6.1 Overview

Why learn this?

Pythagoras was a great mathematician and philosopher who lived in the 6th century BCE. He is best known for the theorem that bears his name. It concerns the relationship between the lengths of the sides in a right-angled triangle. Geometry and trigonometry are branches of mathematics where Pythagoras’ theorem is still widely applied. Trigonometry is a branch of mathematics that allows us to relate the side lengths of triangles to angles. Combining trigonometry with Pythagoras’ theorem allows us to solve many problems involving triangles.

What do you know?

1. THINK List what you know about trigonometry. Use a thinking tool such as a concept map to show your list.
2. PAIR Share what you know with a partner and then with a small group.
3. SHARE As a class, create a thinking tool such as a large concept map to show your class’s knowledge of trigonometry.

Learning sequence

6.1 Overview
6.2 What is trigonometry?
6.3 Calculating unknown side lengths
6.4 Calculating unknown angles
6.5 Angles of elevation and depression
6.6 Review
WATCH THIS VIDEO
The story of mathematics: Secret society
Searchlight ID: eles-1693
6.2 What is trigonometry?

- The word **trigonometry** is derived from the Greek words *trigonon* (triangle) and *metron* (measurement). Thus, it literally means ‘to measure a triangle’.
- Trigonometry deals with the relationship between the sides and the angles of a triangle.
- Modern day uses of trigonometry include surveying land, architecture, measuring distances and determining heights of inaccessible objects.
- In this chapter relationships between the sides and angles of a **right-angled triangle** will be explored.

Naming the sides of a right-angled triangle

- The longest side of a right-angled triangle (the side opposite the right angle) is called the **hypotenuse**.
- In order to name the remaining two sides another angle, called the ‘reference angle’, must be added to the diagram.
 - The side that is across from the reference angle, θ, is called the **opposite** side, and the remaining side (the side next to the reference angle) is called the **adjacent** side.
- **Note**: If there is no reference angle marked, only the hypotenuse can be named.

WORKED EXAMPLE 1

Label the sides of the right-angled triangle shown using the words hypotenuse, adjacent and opposite.

THINK

1. The hypotenuse is opposite the right angle.
2. Label the side next to angle θ as ‘adjacent’ and the side opposite angle θ as ‘opposite’.

WRITE/DRAW
Similar right-angled triangles

- Consider the two right-angled triangles shown below. The second triangle (\(\Delta DEF\)) is an enlargement of the first, using a scale factor of 2. Therefore, the triangles are similar (\(\Delta ABC \sim \Delta DEF\)), and \(\angle BCA = \angle EFD = x\).

![Diagram of two right-angled triangles]

- For \(\Delta ABC\), \(\frac{\text{opposite side}}{\text{adjacent side}} = \frac{3}{4}\), and for \(\Delta DEF\), \(\frac{\text{opposite side}}{\text{adjacent side}} = \frac{6}{8} = \frac{3}{4}\).

- Now complete the table below.

<table>
<thead>
<tr>
<th>(\Delta ABC)</th>
<th>(\Delta DEF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\text{opposite side}}{\text{hypotenuse}})</td>
<td>(\frac{\text{opposite side}}{\text{hypotenuse}})</td>
</tr>
<tr>
<td>(\frac{\text{Adjacent side}}{\text{hypotenuse}})</td>
<td>(\frac{\text{Adjacent side}}{\text{hypotenuse}})</td>
</tr>
</tbody>
</table>

In similar right-angled triangles, the ratios of corresponding sides are equal.

Experiment

A. Using a protractor and ruler, carefully measure and draw a right-angled triangle of base 10 cm and angle of 60° as shown in the diagram.

Measure the length of the other two sides to the nearest mm, and mark these lengths on the diagram as well.

Use your measurements to calculate these ratios correct to 2 decimal places:

\[
\frac{\text{opposite}}{\text{adjacent}} = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{60°}{10 \text{ cm}}
\]

B. Draw another triangle, similar to the one in part A (all angles the same), making the base length anything that you choose, and measuring the length of all the sides.

Once again, calculate the three ratios correct to 2 decimal places:

\[
\frac{\text{opposite}}{\text{adjacent}} = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{\text{base length}}{\text{hypotenuse}}
\]

C. Compare your results with the rest of the class. What conclusions can you draw?
Trigonometric ratios
• Trigonometry is based upon the ratios between pairs of side lengths, and each one is given a special name as follows.

In any right-angled triangle:

\[
\sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}}
\]

\[
\cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}}
\]

\[
\tan(\theta) = \frac{\text{opposite}}{\text{adjacent}}
\]

• These rules are abbreviated to:

\[
\sin(\theta) = \frac{O}{H}, \cos(\theta) = \frac{A}{H}, \tan(\theta) = \frac{O}{A}
\]

• The following mnemonic can be used to help remember the trigonometric ratios.

\[
\text{SOH} - \text{CAH} - \text{TOA}
\]

WORKED EXAMPLE 2
For this triangle, write the equations for the sine, cosine and tangent ratios of the given angle.

THINK
1. Label the sides of the triangle.

WRITE/DRAW
2. Write the trigonometric ratios.

\[
\sin(\theta) = \frac{O}{H}, \cos(\theta) = \frac{A}{H}, \tan(\theta) = \frac{O}{A}
\]

3. Substitute the values of A, O and H into each formula.

\[
\sin(\theta) = \frac{5}{13}, \cos(\theta) = \frac{12}{13}, \tan(\theta) = \frac{5}{12}
\]
WORKED EXAMPLE 3

Write the trigonometric ratio that relates the two given sides and the reference angle in each of the following triangles.

a

\[
\begin{align*}
&\text{Hypotenuse} \\
&\text{Opposite} \\
&6 \quad 15 \\
\end{align*}
\]

THINK

1. Label the given sides.

2. We are given O and H. These are used in SOH. Write the ratio.

3. Substitute the values of the pronumerals into the ratio.

4. Simplify the fraction.

\[
\sin(\theta) = \frac{O}{H}
\]

\[
\sin(b) = \frac{6}{15}
\]

\[
\sin(b) = \frac{2}{5}
\]

WRITE/DRAW

a

\[
\begin{align*}
\text{Hypotenuse} & \quad 15 \\
\text{Opposite} & \quad 6 \\
\end{align*}
\]

b

\[
\begin{align*}
&\text{Adjacent} \\
&\text{Opposite} \\
&50^\circ \quad x \\
&18 \\
\end{align*}
\]

b

\[
\begin{align*}
\tan(\theta) & = \frac{O}{A} \\
\tan(50^\circ) & = \frac{x}{18}
\end{align*}
\]

Exercise 6.2 What is trigonometry?

INDIVIDUAL PATHWAYS

■ PRACTISE
Questions: 1–8

■ CONSOLIDATE
Questions: 1–11

■ MASTER
Questions: 1–12

REFLECTION
Why does \(\sin(30^\circ) = \cos(60^\circ)\)?
FLUENCY

1. Label the sides of the following right-angled triangles using the words hypotenuse, adjacent and opposite.

 - a
 - b
 - c
 - d
 - e
 - f

2. Label the hypotenuse, adjacent and opposite sides, and reference angle θ, where appropriate, in each of the following right-angled triangles.

 - a
 - b
 - c

3. For each triangle below, carefully measure θ correct to the nearest degree, then carefully measure each side correct to the nearest mm. Use this information to copy and complete the table below.

 - a
 - b

<table>
<thead>
<tr>
<th>θ</th>
<th>O</th>
<th>A</th>
<th>H</th>
<th>sin(θ)</th>
<th>cos(θ)</th>
<th>tan(θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Which alternative correctly names the sides and angle of the triangle at right?

 - A $\angle C = \theta$, $AB = \text{adjacent side}$, $AC = \text{hypotenuse}$, $AC = \text{opposite side}$
 - B $\angle C = \theta$, $AB = \text{opposite side}$, $AC = \text{hypotenuse}$, $AC = \text{adjacent side}$
 - C $\angle A = \theta$, $AB = \text{opposite side}$, $AC = \text{hypotenuse}$, $BC = \text{adjacent side}$
 - D $\angle C = \theta$, $AB = \text{opposite side}$, $AC = \text{hypotenuse}$, $BC = \text{adjacent side}$
5. **WE2** For each of the following triangles, write the expressions for ratios of each of the given angles:
 i. sine
 ii. cosine
 iii. tangent.

 a. \(\theta \)
 b. \(\alpha \)
 c. \(\beta \)
 d. \(\gamma \)
 e. \(\beta \)
 f. \(\gamma \)

6. **WE3** Write the trigonometric ratio that relates the two given sides and the reference angle in each of the following triangles.

 a. \(\theta \)
 b. \(\theta \)
 c. \(\theta \)
 d. \(\theta \)
 e. \(\theta \)
 f. \(\theta \)
 g. \(\theta \)
 h. \(\theta \)
 i. \(\theta \)

UNDERSTANDING

7. **MC** a. What is the correct trigonometric ratio for the triangle shown at right?

 A. \(\tan(\gamma) = \frac{a}{c} \)
 B. \(\sin(\gamma) = \frac{c}{a} \)
 C. \(\cos(\gamma) = \frac{c}{b} \)
 D. \(\sin(\gamma) = \frac{c}{b} \)
b Which trigonometric ratio for the triangle shown at right is incorrect?

\[\begin{align*}
A & : \sin(\alpha) = \frac{b}{c} \\
B & : \sin(\alpha) = \frac{a}{c} \\
C & : \cos(\alpha) = \frac{a}{c} \\
D & : \tan(\alpha) = \frac{b}{a}
\end{align*} \]

REASONING

8 Consider the right-angled triangle shown at right.

a Label each of the sides using the letters O, A, H with respect to the 41° angle.

b Measure the side lengths (to the nearest millimetre).

c Determine the value of each trigonometric ratio. (Where applicable, answers should be given correct to 2 decimal places.)

i \(\sin(41^\circ)\)
ii \(\cos(41^\circ)\)
iii \(\tan(41^\circ)\)

d What is the value of the unknown angle, \(\alpha\)?

e Determine the value of each of these trigonometric ratios, correct to 2 decimal places.

i \(\sin(\alpha)\)
ii \(\cos(\alpha)\)
iii \(\tan(\alpha)\)

(Hint: First re-label the sides of the triangle with respect to angle \(\alpha\).)

f What do you notice about the relationship between \(\sin(41^\circ)\) and \(\cos(\alpha)\)?

g What do you notice about the relationship between \(\sin(\alpha)\) and \(\cos(41^\circ)\)?

h Make a general statement about the two angles.

9 Given the triangle shown:

a why does \(a = b\)?

b what would the value of \(\tan(45^\circ)\) be?

PROBLEM SOLVING

10 If a right-angled triangle has side lengths \(m\), \((m + n)\) and \((m - n)\), which one of the lengths is the hypotenuse and why?

11 A ladder leans on a wall as shown. Use the information from the diagram to answer the following questions. In relation to the angle given, what part of the image represents:

a the adjacent side

b the hypotenuse

c the opposite side?

12 Use sketches of right-angled triangles to investigate the following.

a As the acute angle increases in size, what happens to the ratio of the length of the opposite side to the length of the hypotenuse in any right-angled triangle?

b As the acute angle increases in size, what happens to the other two ratios (i.e. the ratio of the length of the adjacent side to the length of the hypotenuse and that of the opposite side to the adjacent)?

c What is the largest possible value for:

i \(\sin(\theta)\)
ii \(\cos(\theta)\)
iii \(\tan(\theta)\)?
6.3 Calculating unknown side lengths

Values of trigonometric ratios

- The values of trigonometric ratios can be found using a calculator.
- Each calculator has several modes. For the following calculations, your calculator must be in degree mode.

WORKED EXAMPLE 4

Evaluate each of the following, giving answers correct to 4 decimal places.

<table>
<thead>
<tr>
<th>a sin(53°)</th>
<th>b cos(31°)</th>
<th>c tan(79°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THINK</td>
<td>WRITE</td>
<td></td>
</tr>
<tr>
<td>a 1 Set the calculator to degree mode. Write the first 5 decimal places.</td>
<td>a sin(53°) = 0.79863</td>
<td></td>
</tr>
<tr>
<td>2 Round correct to 4 decimal places.</td>
<td>≈ 0.7986</td>
<td></td>
</tr>
<tr>
<td>b 1 Write the first 5 decimal places.</td>
<td>b cos(31°) = 0.85716</td>
<td></td>
</tr>
<tr>
<td>2 Round correct to 4 decimal places.</td>
<td>≈ 0.8572</td>
<td></td>
</tr>
<tr>
<td>c 1 Write the first 5 decimal places.</td>
<td>c tan(79°) = 5.14455</td>
<td></td>
</tr>
<tr>
<td>2 Round correct to 4 decimal places.</td>
<td>≈ 5.1446</td>
<td></td>
</tr>
</tbody>
</table>

Finding side lengths

If a reference angle and any side length of a right-angled triangle are known, it is possible to find the other sides using trigonometry.

WORKED EXAMPLE 5

Use the appropriate trigonometric ratio to find the length of the unknown side in the triangle shown. Give your answer correct to 2 decimal places.

<table>
<thead>
<tr>
<th>THINK</th>
<th>WRITE/DRAW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Label the given sides.</td>
<td>16.2 m</td>
</tr>
<tr>
<td>2 These sides are used in TOA. Write the ratio.</td>
<td>[\tan(\theta) = \frac{O}{A}]</td>
</tr>
<tr>
<td>3 Substitute the values of (\theta), (O) and (A) into the tangent ratio.</td>
<td>[\tan(58^\circ) = \frac{x}{16.2}]</td>
</tr>
<tr>
<td>4 Solve the equation for (x).</td>
<td>[16.2 \times \tan(58^\circ) = x] [x = 16.2 \tan(58^\circ)] [x = 25.925] [x \approx 25.93 \text{ m}]</td>
</tr>
</tbody>
</table>
WORKED EXAMPLE 6

Find the length of the side marked \(m \) in the triangle at right. Give your answer correct to 2 decimal places.

THINK
1. Label the given sides.

WRITE/DRAW

2. These sides are used in CAH. Write the ratio.
 \[
 \cos(\theta) = \frac{A}{H}
 \]
 \[
 \cos(22^\circ) = \frac{17.4}{m}
 \]
 \[
 m \cos(22^\circ) = 17.4
 \]
 \[
 m = \frac{17.4}{\cos(22^\circ)}
 \]
 \[
 m = 18.766
 \]
 \[
 m \approx 18.77 \text{ cm}
 \]

WORKED EXAMPLE 7

Benjamin set out on a bushwalking expedition. Using a compass, he set off on a course N 70°E (or 070°T) and travelled a distance of 5 km from his base camp.

THINK
a. Label the easterly distance \(x \).
 Label the northerly distance \(y \).
 Label the sides of the triangle: Hypotenuse, Opposite, Adjacent.

WRITE/DRAW

a. How far east has he travelled?
b. How far north has he travelled from the base camp?
Give answers correct to 2 decimal places.
To calculate the value of \(x \), use the sides of the triangle: \(x = O, \ 5 = H \).
These are used in SOH. Write the ratio.

3 Substitute the values of the angle and the pronumerals into the sine ratio.

4 Make \(x \) the subject of the equation.

5 Evaluate \(x \) to 3 decimal places, using a calculator.

6 Round to 2 decimal places.

7 Answer the question in sentence form.

To calculate the value of \(y \), use the sides: \(y = A, \ 5 = H \).
These are used in CAH. Write the ratio.

2 Substitute the values of the angle and the pronumerals into the cosine ratio.

3 Make \(y \) the subject of the equation.

4 Evaluate \(y \) using a calculator.

5 Round the answer to 2 decimal places.

6 Answer the question in sentence form.

Exercise 6.3 Calculating unknown side lengths

INDIVIDUAL PATHWAYS

| PRACTISE Questions: 1–3, 4a–c, 5a–c, 6a–f, 7–9, 11, 12 | CONSOLIDATE Questions: 1–3, 4b–d, 5b–d, 6d–i, 7–10, 12–15 | MASTER Questions: 1–3, 4d–f, 5d–f, 6g–i, 7–10, 11, 13–17 |

FLUENCY

1 **WE4**

 a Evaluate the following correct to 4 decimal places.

 i \(\sin(55^\circ) \)
 ii \(\sin(11.6^\circ) \)

 b Copy and complete the table below. (Use your calculator to find each value of \(\sin(\theta) \) correct to 2 decimal places.)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>0°</th>
<th>15°</th>
<th>30°</th>
<th>45°</th>
<th>60°</th>
<th>75°</th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin(\theta))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 c Summarise the trend in these values.

2 a Evaluate the following correct to 4 decimal places.

 i \(\cos(38^\circ) \)
 ii \(\cos(53.71^\circ) \)

Reflect

What does \(\sin(60^\circ) \) actually mean?
b Copy and complete the table below. (Use your calculator to find each value of \(\cos(\theta) \) correct to 2 decimal places.)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>0°</th>
<th>15°</th>
<th>30°</th>
<th>45°</th>
<th>60°</th>
<th>75°</th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\cos(\theta))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c Summarise the trend in these values.

3 a Evaluate the following correct to 4 decimal places.
 i \(\tan(18^\circ) \)
 ii \(\tan(51.9^\circ) \)

b Copy and complete the table below. (Use your calculator to find each value of \(\tan(\theta) \) correct to 2 decimal places.)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>0°</th>
<th>15°</th>
<th>30°</th>
<th>45°</th>
<th>60°</th>
<th>75°</th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tan(\theta))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c Find the value of \(\tan(89^\circ) \) and \(\tan(89.9^\circ) \).

d Summarise the trend in these values.

4 We5 Use the appropriate trigonometric ratios to find the length of the unknown side in each of the triangles shown. Give the answers correct to 2 decimal places.

a

\[\begin{array}{c}
\text{17 m} \\
\text{50°} \\
\end{array} \]

b

\[\begin{array}{c}
\text{7.9 m} \\
\text{27°} \\
\end{array} \]

c

\[\begin{array}{c}
\text{31°} \\
\text{46 mm} \\
\end{array} \]

d

\[\begin{array}{c}
\text{p} \\
\text{78°} \\
\text{13.4 cm} \\
\end{array} \]

e

\[\begin{array}{c}
\text{29.5 m} \\
\text{12°} \\
\end{array} \]

f

\[\begin{array}{c}
\text{s} \\
\text{37.8 m} \\
\text{22°} \\
\end{array} \]

5 We6 Use the appropriate trigonometric ratio to find the length of the unknown side in each of the triangles shown. Give the answers correct to 2 decimal places.

a

\[\begin{array}{c}
\text{11 cm} \\
\text{75°} \\
\end{array} \]

b

\[\begin{array}{c}
\text{16 cm} \\
\text{52°} \\
\end{array} \]

c

\[\begin{array}{c}
\text{q} \\
\text{5°} \\
\text{16.1 cm} \\
\end{array} \]

d

\[\begin{array}{c}
\text{5.72 km} \\
\text{66°} \\
\text{p} \\
\end{array} \]

e

\[\begin{array}{c}
\text{e} \\
\text{24°} \\
\text{7.7 km} \\
\end{array} \]

f

\[\begin{array}{c}
\text{t} \\
\text{72°} \\
\text{29.52 m} \\
\end{array} \]
6 Find the length of the unknown side in each of the following triangles, correct to 2 decimal places. (Note: In some cases the unknown will be in the numerator and in other cases it will be in the denominator.)

7 Find the lengths of the unknown sides in the triangles shown, correct to 2 decimal places.

UNDERSTANDING
8 MC a The value of x correct to 2 decimal places is:
 A 59.65 B 23.31 C 64.80 D 27.51

 b The value of x correct to 2 decimal places is:
 A 99.24 mm B 92.55 mm C 185.55 mm D 198.97 mm

 c The value of y correct to 2 decimal places is:
 A 47.19 B 7.94 C 1.37 D 0.23

 d The value of y correct to 2 decimal places is:
 A 0.76 km B 1.79 km C 3.83 km D 3.47 km
9 **WET** A ship that was to travel due north veered off course and travelled N 80°E (or 080°T) for a distance of 280 km, as shown in the diagram.
 a How far east had the ship travelled?
 b How far north had the ship travelled?

10 A rescue helicopter spots a missing surfer drifting out to sea on his damaged board. The helicopter descends vertically to a height of 19 m above sea level and drops down an emergency rope, which the surfer grips. Due to the wind the rope swings at an angle of 27° to the vertical, as shown in the diagram. What is the length of the rope?

11 Walking along the coastline, Michelle (M) looks up through an angle of 55° and sees her friend Helen (H) on top of the cliff at the lookout point. How high is the cliff if Michelle is 200 m from its base? (Assume both girls are the same height.)
REASONING

12 One method for determining the distance across a body of water is shown in the diagram below.

![Diagram of a triangle with sides AB, BC, and AC, and angle at C labeled θ.]

The required distance is AB. A surveyor moves at right angles 50 m to point C and uses a tool called a transit to measure the angle θ ($\angle ACB$).

a If $\theta = 12.3^\circ$, show that the length AB is 10.90 m.
b Show that a value of $\theta = 63.44^\circ$ gives a length of AB = 100 m.
c Find a rule that can be used to calculate the length AC.

13 Using a diagram, explain why $\sin(70^\circ) = \cos(20^\circ)$ and $\cos(70^\circ) = \sin(20^\circ)$.
In general, $\sin(\theta)$ will be equal to which cosine?

PROBLEM SOLVING

14 Calculate the value of the pronumeral in each of the following triangles.

![Triangle with sides labeled 10 m and 12.5 m and angle at B labeled 62°.]

a b c

![Triangle with sides labeled 6.2 m and 10 m and angle at B labeled 29°.]

![Triangle with sides labeled 1.6 m and 1.6 m and angle at B labeled 38°.]

Topic 6 • Trigonometry 189
15 A tile is in the shape of a parallelogram with measurements as shown. Calculate the width of the tile, \(w \), to the nearest mm.

![Parallelogram diagram]

16 A pole is supported by two wires as shown. If the length of the lower wire is 4.3 m, calculate to 1 decimal place:
 a) the length of the top wire
 b) the height of the pole.

![Pole diagram]

17 The frame of a kite is built from 6 wooden rods as shown. Calculate the total length of wood used to make the frame of the kite to the nearest metre.

![Kite diagram]

6.4 Calculating unknown angles

Inverse trigonometric ratios

- We have seen that \(\sin(30^\circ) = 0.5 \); therefore, \(30^\circ \) is the inverse sine of 0.5. This is written as \(\sin^{-1}(0.5) = 30^\circ \).
- The expression \(\sin^{-1}(x) \) is read as ‘the inverse sine of \(x \).’
- The expression \(\cos^{-1}(x) \) is read as ‘the inverse cosine of \(x \).’
- The expression \(\tan^{-1}(x) \) is read as ‘the inverse tangent of \(x \).’

Experiment

1. Use your calculator to find \(\sin(30^\circ) \), then find the inverse sine of the answer. Choose another angle and do the same thing.
2. Now find \(\cos(30^\circ) \) and then find the inverse cosine (\(\cos^{-1} \)) of the answer. Choose another angle and do the same thing.
3. Lastly, find $\tan(45^\circ)$ and then find the inverse tangent (\tan^{-1}) of the answer. Try this with other angles.

- The fact that \sin and \sin^{-1} cancel each other out is useful in solving equations such as:

$$\sin(\theta) = 0.3 \quad \text{(Take the inverse sine of both sides.)}$$

$$\sin^{-1}(\sin(\theta)) = \sin^{-1}(0.3)$$

$$\theta = \sin^{-1}(0.3)$$

$$\sin^{-1}(x) = 15^\circ \quad \text{(Take the sine of both sides.)}$$

$$\sin(\sin^{-1}(x)) = \sin(15^\circ)$$

$$x = \sin(15^\circ)$$

Similarly, $\cos(\theta) = 0.522$ means that

$$\theta = \cos^{-1}(0.522)$$

and $\tan(\theta) = 1.25$ means that

$$\theta = \tan^{-1}(1.25).$$

WORKED EXAMPLE 8

Evaluate $\cos^{-1}(0.3678)$, correct to the nearest degree.

THINK

1. Set your calculator to degree mode.
2. Round the answer to the nearest whole number and include the degree symbol.

WRITE

$$\cos^{-1}(0.3678) = 68.4 \approx 68^\circ$$

WORKED EXAMPLE 9

Determine the size of angle θ in each of the following. Give answers correct to the nearest degree.

a $\sin(\theta) = 0.6543$

b $\tan(\theta) = 1.745$

THINK

a

1. θ is the inverse sine of 0.6543.
2. Calculate and record the answer.
3. Round the answer to the nearest degree.

WRITE

$$\sin(\theta) = 0.6543$$

$$\theta = \sin^{-1}(0.6543) = 40.8 \approx 41^\circ$$

b

1. θ is the inverse tangent of 1.745.
2. Use the inverse tangent function on a calculator. Record the number shown.
3. Round the answer to the nearest degree.

WRITE

$$\tan(\theta) = 1.745$$

$$\theta = \tan^{-1}(1.745) = 60.1 \approx 60^\circ$$
Finding the angle when 2 sides are known

Knowing any 2 sides of a right-angled triangle, it is possible to find an angle using inverse sine, inverse cosine or inverse tangent.

WORKED EXAMPLE 10

Determine the value of θ in the triangle at right. Give your answer correct to the nearest degree.

THINK

1. Label the given sides. These are used in CAH. Write the ratio.

2. Substitute the given values into the cosine ratio.

3. θ is the inverse cosine of $\frac{12}{63}$.

4. Evaluate.

5. Round the answer to the nearest degree.

WRITE/ DRAW

\[
\cos(\theta) = \frac{A}{H} = \frac{12}{63}
\]

\[
\theta = \cos^{-1}\left(\frac{12}{63}\right) = 79.0
\]

\[
\approx 79^\circ
\]

WORKED EXAMPLE 11

Roberta enjoys water skiing and is about to try a new ramp on the Hawkesbury River. The inclined ramp rises 1.5 m above the water level and spans a horizontal distance of 6.4 m. What is the magnitude (size) of the angle that the ramp makes with the water? Give the answer correct to the nearest degree.

THINK

1. Draw a simple diagram, showing the known lengths and the angle to be found.

2. Label the given sides. These are used in TOA. Write the ratio.

3. Substitute the values of the pronumerals into the tangent ratio.

4. θ is the inverse inverse tangent of $\frac{1.5}{6.4}$.

WRITE/ DRAW

\[
\tan(\theta) = \frac{O}{A} = \frac{1.5}{6.4}
\]

\[
\theta = \tan^{-1}\left(\frac{1.5}{6.4}\right)
\]
5 Evaluate.

6 Round the answer to the nearest degree.

7 Write the answer in words.

The ramp makes an angle of \(13^\circ\) with the water.

Exercise 6.4 Calculating unknown angles

INDIVIDUAL PATHWAYS

PRACTISE
Questions: 1a–c, 2, 3a–f, 4–10

CONSOLIDATE
Questions: 1d–f, 2, 3d–h, 4–11

MASTER
Questions: 1g–i, 2, 3e–i, 4–13

FLUENCY

1. **WE8** Evaluate each of the following, correct to the nearest degree.
 - \(a\) \(\sin^{-1}(0.6294)\)
 - \(b\) \(\cos^{-1}(0.3110)\)
 - \(c\) \(\tan^{-1}(0.7409)\)
 - \(d\) \(\tan^{-1}(1.3061)\)
 - \(e\) \(\sin^{-1}(0.9357)\)
 - \(f\) \(\cos^{-1}(0.3275)\)
 - \(g\) \(\cos^{-1}(0.1928)\)
 - \(h\) \(\tan^{-1}(4.1966)\)
 - \(i\) \(\sin^{-1}(0.2554)\)

2. **WE9** Determine the size of the angle in each of the following. Give answers correct to the nearest degree.
 - \(a\) \(\sin(\theta) = 0.3214\)
 - \(b\) \(\sin(\theta) = 0.6752\)
 - \(c\) \(\sin(\beta) = 0.8235\)
 - \(d\) \(\cos(\beta) = 0.9351\)
 - \(e\) \(\cos(\alpha) = 0.6529\)
 - \(f\) \(\cos(\alpha) = 0.1722\)
 - \(g\) \(\tan(\theta) = 0.7065\)
 - \(h\) \(\tan(\alpha) = 1\)
 - \(i\) \(\tan(b) = 0.876\)
 - \(j\) \(\sin(c) = 0.3936\)
 - \(k\) \(\cos(\theta) = 0.5241\)
 - \(l\) \(\tan(\alpha) = 5.6214\)

3. **WE10** Determine the value of \(\theta\) in each of the following triangles. Give answers correct to the nearest degree.

REFLECTION

Why does \(\cos(0^\circ) = 1\)?
4 **MC** a If \(\cos(\theta) = 0.8752 \), the value of \(\theta \) correct to 2 decimal places is:
 - A 61.07°
 - B 41.19°
 - C 25.84°
 - D 28.93°

 b If \(\sin(\theta) = 0.5530 \), the value of \(\theta \) correct to 2 decimal places is:
 - A 56.43°
 - B 33.57°
 - C 28.94°
 - D 36.87°

 c The value of \(\theta \) in the triangle shown, correct to 2 decimal places, is:
 - A 41.30°
 - B 28.55°
 - C 48.70°
 - D 61.45°

 d The value of \(\theta \) in the triangle shown, correct to 2 decimal places, is:
 - A 42.10°
 - B 64.63°
 - C 25.37°
 - D 47.90°

5 a Copy and fill in the table below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0.0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = \cos^{-1}(x))</td>
<td>90°</td>
<td></td>
<td></td>
<td></td>
<td>60°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0°</td>
</tr>
</tbody>
</table>

 b Plot the above table on graph paper or with a spreadsheet or suitable calculator.

UNDERSTANDING

6 A piece of fabric measuring 2.54 m by 1.5 m has a design consisting of parallel diagonal stripes. What angle does each diagonal make with the length of the fabric? Give your answer correct to 2 decimal places.

7 **WE11** Danny Dingo is perched on top of a cliff 20 m high watching an emu feeding 8 m from the base of the cliff. Danny has purchased a flying contraption, which he hopes will help him capture the emu. At what angle to the cliff must he swoop to catch his prey? Give your answer correct to 2 decimal places.
REASONING
8 Jenny and Les are camping with friends Mark and Susie. Both couples have a 2-m-high tent. The top of a 2-m tent pole is to be tied with a piece of rope that will be used to keep the pole upright. So that the rope doesn’t trip a passerby, Jenny and Les decide that the angle between the rope and the ground should be 80°. Answer the following questions, correct to 2 decimal places.
 a Find the length of the rope needed from the top of the tent pole to the ground to support their tent pole.
 b Further down the camping ground, Mark and Susie also set up their tent. However, they want to use a piece of rope that they know is in the range of 2 to 3 metres in length.
 i Explain why the rope will have to be greater than 2 metres in length.
 ii Show that the minimum angle the rope will make with the ground will be 41.8°.
9 Safety guidelines for wheelchair access ramps used to state that the gradient had to be in the ratio 1 : 20.
 a Using this ratio, show that the angle that the ramp had to make with the horizontal is closest to 3°.
 b New regulations have changed the ratio of the gradient, so the angle the ramp must make with the horizontal is now closest to 6°. Explain why, using this angle size, the new ratio could be 1 to 9.5.

PROBLEM SOLVING
10 Calculate the value of the pronumeral in each of the following to 2 decimal places.
 a
 b
 c
11 A family is building a patio at the back of the house. One section of the patio will have a gable roof. A similar structure is pictured with the planned post heights and span shown. To allow more light in, the family wants the peak (highest point) of the gable roof to be at least 5 m above deck level. According to building regulations, the slope of the roof (i.e. the angle that the sloping edge makes with the horizontal) must be 22°.

a Use trigonometry to calculate whether the roof would be high enough if the angle was 22°.

b Use trigonometry to calculate the size of the obtuse angle formed at the peak of the roof.

12 Use the formulas \(\sin(\theta) = \frac{o}{h} \) and \(\cos(\theta) = \frac{a}{h} \) to prove that \(\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \).

CHALLENGE 6.2

1 A square-based prism has a height twice its base length. What angle does the diagonal of the prism make with the diagonal of the base?

2 Seven smaller shapes are created inside a square with side length 10 cm as shown in the diagram. If the dots represent the midpoints of the square's sides, find the dimensions of each shape.
6.5 Angles of elevation and depression

- When looking up towards an object, an **angle of elevation** is the angle between the horizontal line and the line of vision.

- When looking down at an object, an **angle of depression** is the angle between the horizontal line and the line of vision.

- Angles of elevation and depression are measured from horizontal lines.

Worked Example 12

At a point 10 m from the base of a tree, the angle of elevation of the treetop is 38°. How tall is the tree to the nearest centimetre?

Think

1. Draw a simple diagram. The angle of elevation is 38° from the horizontal.

2. Label the given sides of the triangle. These sides are used in TOA. Write the ratio.
 \[\tan(38°) = \frac{h}{10} \]

3. Multiply both sides by 10.
 \[10 \tan(38°) = h \]

4. Calculate correct to 3 decimal places.
 \[h = 7.812 \]

5. Round to 2 decimal places.
 \[\approx 7.81 \]

6. Write the answer in words.
 The tree is 7.81 m tall.

Worked Example 13

A lighthouse, 30 m tall, is built on top of a cliff that is 180 m high. Find the angle of depression (θ) of a ship from the top of the lighthouse if the ship is 3700 m from the bottom of the cliff.
Ramps being constructed at a new shopping centre are each made in the ratio \(\frac{7}{1} \) horizontal length to \(1 \) m vertical height. Find the angle of elevation of these ramps and, hence, decide whether they meet building specifications.

2 A lifesaver standing on his tower \(3 \) m above the ground spots a swimmer experiencing difficulty. The angle of depression of the swimmer from the lifesaver is \(12^\circ \). How far is the swimmer from the lifesaver's tower? (Give your answer correct to 2 decimal places.)

3 From the top of a lookout \(50 \) m above the ground, the angle of depression of a camp site that is level with the base of the lookout is \(37^\circ \). How far is the camp site from the base of the lookout?

4 From a rescue helicopter \(80 \) m above the ocean, the angles of depression of two shipwreck survivors are \(40^\circ \) and \(60^\circ \) respectively. If the two sailors and the helicopter are in line with each other:
 a Draw a labelled diagram to represent the situation.
 b Calculate the distance between the two sailors, to the nearest metre.

5 The angle of elevation of the top of a tree from a point on the ground, \(60 \) m from the tree, is \(35^\circ \).
 a Draw a labelled diagram to represent the situation.
 b Find the height of the tree to the nearest metre.

WRITE/DRAW

\[\tan(\theta) = \frac{O}{A} \]

\[\tan(\theta) = \frac{210}{3700} \]

\[\theta = \tan^{-1}\left(\frac{210}{3700} \right) \]

\[\approx 3^\circ \]

The angle of depression of the ship from the top of the lighthouse is \(3^\circ \).

Note: In Worked example 13, the angle of depression from the top of the lighthouse to the ship is equal to the angle of elevation from the ship to the top of the lighthouse. This is because the angle of depression and the angle of elevation are alternate (or ‘Z’) angles.

This can be generalised as follows:

\[\text{For any two objects, A and B, the angle of elevation of B, as seen from A, is equal to the angle of depression of A, as seen from B.} \]

Exercise 6.5 Angles of elevation and depression

INDIVIDUAL PATHWAYS

- **PRACTISE**
 Questions: 1–6, 8, 10, 12

- **CONSOLIDATE**
 Questions: 1–6, 8, 11–14

- **MASTER**
 Questions: 1–3, 6, 7, 9–16

REFLECTION

Why does the angle of elevation have the same value as the angle of depression?
FLUENCY

1. Building specifications require the angle of elevation of any ramp constructed for public use to be less than 3°.

Ramps being constructed at a new shopping centre are each made in the ratio 7 m horizontal length to 1 m vertical height. Find the angle of elevation of these ramps and, hence, decide whether they meet building specifications.

2. A lifesaver standing on his tower 3 m above the ground spots a swimmer experiencing difficulty. The angle of depression of the swimmer from the lifesaver is 12°. How far is the swimmer from the lifesaver’s tower? (Give your answer correct to 2 decimal places.)

3. From the top of a lookout 50 m above the ground, the angle of depression of a camp site that is level with the base of the lookout is 37°. How far is the camp site from the base of the lookout?

UNDERSTANDING

4. From a rescue helicopter 80 m above the ocean, the angles of depression of two shipwreck survivors are 40° and 60° respectively. If the two sailors and the helicopter are in line with each other:
 a. draw a labelled diagram to represent the situation
 b. calculate the distance between the two sailors, to the nearest metre.

5. The angle of elevation of the top of a tree from a point on the ground, 60 m from the tree, is 35°.
 a. Draw a labelled diagram to represent the situation.
 b. Find the height of the tree to the nearest metre.
6 Miriam, an avid camerawoman from Perth, wants to record her daughter Alexandra’s first attempts at crawling. As Alexandra lies on the floor and looks up at her mother, the angle of elevation is 17°. If Alexandra is 5.2 m away from her mother, how tall is Miriam?

![Diagram of Miriam and Alexandra](image)

7 **WE13** Stan, who is 1.95 m tall, measures the length of the shadow he casts along the ground as 0.98 m. Find the angle of depression of the sun’s rays to the nearest degree.

![Diagram of Stan and Shadow](image)

8 What angle does a 3.8-m ladder make with the ground if it reaches 2.1 m up the wall? How far is the foot of the ladder from the wall? (Give your answers to the nearest degree and the nearest metre.)

![Diagram of Ladder](image)

9 Con and John are practising shots on goal. Con is 3.6 m away from the goal and John is 4.2 m away, as shown in the diagram. If the height of the goal post is 2.44 m, what is the maximum angle of elevation, to the nearest degree, that each can kick the ball in order to score a goal?

![Diagram of Con and John Practising](image)
10 **MC** The angle of elevation of the top of a lighthouse tower 78 m tall, from a point B on the same level as the base of the tower, is 60°. The correct diagram for this information is:

![Diagram]

REASONING

11 Lifesaver Sami spots some dolphins playing near a marker at sea directly in front of him. He is sitting in a tower that is situated 10 m from the water’s edge and is 4 m tall. The marker is 20 m from the water’s edge.

 a Draw a diagram to represent this information.

 b Show that the angle of depression of Sami’s view of the dolphins, correct to 1 decimal place, is 7.6°.

 c As the dolphins swim towards Sami, would the angle of depression increase or decrease? Justify your answer in terms of the tangent ratios.

12 Two buildings are 100 m and 75 m high. From the top of the north side of the taller building, the angle of depression to the top of the south side of the smaller building is 20°, as shown below. Show that the horizontal distance between the north side of the taller building and the south side of the smaller building is closest to 69 metres.

![Diagram]

PROBLEM SOLVING

13 Rouka was hiking in the mountains when she spotted an eagle sitting up in a tree. The angle of elevation of her view of the eagle was 35°. She then walked 20 metres towards the tree and her angle of elevation was 50°. The height of the eagle from the ground was 35.5 metres.

 a Draw a labelled diagram to represent this information.

 b Determine how tall Rouka is, if her eyes are 9 cm from the top of her head. Write your answer in metres, correct to the nearest centimetre.
14 A lookout in a lighthouse tower can see two ships approaching the coast. Their angles of depression are 25° and 30°. If the ships are 100 m apart, show that the height of the lighthouse, to the nearest metre, is 242 metres.

15 At a certain distance away, the angle of elevation to the top of a building is 60°. From 12 m further back, the angle of elevation is 45° as shown in the diagram below.

Show that the height of the building is 28.4 metres.

16 A tall gum tree stands in a courtyard in the middle of some office buildings. Three Year 9 students, Jackie, Pho and Theo measure the angle of elevation from three different positions. They are unable to measure the distance to the base of the tree because of the steel tree guard around the base. The diagram below shows the angles of elevation and the distances measured.

a Show that $x = \frac{15 \tan \alpha}{\tan \beta - \tan \alpha}$, where x is the distance, in metres, from the base of the tree to Pho’s position.

b The girls estimate the tree to be 15 m taller than them. Pho measured the angle of elevation to be 72°. What should Jackie have measured her angle of elevation to be, if these measurements are assumed to be correct? Write your answer to the nearest degree.

c Theo did some calculations and determined that the tree was only about 10.4 m taller than them. Jackie claims that Theo’s calculation of 10.4 m is incorrect.

i Is Jackie’s claim correct? Show how Theo calculated a height of 10.4 m.

ii If the height of the tree was actually 15 metres above the height of the students, determine the horizontal distance Theo should have used in his calculations. Write your answer to the nearest centimetre.
6.6 Review

The Maths Quest Review is available in a customisable format for students to demonstrate their knowledge of this topic.

The Review contains:
- **Fluency** questions — allowing students to demonstrate the skills they have developed to efficiently answer questions using the most appropriate methods
- **Problem Solving** questions — allowing students to demonstrate their ability to make smart choices, to model and investigate problems, and to communicate solutions effectively.

A summary of the key points covered and a concept map summary of this topic are available as digital documents.

Review questions

Download the Review questions document from the links found in your eBookPLUS.

Language

It is important to learn and be able to use correct mathematical language in order to communicate effectively. Create a summary of the topic using the key terms below. You can present your summary in writing or using a concept map, a poster or technology,

- angle of depression
- hypotenuse
- sine ratio
- angle of elevation
- inverse
- tangent ratio
- adjacent
- opposite
- trigonometric inverses
- cosine ratio
- right-angled triangle
- trigonometric ratios

Link to assessON for questions to test your readiness FOR learning, your progress AS you learn and your levels OF achievement.

assessON provides sets of questions for every topic in your course, as well as giving instant feedback and worked solutions to help improve your mathematical skills.

www.assesson.com.au

The story of mathematics

is an exclusive Jacaranda video series that explores the history of mathematics and how it helped shape the world we live in today.

Secret society (eles-1693) delves into the world of Pythagoras and his followers, known as the Pythagoreans. It highlights the structure of the society in which they lived and how the Pythagoreans came to influence our world today.
The Great Pyramid of Giza was built over four and a half thousand years ago. It was constructed using approximately 2,300,000 rectangular granite blocks and took over 20 years to complete. When built, its dimensions measured 230 m at the base and its vertical height was 146.5 m.

1. Each side of the pyramid has a triangular face. Use the dimensions given and Pythagoras' theorem to calculate the height of each triangle. Give your answer correct to 2 decimal places.

2. Special finishing blocks were added to the ends of each row of the pyramid to give each triangular face a smooth and flat finish. Calculate the area of each face of the pyramid.

3. The edge of the pyramid joins two faces from the ground to the tip of the pyramid. Use Pythagoras' theorem to calculate the length of the edge.
Wall braces

In the building industry, wall frames are strengthened with the use of braces. These braces run between the top and bottom horizontal sections of the frame.

Industry standards stipulate that the acute angle the brace makes with the horizontal sections lies in the range 37° to 53°. Sometimes, more than one brace may be required if the frame is a long one.

1. Cut thin strips of cardboard and arrange them in the shape of a rectangle to represent a rectangular frame. Pin the corners to hold them together. Notice that the frame moves out of shape easily. Attach a brace according to the angle stipulation of the building industry. Write a brief comment to describe what effect the brace had on the frame.

2. Investigate what happens to the length of the brace required as the acute angle with the base increases from 37° to 53°.

3. Use your finding from question 2 to state which angle requires the shortest brace and which angle requires the longest brace.

Most contemporary houses are constructed with a ceiling height of 2.4 metres; that is, the height of the walls from the floor to the ceiling. Use this fact to assist in your calculations for the following questions.

4. Assume you have a section of a wall that is 3.5 metres long. What would be the length of the longest brace possible? Draw a diagram and show your working to support your answer in the space below.

5. What would be the minimum wall length in which two braces were required? Show your working, along with a diagram, in the space provided.

6. Some older houses have ceilings over 2.4 metres. Repeat questions 4 and 5 for a frame with a height of 3 metres. Draw diagrams and show your workings to support your answers in the space below.

7. Take the measurements of a wall without windows in your school or at home. Draw a scale drawing of the frame on a separate sheet of paper and show the positions in which a brace or braces might lie. Calculate the length and angle of each brace.
What does it mean?

The values of lettered angles to the nearest degree give the puzzle’s answer code.

Vacuum cleaner:

Dust:

Egg:

Fodder:

What does it mean?
Activities

6.1 Overview

Video
- The story of mathematics: Secret society (eles-1693)

6.2 What is trigonometry?

Digital docs
- SkillSHEET (doc-10830): Rounding to a given number of decimal places
- SkillSHEET (doc-10831): Measuring angles with a protractor

Interactivities
- Investigation: Trigonometric ratios (int-0744)
- IP interactivity 6.2 (int-4498) What is trigonometry?

6.3 Calculating unknown side lengths

eLesson
- Using an inclinometer (eles-0116)

Digital docs
- SkillSHEET (doc-10832): Solving equations of the type \(\frac{x}{b} = a \) to find \(x \)
- SkillSHEET (doc-10833): Solving equations of the type \(\frac{b}{x} = a \) to find \(x \)
- SkillSHEET (doc-10834): Rearranging formulas
- WorkSHEET 6.1 (doc-10835): Trigonometry

Interactivity
- IP interactivity 6.3 (int-4499) Calculating unknown side lengths

6.4 Calculating unknown angles

Digital doc
- SkillSHEET (doc-10836): Rounding angles to the nearest degree

Interactivity
- IP interactivity 6.4 (int-4500) Calculating unknown angles

6.5 Angles of elevation and depression

Digital docs
- SkillSHEET (doc-10837): Drawing a diagram from given directions
- WorkSHEET 6.2 (doc-10838): Trigonometry using elevation and depression

Interactivity
- IP interactivity 6.5 (int-4501) Angles of elevation and depression

6.6 Review

Interactivities
- Word search (int-0889)
- Crossword (int-0703)
- Sudoku (int-3206)

Digital docs
- Topic summary (doc-10784)
- Concept map (doc-10797)

To access eBookPLUS activities, log on to www.jacplus.com.au
Answers

TOPIC 6 TRIGONOMETRY

Exercise 6.2 What is trigonometry?

1. a) [Diagram showing adjacent, hypotenuse, opposite]
 b) [Diagram showing opposite, adjacent, hypotenuse]
 c) [Diagram showing adjacent, opposite, hypotenuse]
 d) [Diagram showing opposite, adjacent, hypotenuse]
 e) [Diagram showing opposite, adjacent, hypotenuse]
 f) [Diagram showing opposite, adjacent, hypotenuse]

2. a) \(DE = \text{hyp} \ DF = \text{opp} \angle E = \theta \)
 b) \(GH = \text{hyp} \ IH = \text{adj} \angle H = \theta \)
 c) \(JL = \text{hyp} \ KL = \text{opp} \angle J = \theta \)

3. | \(\theta \) | \(\sin \theta \) | \(\cos \theta \) | \(\tan \theta \) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 45°</td>
<td>0.71</td>
<td>0.71</td>
<td>1.00</td>
</tr>
<tr>
<td>b) 35°</td>
<td>0.57</td>
<td>0.82</td>
<td>0.70</td>
</tr>
</tbody>
</table>

4. **Exercise 6.3 Calculating unknown side lengths**

1. a) i) \(\theta = 0° \)
 ii) \(\sin(0°) = 0 \)
 iii) \(\cos(0°) = 1 \)
 iv) \(\tan(0°) = 0 \)

2. a) i) \(\theta = 15° \)
 ii) \(\sin(15°) \approx 0.259
 iii) \(\cos(15°) \approx 0.966
 iv) \(\tan(15°) \approx 0.258

3. a) i) \(\theta = 30° \)
 ii) \(\sin(30°) = 0.5
 iii) \(\cos(30°) = 0.866
 iv) \(\tan(30°) = 0.577

4. a) \(\sin(90°) = 1 \)
 b) \(\cos(90°) = 0 \)
 c) \(\tan(90°) = \infty \)

5. a) \(\theta = 45° \)
 b) \(\theta = 60° \)
 c) \(\theta = 75° \)
 d) \(\theta = 90° \)

6. a) i) \(\sin(45°) = 0.71
 ii) \(\cos(45°) = 0.71
 iii) \(\tan(45°) = 1

7. a) \(O = 33 \text{ mm} \)
 b) \(A = 38 \text{ mm} \)
 c) \(H = 50 \text{ mm} \)

8. a) \(\angle A = 40°
 b) \(\angle B = 50°
 c) \(\angle C = 90°

9. a) The missing angle is also 45°, so the triangle is an isosceles triangle, therefore \(a = b \).

10. Provide \(n \) is a positive value, \((m + n)\) would be the hypotenuse, as it has a larger value than both \(m \) and \((m - n) \).

11. a) Ground
 b) Ladder
 c) Brick wall

12. a) The ratio of the length of the opposite side to the length of the hypotenuse will increase.
 b) The ratio of the length of the adjacent side will decrease, and the ratio of the opposite side to the adjacent will increase.
 c) i) 1 ii) 1 iii) \(\infty \)

Exercise 6.4 Calculating unknown angles

1. a) i) \(\angle A = 30° \)
 ii) \(\angle B = 45° \)
 iii) \(\angle C = 60° \)

2. a) i) \(\sin(30°) = 0.5
 ii) \(\cos(30°) = 0.866
 iii) \(\tan(30°) = 0.577

3. a) \(\theta = 0° \)
 b) \(\theta = 45° \)
 c) \(\theta = 90° \)

4. a) \(\sin(90°) = 1
 b) \(\cos(90°) = 0
 c) \(\tan(90°) = \infty

5. a) \(\sin(45°) = 0.71
 b) \(\cos(45°) = 0.71
 c) \(\tan(45°) = 1

6. a) \(\angle A = 40°
 b) \(\angle B = 50°
 c) \(\angle C = 90°

7. a) \(17.95, b = 55.92
 b) \(15.59, b = 9.00, c = 10.73
 c) \(12.96, b = 28.24, c = 15.28

8. a) \(\angle A = 40°
 b) \(\angle B = 50°
 c) \(\angle C = 90°

9. a) \(275.75 \text{ km}
 b) \(48.62 \text{ km}
 c) \(21.32 \text{ m}

10. \(285.63 \text{ m}

11. \(4 \text{ m}

12. a, b) Answers will vary.

13. Answers will vary.

14. a) \(x = 10.24 \text{ m}
 b) \(h = 3.00 \text{ m}
 c) \(x = 2.60 \text{ m}

15. \(w = 41 \text{ mm}

16. a) \(5.9 \text{ m}
 b) \(5.2 \text{ m}

17. \(4 \text{ m}

Challenge 6.1

2.47 km; 0.97 km
Exercise 6.4 Calculating unknown angles

1 a 39° b 72° c 37° d 53° e 69°
 f 71° g 79° h 77° i 15°
2 a 19° b 42° c 55° d 21° e 49°
 f 80° g 35° h 45° i 41° j 23°
 k 58° l 80°
3 a 47° b 45° c 24° d 43° e 45°
 f 18° g 26° h 12° i 76°
4 a D b B c D d C
5 a | x | y = \cos^{-1}(x) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>90°</td>
</tr>
<tr>
<td>0.1</td>
<td>84°</td>
</tr>
<tr>
<td>0.2</td>
<td>78°</td>
</tr>
<tr>
<td>0.3</td>
<td>73°</td>
</tr>
<tr>
<td>0.4</td>
<td>66°</td>
</tr>
<tr>
<td>0.5</td>
<td>60°</td>
</tr>
<tr>
<td>0.6</td>
<td>53°</td>
</tr>
<tr>
<td>0.7</td>
<td>46°</td>
</tr>
<tr>
<td>0.8</td>
<td>37°</td>
</tr>
<tr>
<td>0.9</td>
<td>26°</td>
</tr>
<tr>
<td>1.0</td>
<td>0°</td>
</tr>
</tbody>
</table>

6 30.56°
7 21.80°
8 a 2.03 m
 b Answers will vary.
9 Answers will vary.
10 a \(\theta = 6.50° \)
 b \(\theta = 32.01° \)
 c \(x = 6.41° \)
11 a The roof would not be high enough.
 b 136°
12 Answers will vary.

Challenge 6.2
1 54.74°
2 Large square: 5 cm \times 5 cm
 Large triangles: 5 cm \times 5 cm
 Small square: \(\frac{\sqrt{50}}{2} \text{ cm} \times \frac{\sqrt{50}}{2} \text{ cm} \)
 Small triangles: \(\frac{\sqrt{50}}{2} \text{ cm} \times \frac{\sqrt{50}}{2} \text{ cm} \)
 Parallelogram: \(\sqrt{50} \text{ cm} \times 5 \text{ cm} \)
30°

Exercise 6.5 Angles of elevation and depression
1 8.13° No, the ramps do not meet specifications.
2 14.11 m
3 66.35 m

\[\tan(\theta) = \frac{4}{5} \]
\[\theta = \tan^{-1} \left(\frac{4}{5} \right) \]
\[\theta \approx 7.595 \]
\[\approx 7.6° \]

As the dolphins swim towards Sami, the adjacent length decreases and the opposite remains unchanged.
\[\tan(\theta) = \frac{opposite}{adjacent} \]
Therefore, \(\theta \) will increase as the adjacent length decreases.

If the dolphins are at the water’s edge,
\[\tan(\theta) = \frac{10}{4} \]
\[\theta = \tan^{-1} \left(\frac{10}{4} \right) \]
\[\theta \approx 21.801 \]
\[\approx 21.8° \]

12 Answers will vary.
13 a Answers will vary.
 b 1.64 m
14 Answers will vary.
15 Answers will vary.
16 a Answers will vary.
 b 37°
 c i Yes ii 17.26 m

Investigation — Rich task
The Great Pyramid of Giza
1 186.25 m
2 21 418.75 m²
3 218.89 m

Wall braces
1 Answers will vary.
2 Answers will vary.
3 53° requires the shortest brace and 37° requires the longest brace.
4 4.24 m
5 3.62 m
6 4.61 m; 4.52 m
7 Answers will vary.

Code puzzle
A broom with a stomach
Mud with the juice squeezed out
A bird’s home town
The man who married mudder
Learning or earning?

Scenario
Year 9 Students at Progressive High School have seen the paper Are young people learning or earning? produced by the Australian Bureau of Statistics. They start the week discussing their thoughts and then decide to do their own research. Simon decides that he will use this research to demonstrate to his parents that life is very different to when they were his age and that he is capable of undertaking a part-time job and keeping up with his studies.

Task
Read the article, summarise it and design a survey to research the topic. Your findings will reflect the work–study balance of the students in your school and demographic. You will produce a presentation for your parents outlining the article and detailing their research and the conclusions you have drawn.

Process
- Open the ProjectsPLUS application for this chapter in your eBookPLUS. Watch the introductory video lesson, click the ‘Start Project’ button and then set up your project group. You can complete this project individually or invite other members of your class to form a group. Save your settings and the project will be launched.
- Navigate to your Media Centre. Read the articles and complete the task below. Answer the questions provided in the Are Young People Learning or Earning file in the Media Centre. Summarise the thoughts of the article in 200 words or less.
- Wordle is a site that creates an image of the words in an article according to the frequency of their usage. Use the Wordle weblink in your eBookPLUS and select the create tab. Copy the summary of your article into the text box. Keep selecting the randomise button until you are happy with the result. Print your final choice. Take a screenshot of your final choice. Take it into Paint for use as a slide in your presentation. Save your Paint file.
- Use Surveymonkey to survey 100 students at your school to determine who has part-time jobs and how long they work at these each week. You are able to ask only 10 questions per survey. Record your 10 questions in Word. When planning your survey think carefully about the types of questions you want to ask. For example, do you want to know why they have a part-time job?
Your 100 students need to represent the school as a population. How will you make your sample representative of this? Will it be a random sample or a stratified sample? Explain. What about the gender balance? Justify your decision. How will you notify the chosen students that they need to do the survey? What instructions will you give to the students completing your survey? How long will they have to complete it? What will you do to ensure they have all completed it? Complete the survey table provided in the Media Centre. Type your instructions to each person completing the survey. Copy this into the Survey instructions template in the Media Centre.

- **Analysis.** Record the results from your survey in a frequency distribution table. Use the Results table provided in the Media Centre. Write a paragraph summarising your findings. Include mean, median, mode and range for each year group. What percentages of the students have part-time jobs? Is there a trend as the students get older (are more or less students working)? Include a statement as to why you still want to get a part-time job. Represent your findings in a frequency histogram and frequency polygon. Use the Excel template for your results and include your graphs on that sheet. If you were to do this research again, is there anything that you would change? Why? Are there any better resources for your research? What is the mean, median and mode and range of your results?

- **Research.** Visit the Media Centre in your eBookPLUS and open the *Suburb statistics labour force by age* weblink. Type in your postcode. Follow the prompts to download the labour force statistics by age, and by sex for your postcode, and save. If you live in a rural region, repeat for an urban area. Save the Excel files columns for the rural and urban postcodes. Use Excel to create a column graph with a series of columns. See Sample spreadsheet file. Include the graph in your Prezi file with an explanation of what you did.

- Visit the Media Centre and download the Prezi sample and the Prezi planning template to help you prepare your presentation. Your Media Centre also includes images that can help to liven up your presentation. As you arrange your images on your Prezi page make them form a large circle so that they flow smoothly when they are linked and presented.

- Use the Prezi template to develop your presentation. Remember that you are trying to convince your parents that you should be able to undertake a part-time job. Make sure you include all the results of your research, and that your presentation will grab their attention. To include tables in Prezi you need to take them into paint and save the file as a jpeg in order to upload them. Use Word to type up your dialogue to your parents when you present your case (200–500 words).