∂F1

∂y

)

dx dy

=

∫

Boundary of R1

~F · d~r +

∫

Boundary of R2

~F · d~r

=

∫

Boundary of R

~F · d~r ,

which is Green’s Theorem for R. Thus, we have proved Green’s Theorem for any region formed by

pasting together regions that are smoothly parameterized by rectangles.

C1

R

C2

C

−C
R1

R2

x

y

Figure L.49: Two regions R1 and R2

pasted together to form a region R
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Example 1 Let R be the annulus (ring) centered at the origin with inner radius 1 and outer radius 2. Using polar

coordinates, show that the proof of Green’s Theorem applies to R. See Figure L.50.

Solution In polar coordinates, x = r cos t and y = r sin t, the annulus corresponds to the rectangle in the

rt-plane 1 ≤ r ≤ 2, 0 ≤ t ≤ 2π. The sides t = 0 and t = 2π are pasted together in the xy-plane

along the x-axis; the other two sides become the inner and outer circles of the annulus. Thus R is

formed by pasting the ends of a rectangle together.

1 2

2π

r

t

1 2
x

y

✠

t = 0
t = 2π

r = 2

r=1

Figure L.50: The annulus R in the xy-plane and the corresponding rectangle 1 ≤ r ≤ 2, 0 ≤ t ≤ 2π
in the rt-plane

Problems for Section L

1. Let R be the annulus centered at (−1, 2) with inner ra-

dius 2 and outer radius 3. Show that R can be parameter-

ized by a rectangle.

2. Let R be the region under the first arc of the graph of

the sine function. Show that R can be parameterized by

a rectangle.

3. Let f(x) and g(x) be two smooth functions, and suppose

that f(x) ≤ g(x) for a ≤ x ≤ b. Let R be the region

f(x) ≤ y ≤ g(x), a ≤ x ≤ b.

(a) Sketch an example of such a region.

(b) For a constant x0, parameterize the vertical line seg-

ment in R where x = x0. Choose your parameter-

ization so that the parameter starts at 0 and ends at

1.

(c) By putting together the parameterizations in part (b)

for different values of x0, show that R can be pa-

rameterized by a rectangle.

4. Let f(y) and g(y) be two smooth functions, and suppose

that f(y) ≤ g(y) for c ≤ y ≤ d. Let R be the region

f(y) ≤ x ≤ g(y), c ≤ y ≤ d.

(a) Sketch an example of such a region.

(b) For a constant y0, parameterize the horizontal line

segment in R where y = y0. Choose your parame-

terization so that the parameter starts at 0 and ends

at 1.

(c) By putting together the parameterizations in part (b)

for different values of y0, show that R can be param-

eterized by a rectangle.

5. Use the formula for calculating line integrals by parame-

terization to prove the statement on page 58:

∫

C

~F · d~r =

∫

D

~G · d~u .

6. Use the product rule and the chain rule to prove the for-

mula on page 58:

∂G2

∂s
− ∂G1

∂t
=

(
∂F2

∂x
− ∂F1

∂y

)
∣
∣
∣
∣
∣

∂x
∂s

∂y
∂s

∂x
∂t

∂y
∂t

∣
∣
∣
∣
∣
.

M PROOF OF THE DIVERGENCE THEOREM AND STOKES’ THEOREM

In this section we give proofs of the Divergence Theorem and Stokes’ Theorem using the definitions

in Cartesian coordinates.
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Proof of the Divergence Theorem

For the Divergence Theorem, we use the same approach as we used for Green’s Theorem; first

prove the theorem for rectangular regions, then use the change of variables formula to prove it for

regions parameterized by rectangular regions, and finally paste such regions together to form general

regions.

Proof for Rectangular Solids with Sides Parallel to the Axes

Consider a smooth vector field ~F defined on the rectangular solid V : a ≤ x ≤ b, c ≤ y ≤ d,

e ≤ z ≤ f . (See Figure M.51). We start by computing the flux of ~F through the two faces of V
perpendicular to the x-axis, A1 and A2, both oriented outward:

∫

A1

~F · d ~A +

∫

A2

~F · d ~A = −
∫ f

e

∫ d

c

F1(a, y, z) dy dz +

∫ f

e

∫ d

c

F1(b, y, z) dy dz

=

∫ f

e

∫ d

c

(F1(b, y, z)− F1(a, y, z)) dy dz.

By the Fundamental Theorem of Calculus,

F1(b, y, z)− F1(a, y, z) =

∫ b

a

∂F1

∂x
dx,

so
∫

A1

~F · d ~A +

∫

A2

~F · d ~A =

∫ f

e

∫ d

c

∫ b

a

∂F1

∂x
dx dy dz =

∫

V

∂F1

∂x
dV.

By a similar argument, we can show

∫

A3

~F · d ~A +

∫

A4

~F · d ~A =

∫

V

∂F2

∂y
dV and

∫

A5

~F · d ~A +

∫

A6

~F · d ~A =

∫

V

∂F3

∂z
dV.

Adding these, we get

∫

A

~F · d ~A =

∫

V

(
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

)

dV =

∫

V

div ~F dV.

This is the Divergence Theorem for the region V .

x

y

z

A4

A6

A2
✲A3

(back
left)

✛ A1
(back
right)

✻

A5 (bottom)

V

Figure M.51: Rectangular solid V in

xyz-space

s

t

u

S4

S6

S2
✲S3

(back
left)

✛ S1
(back
right)

✻

S5 (bottom)

W

x

y

z
V

✻

A5 (bottom)

✲A3 (left)

❄

A1 (back)

A2

A6

A4

Figure M.52: A rectangular solid W in stu-space and the corresponding

curved solid V in xyz-space
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Proof for Regions Parameterized by Rectangular Solids

Now suppose we have a smooth change of coordinates

x = x(s, t, u), y = y(s, t, u), z = z(s, t, u).

Consider a curved solid V in xyz-space corresponding to a rectangular solid W in stu-space. See

Figure M.52. We suppose that the change of coordinates is one-to-one on the interior of W , and

that its Jacobian determinant is positive on W . We prove the Divergence Theorem for V using the

Divergence Theorem for W .

Let A be the boundary of V . To prove the Divergence Theorem for V , we must show that

∫

A

~F · d ~A =

∫

V

div ~F dV.

First we express the flux through A as a flux integral in stu-space over S, the boundary of the

rectangular region W . In vector notation the change of coordinates is

~r = ~r (s, t, u) = x(s, t, u)~i + y(s, t, u)~j + z(s, t, u)~k .

The face A1 of V is parameterized by

~r = ~r (a, t, u), c ≤ t ≤ d, e ≤ u ≤ f,

so on this face

d ~A = ±∂~r

∂t
× ∂~r

∂u
.

In fact, in order to make d ~A point outward, we must choose the negative sign. (Problem 3 on

page 66 shows how this follows from the fact that the Jacobian determinant is positive.) Thus, if S1

is the face s = a of W ,

∫

A1

~F · d ~A = −
∫

S1

~F · ∂~r
∂t

× ∂~r

∂u
dt du,

The outward pointing area element on S1 is d~S = −~i dt du. Therefore, if we choose a vector field
~G on stu-space whose component in the s-direction is

G1 = ~F · ∂~r
∂t

× ∂~r

∂u
,

we have ∫

A1

~F · d ~A =

∫

S1

~G · d~S .

Similarly, if we define the t and u components of ~G by

G2 = ~F · ∂~r
∂u

× ∂~r

∂s
and G3 = ~F · ∂~r

∂s
× ∂~r

∂t
,

then ∫

Ai

~F · d ~A =

∫

Si

~G · d~S , i = 2, . . . , 6.

(See Problem 4.) Adding the integrals for all the faces, we find that

∫

A

~F · d ~A =

∫

S

~G · d~S .
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Since we have already proved the Divergence Theorem for the rectangular region W , we have

∫

S

~G · d~S =

∫

W

div ~G dW,

where

div ~G =
∂G1

∂s
+

∂G2

∂t
+

∂G3

∂u
.

Problems 5 and 6 on page 66 show that

∂G1

∂s
+

∂G2

∂t
+

∂G3

∂u
=

∣
∣
∣
∣

∂(x, y, z)

∂(s, t, u)

∣
∣
∣
∣

(
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

)

.

So, by the three-variable change of variables formula on page ??,

∫

V

div ~F dV =

∫

V

(
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

)

dx dy dz

=

∫

W

(
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

) ∣
∣
∣
∣

∂(x, y, z)

∂(s, t, u)

∣
∣
∣
∣
ds dt du

=

∫

W

(
∂G1

∂s
+

∂G2

∂t
+

∂G3

∂u

)

ds dt du

=

∫

W

div ~G dW.

In summary, we have shown that

∫

A

~F · d ~A =

∫

S

~G · d~S

and ∫

V

div ~F dV =

∫

W

div ~G dW.

By the Divergence Theorem for rectangular solids, the right hand sides of these equations are equal,

so the left hand sides are equal also. This proves the Divergence Theorem for the curved region V .

Pasting Regions Together

As in the proof of Green’s Theorem, we prove the Divergence Theorem for more general regions

by pasting smaller regions together along common faces. Suppose the solid region V is formed by

pasting together solids V1 and V2 along a common face, as in Figure M.53.

The surface A which bounds V is formed by joining the surfaces A1 and A2 which bound V1

and V2, and then deleting the common face. The outward flux integral of a vector field ~F through

◆

Common face

V1

V2

Figure M.53: Region V formed by

pasting together V1 and V2
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A1 includes the integral across the common face, and the outward flux integral of ~F through A2

includes the integral over the same face, but oriented in the opposite direction. Thus, when we add

the integrals together, the contributions from the common face cancel, and we get the flux integral

through A. Thus we have

∫

A

~F · d ~A =

∫

A1

~F · d ~A +

∫

A2

~F · d ~A .

But we also have ∫

V

div ~F dV =

∫

V1

div ~F dV +

∫

V2

div ~F dV.

So the Divergence Theorem for V follows from the Divergence Theorem for V1 and V2. Hence we

have proved the Divergence Theorem for any region formed by pasting together regions that can be

smoothly parameterized by rectangular solids.

Example 1 Let V be a spherical ball of radius 2, centered at the origin, with a concentric ball of radius 1

removed. Using spherical coordinates, show that the proof of the Divergence Theorem we have

given applies to V .

Solution We cut V into two hollowed hemispheres like the one shown in Figure M.54, W . In spherical

coordinates, W is the rectangle 1 ≤ ρ ≤ 2, 0 ≤ φ ≤ π, 0 ≤ θ ≤ π. Each face of this rectangle

becomes part of the boundary of W . The faces ρ = 1 and ρ = 2 become the inner and outer

hemispherical surfaces that form part of the boundary of W . The faces θ = 0 and θ = π become the

two halves of the flat part of the boundary of W . The faces φ = 0 and φ = π become line segments

along the z-axis. We can form V by pasting together two solid regions like W along the flat surfaces

where θ = constant.

x

y

z

✲ρ = 1

✲ρ = 2

✠

θ = 0

✲θ = π

■
φ = π

✠

φ = π

ρ

θ

φ

π

1

2

π

Figure M.54: The hollow hemisphere W and the corresponding rectangular region in

ρθφ-space

Proof of Stokes’ Theorem

Consider an oriented surface A, bounded by the curve B. We want to prove Stokes’ Theorem:

∫

A

curl ~F · d ~A =

∫

B

~F · d~r .
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R

C

s

t

x

y

z

■

B

A

Figure M.55: A region R in the st-plane and the corresponding surface A in xyz-space; the curve C
corresponds to the boundary of B

We suppose that A has a smooth parameterization ~r = ~r (s, t), so that A corresponds to a region

R in the st-plane, and B corresponds to the boundary C of R. See Figure M.55. We prove Stokes’

Theorem for the surface A and a vector field ~F by expressing the integrals on both sides of the

theorem in terms of s and t, and using Green’s Theorem in the st-plane.

First, we convert the line integral
∫

B
~F · d~r into a line integral around C:

∫

B

~F · d~r =

∫

C

~F · ∂~r
∂s

ds+ ~F · ∂~r
∂t

dt.

So if we define a 2-dimensional vector field ~G = (G1, G2) on the st-plane by

G1 = ~F · ∂~r
∂s

and G2 = ~F · ∂~r
∂t

,

then
∫

B

~F · d~r =

∫

C

~G · d~s ,

using ~s to denote the position vector of a point in the st-plane.

What about the flux integral
∫

A
curl ~F · d ~A that occurs on the other side of Stokes’ Theorem?

In terms of the parameterization,

∫

A

curl ~F · d ~A =

∫

R

curl ~F · ∂~r
∂s

× ∂~r

∂t
ds dt.

In Problem 7 on page 67 we show that

curl ~F · ∂~r
∂s

× ∂~r

∂t
=

∂G2

∂s
− ∂G1

∂t
.

Hence
∫

A

curl ~F · d ~A =

∫

R

(
∂G2

∂s
− ∂G1

∂t

)

ds dt.

We have already seen that
∫

B

~F · d~r =

∫

C

~G · d~s .

By Green’s Theorem, the right-hand sides of the last two equations are equal. Hence the left-hand

sides are equal as well, which is what we had to prove for Stokes’ Theorem.
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Problems for Section M

1. Let W be a solid circular cylinder along the z-axis, with

a smaller concentric cylinder removed. Parameterize W
by a rectangular solid in rθz-space, where r, θ, and z are

cylindrical coordinates.

2. In this section we proved the Divergence Theorem using

the coordinate definition of divergence. Now we use the

Divergence Theorem to show that the coordinate defini-

tion is the same as the geometric definition. Suppose ~F
is smooth in a neighborhood of (x0, y0, z0), and let UR

be the ball of radius R with center (x0, y0, z0). Let mR

be the minimum value of div ~F on UR and let MR be

the maximum value.

(a) Let SR be the sphere bounding UR. Show that

mR ≤
∫

SR

~F · d ~A
Volume of UR

≤ MR.

(b) Explain why we can conclude that

lim
R→0

∫

SR

~F · d ~A
Volume of UR

= div ~F (x0, y0, z0).

(c) Explain why the statement in part (b) remains true

if we replace UR with a cube of side R, centered at

(x0, y0, z0).

Problems 3–6 fill in the details of the proof of the Divergence

Theorem.

3. Figure M.52 on page 61 shows the solid region V in xyz-

space parameterized by a rectangular solid W in stu-

space using the change of coordinates

~r = ~r (s, t, u), a ≤ s ≤ b, c ≤ t ≤ d, e ≤ u ≤ f.

Suppose that
∂~r

∂s
·
(
∂~r

∂t
× ∂~r

∂u

)

is positive.

(a) Let A1 be the face of V corresponding to the face

s = a of W . Show that
∂~r

∂s
, if it is not zero, points

into W .

(b) Show that −∂~r

∂t
× ∂~r

∂u
is an outward pointing nor-

mal on A1.

(c) Find an outward pointing normal on A2, the face of

V where s = b.

4. Show that for the other five faces of the solid V in the

proof of the Divergence Theorem (see page 62):

∫

Ai

~F · d ~A =

∫

Si

~G · d~S , i = 2, 3, 4, 5, 6.

5. Suppose that ~F is a vector field and that ~a ,~b , and ~c are

vectors. In this problem we prove the formula

grad(~F ·~b × ~c ) · ~a + grad(~F · ~c × ~a ) ·~b
+grad(~F · ~a ×~b ) · ~c = (~a ·~b × ~c ) div ~F .

(a) Interpretating the divergence as flux density, explain

why the formula makes sense. [Hint: Consider the

flux out of a small parallelepiped with edges parallel

to ~a ,~b , ~c .]

(b) Say how many terms there are in the expansion of

the left hand side of the formula in Cartesian coordi-

nates, without actually doing the expansion.

(c) Write down all the terms on the left hand side that

contain ∂F1/∂x. Show that these terms add up to

~a ·~b × ~c
∂F1

∂x
.

(d) Write down all the terms that contain ∂F1/∂y. Show

that these add to zero.

(e) Explain how the expressions involving the other

seven partial derivatives will work out, and how this

verifies that the formula holds.

6. Let ~F be a smooth vector field in 3-space, and let

x = x(s, t, u), y = y(s, t, u), z = z(s, t, u)

be a smooth change of variables, which we will write in

vector form as

~r = ~r (s, t, u) = x(s, t, u)~i +y(s, t, u)~j +z(s, t, u)~k .

Define a vector field ~G = (G1, G2, G3) on stu-space

by

G1 = ~F · ∂~r
∂t

× ∂~r

∂u
G2 = ~F · ∂~r

∂u
× ∂~r

∂s

G3 = ~F · ∂~r
∂s

× ∂~r

∂t
.

(a) Show that

∂G1

∂s
+

∂G2

∂t
+

∂G3

∂u
=

∂ ~F

∂s
· ∂~r
∂t

× ∂~r

∂u

+
∂ ~F

∂t
· ∂~r
∂u

× ∂~r

∂s
+

∂ ~F

∂u
· ∂~r
∂s

× ∂~r

∂t
.

(b) Let ~r 0 = ~r (s0, t0, u0), and let

~a =
∂~r

∂s
(~r 0), ~b =

∂~r

∂t
(~r 0), ~c =

∂~r

∂u
(~r 0).

Use the chain rule to show that

(
∂G1

∂s
+

∂G2

∂t
+

∂G3

∂u

)
∣
∣
∣
∣
~r =~r 0

=

grad(~F ·~b × ~c ) · ~a + grad(~F · ~c × ~a ) ·~b
+grad(~F · ~a ×~b ) · ~c .

(c) Use Problem 5 to show that

∂G1

∂s
+

∂G2

∂t
+

∂G3

∂u
=

∣
∣
∣
∣

∂(x, y, z)

∂(s, t, u)

∣
∣
∣
∣

(
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

)

.
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7. This problem completes the proof of Stokes’ Theorem.

Let ~F be a smooth vector field in 3-space, and let S
be a surface parameterized by ~r = ~r (s, t). Let ~r 0 =
~r (s0, t0) be a fixed point on S. We define a vector field

in st-space as on page 65:

G1 = ~F · ∂~r
∂s

G2 = ~F · ∂~r
∂t

.

(a) Let ~a =
∂~r

∂s
(~r 0), ~b =

∂~r

∂t
(~r 0). Show that

∂G1

∂t
(~r 0)− ∂G2

∂s
(~r 0) =

grad(~F · ~a ) ·~b − grad(~F ·~b ) · ~a .

(b) Use Problem ?? on page ?? of the textbook to show

curl ~F · ∂~r
∂s

× ∂~r

∂t
=

∂G2

∂s
− ∂G1

∂t
.


