
Using Scripts

Scripting automates many features in InDesign — it’s
essentially a way to program InDesign to do specific

actions. Because InDesign uses standard script languages, you
can also run scripts that work with multiple programs in con-
cert, including InDesign. (All the applications must support
the same scripting language, of course.) For example, you
might use scripts to automate database publishing, such as to
run a database search, export data to a text file, import that
file into InDesign, and then apply the appropriate formatting.

InDesign supports three scripting languages:

✦ On both Mac and Windows, it supports JavaScript.

✦ On the Mac only, it supports AppleScript.

✦ On Windows only, it supports Visual Basic for
Applications (VBA).

Because of this, I recommend you use JavaScript wherever
possible, so your scripts can work in cross-platform environ-
ments. InDesign doesn’t force you to choose just one scripting
language, so you could keep using old AppleScript or VBA
scripts created for previous versions of InDesign, as well as
new scripts written in JavaScript.

JavaScript support is new to InDesign CS.

As you become comfortable with scriptwriting, you’re also
likely to discover that virtually everything you do with
InDesign is a repetitive task. The more you can free yourself of
this kind of work by using scripts, the more time you have to
be creative. The possibilities are endless. But before you get
too excited, remember that scripting is programming, so most
layout artists stay clear, using scripts only if they have a pro-
grammer available to write them.

3737C H A P T E R

In This Chapter

Installing and
accessing scripts

Exploring JavaScript

Exploring AppleScript

Exploring VBA

Writing scripts

Learning more about
scripting

726 Part VIII ✦ Going Beyond the Program

Using Scripts
Accessing scripts is easy — they show up in the Scripts pane (Window➪Scripting➪
Scripts) if you’ve placed scripts in the Scripts folder inside the folder that contains
the InDesign CS application, as shown in Figure 37-1. Scripts don’t have to be in the
Scripts folder — they can be anywhere on your computer — but to use a script out-
side this folder means you have to double-click the script from your desktop rather
than access it in InDesign.

If you create many scripts, you can control how their names sort in the scripts list.
Also, you can now assign keyboard shortcuts to scripts.

Figure 37-1: The Scripts pane in InDesign.

No matter what scripting language you use, there are several basic principles to
observe. These fall into four basic categories:

✦ Grammar. All languages — including programming languages such as Pascal
and C++, as well as scripting languages — include grammatical components
that are used in standardized sequences. In English, we combine nouns,
verbs, adjectives, adverbs, and so on to create sentences. Everybody knows
the meaning of “The weather is especially nice today,” because it uses com-
mon words in a sequence that makes sense. The sentence “Nice is the espe-
cially today weather,” has the right components, but it’s arranged in the
wrong sequence, so the meaning is lost.

✦ Statements and syntax rules. In JavaScript, AppleScript, and VBA, verbs,
nouns, adjectives, and prepositions are combined to create statements; state-
ments are combined to form scripts. Verbs are also called commands and
methods; nouns are called objects; and adjectives are called properties. Syntax
rules specify how statements and scripts must be constructed so that they
can be understood by a computer.

✦ The object hierarchy. All three scripting languages use a structural element
called an object hierarchy. It’s a fancy term for a simple concept. An object
hierarchy works like a set of boxes within boxes. A large box contains a
smaller box, which contains a smaller box, which contains a smaller box, and
so on, until you reach the smallest box, which contains nothing and is the
final level in the hierarchy of boxes.

727Chapter 37 ✦ Using Scripts

✦ The InDesign hierarchy. InDesign contains its own hierarchy, which lends
itself nicely to scripting. A project contains layouts, a layout contains pages,
pages contain boxes, and boxes contain text and pictures. You can create
scripts that perform actions at any of these levels. In other words, with scripts
you can create documents, add pages, add items to pages, and modify the
contents of boxes — right down to a particular character in a text box. You
can think of this hierarchy in InDesign as a chain of command. You can’t talk
directly to an item that’s at the bottom of the chain. Rather, you must first
address the top level, then the next, and so on, until you’ve reached the item
at the bottom of the chain. This is analogous to the way you use InDesign: You
create new layouts, add pages, place text and graphics on the pages, and,
finally, modify the contents of the frames containing those items.

Scripts can now address individual graphics in a layout as objects, create dialog
boxes, access object labels (which you can set in InDesign, as well as have
InDesign automatically extract from converted QuarkXPress files), set object prop-
erties, and identify the file path on which the script resides.

If you’re thinking about dabbling with any of the scripting languages supported by
InDesign, the following words of both caution and encouragement are in order. First
the encouragement: You don’t necessarily need programming experience, scripting
experience, or a pocket protector to begin creating scripts. A bit of curiosity and a
touch of patience will suffice. Now the caution: Scripting is essentially a euphemism
for programming (that is, figuring out the right commands and then typing them in
for the application to execute). Writing scripts isn’t a matter of choosing commands
from menus, clicking and dragging, or entering values into fields; nor is it like writ-
ing a limerick. If you’re starting from scratch, know in advance that you’ll have to
learn some new skills.

Learning to create scripts is like learning to swim: You can read books, documenta-
tion, and articles until your head spins, but eventually you have to get a little wet.
The best way to learn about scripting is to write a script. So put on your swimsuit
and dive in.

Be forewarned: There’s something almost narcotic about creating scripts, and it’s
not uncommon for novice scriptwriters to get hooked. Don’t be surprised if what
starts out to be a 15-minute look-see turns into a multi-hour, late-night programming
episode. There's a reason why Adobe's PDF guide on scripting is more than 1,800
pages long!

Because scripting languages differ, you can’t always duplicate the functionality of a
specific script in one language into a script written in a different language.

728 Part VIII ✦ Going Beyond the Program

Exploring JavaScript
JavaScript is a scripting language developed by Sun Microsystems and initially
meant to let Web browsers manage resources on far-flung servers by running
scripts to control the servers from a desktop. It soon became a popular scripting
language because it runs on so many types of computers, including Windows,
Macintosh, and Unix. Now, JavaScript is used for both server and desktop pro-
grams. Because it is based largely on the object-oriented approach taken by profes-
sional computer languages such as C and C++, it can be difficult for
nonprogrammers to use.

The JavaScript functionality in InDesign CS was not available before this book went
to press. For updated information on how to use JavaScript with InDesign, go to
this book’s companion Web site, www.INDDcentral.com.

There are lots of JavaScript editor programs available. Most of these are developed
by individuals and small firms, so the list is always changing. I recommend you use
the Google search engine (www.google.com) and search for JavaScript editor to
find the most current programs.

Learning the language
JavaScript is a very complex language based on the concept of object orientation,
which abstracts items and attributes as objects that are then grouped, changed, or
otherwise manipulated. This means that JavaScript is less "Englishlike" than other
scripting languages, since it requires a fair amount of setup of the objects before
they can be manipulated. However, JavaScript is a very powerful language, so those
who can figure it out can create very powerful programs, not merely scripts.

myObject.strokeTint = newValue;

This example shows that there is a current object named strokeTint that is being
set to a new value; the actual value for newValue is set earlier in the script.

What you need to write and run scripts
You'll need a program that can display, edit, and test your JavaScript — there is no
bundled JavaScript editor in Windows or Mac OS X. In addition to stand-alone utili-
ties, you can usually use an HTML editor such as Macromedia Dreamweaver or
Adobe GoLive to edit JavaScripts in, though they typically don't provide any debug-
ging tools to help you track and fix coding (syntax) errors. In this case, you will
need to open the error window in your browser as you test the code and see if it
identifies the error location to help you find it in your HTML editor. Such editors

Cross-
Reference

Tip

729Chapter 37 ✦ Using Scripts

typically format the JavaScript code for you, indenting it automatically, graying out
comments, and highlighting certain keywords.

Figure 37-2: A JavaScript program viewed in Macromedia’s Dreamweaver.

Getting more information on JavaScript

Before you venture too far into scripting, you should review the JavaScript-related information provided
with InDesign:

✦ JavaScript documentation and tools. Sun places the very technical JavaScript documentation
on its Web site at http://devedge.netscape.com/central/javascript/. A good inde-
pendent source is the O’Reilly & Associates Web site’s scripting section (http://scripting
.oreilly.com).

✦ InDesign scripting documentation. The InDesign CD contains a 600-plus-page PDF file that
explains JavaScript programming for InDesign. This document, although a bit on the technical
side, is a valuable resource. It includes an overview of JavaScript scripting and the object model,
as well as a list of InDesign-specific scripting terms and scripting examples.

If you want still more information about JavaScript, several books are available, including JavaScript:
The Definitive Guide, by David Flanagan; Beginning JavaScript, by Paul Wilton; and JavaScript Bible, 4th
edition, by Danny Goodman.

730 Part VIII ✦ Going Beyond the Program

Exploring AppleScript
AppleScript is a scripting language developed by Apple and initially released with
System 7.5 that can be used to control Macs, networks, and scriptable applications,
including InDesign. The AppleScript language was designed to be as close to normal
English as possible so that average Mac users — specifically, those who aren’t
familiar with programming languages — can understand and use it.

InDesign can now run text-only AppleScripts in addition to compiled (binary)
ones.

Learning the language
Many of the actions specified in AppleScripts read like sentences you might use in
everyday conversation, such as:

set color of myFrame to "Black"

or

set applied font of myCharacterStyle to "Times"

Getting more information on AppleScript

Before you venture too far into scripting, you should review the AppleScript-related information pro-
vided with the Mac OS and with InDesign:

✦ Mac scripting documentation and tools. Apple places the AppleScript documentation on its
Web site at www.apple.com/applescript. In your hard drive’s Applications folder, you
should have a folder called AppleScript that contains the Script Editor program, along with a
folder of example scripts and the AppleScript Script Menu that adds the Script menu to the
Finder. Apple also offers a professional AppleScript editor called AppleScript Studio for down-
load at its developer Web site, http://developers.apple.com/tools.macosxtools
.html.

✦ InDesign scripting documentation. The InDesign CD contains a 600-plus-page PDF file that
explains scripting, including AppleScript programming, for InDesign. This document, although a
bit on the technical side, is a valuable resource. It includes an overview of Apple events scripting
and the object model, as well as a list of InDesign-specific scripting terms and scripting exam-
ples.

If you want still more information about AppleScript, several books are available, including AppleScript
in a Nutshell: A Desktop Quick Reference, by Bruce W. Perry; Danny Goodman’s AppleScript Handbook,
2nd Edition; and AppleScript 1-2-3, by Sal Soghoian.

731Chapter 37 ✦ Using Scripts

What you need to write and run scripts
The Script Editor, provided with the Mac OS, lets you write scripts. You’ll find the
Script Editor inside the AppleScript folder inside your Applications folder (at the
root level of your hard drive). An uncompiled script is essentially a text file, so you
can actually write scripts with any word processor. The Script Editor, however, was
created for writing AppleScripts and includes several handy features for scriptwrit-
ers.

Checking for syntax errors
The next step is to determine if the statements are correctly constructed. Click the
Check Syntax button. If the Script Editor encounters a syntax error, it alerts you and
highlights the cause of the error. If the script’s syntax is correct, all statements
except the first and last are indented, and a number of words are displayed in bold,
as illustrated in Figure 37-3. Your script has been compiled and is ready to test.

Figure 37-3: The Script Editor window containing sample AppleScript text. When you
check the syntax of a script, the Script Editor applies formatting and indents.

732 Part VIII ✦ Going Beyond the Program

Running your script
Click the Run button and then sit back and watch. If you’ve done everything cor-
rectly, you’ll see InDesign become the active program, and then the actions you put
in your script will take place. Voilà — and congratulations! You can now call your-
self a scripter without blushing. That’s all there is to creating and running a script.

If you have trouble getting a script to run, double-check the name that InDesign
uses for itself. It might use InDesign® CS or simply InDesign® (yes, the name may
include the registered trademark symbol). If you run a script from AppleScript
(rather than just double-clicking it) and AppleScript can’t find InDesign, it will give
you a dialog box with which you find the InDesign program. When you’ve found and
selected the InDesign application, AppleScript will find out what InDesign’s filename
is and use that in your script.

Saving your script
When you’re finished writing and testing a script, choose Save from the Script
Editor’s File menu. Name your script, choose its storage location, and choose
Compiled Script from the Format pop-up menu. It’s best to save the script in the
Scripts folder inside the InDesign folder, so it will show up in the Scripts menu
(after you restart InDesign).

If you save the script in Application format and want to edit your script later, you
must open it by dragging and dropping it on the Script Editor application. This is
because Application-format scripts are designed to immediately run when dou-
ble-clicked. You would choose the Application format when creating scripts for use
by others, since chances are you don’t want them to open the script in Script
Editor but instead simply want them to use the script by double-clicking it like any
other application.

Locating more AppleScript tools
A few software utilities are also available for AppleScripters. The most widely used
is Script Debugger, from Late Night Software ($189, www.latenightsw.com); it’s
an interface development tool to quickly create AppleScript-based applications that
have the standard Mac look and feel. Apple also offers its AppleScript Studio as a
free download to developers who register at the Apple site; this is more capable
than the basic Script Editor that comes with Mac OS X.

Note

733Chapter 37 ✦ Using Scripts

Exploring VBA
Visual Basic for Applications (VBA), and its subset version VBScript, is Microsoft’s
technology for writing your own programs, both those that run in other programs
(scripts) and those that run by themselves (custom applications). InDesign works
with both VBA and VBScript. The Visual Basic language that underlies both VBA
and VBScript is not meant for everyday computer users — a knowledge of program-
ming is very useful in taking advantage of this technology. Although based on the
Basic language developed in the 1970s to help new users write their own programs,
it’s evolved a lot since then and is no longer so simple.

Learning the language
Many of the actions specified in VBA have some degree of “Englishness,” such as:

set myTextFrame =
InDesign.Documents.Item(1).Spreads.Item(1).TextFrames.Add

or

mySelection.RotationAngle = 30

But as you can see, VBA has moved far from English. The first code segment, for
example, means to add a text frame to the first spread in the first document. The
second means to rotate the selected object by 30 degrees.

Getting more information on VBA

Before you venture too far into scripting, you should review the VBA-related information provided by
Microsoft and with InDesign:

✦ Microsoft scripting documentation and tools. Microsoft has a lot of information on VBA, Visual
Basic, and VBScript on its Web site. Unfortunately, it’s not well organized and is hard to find and
understand. There’s no tutorial that simply explains how a new scripter needs to get started.
However, you can search on the Microsoft site for VBA, Visual Basic, and VBScript to get links to
documents that may prove useful.

✦ InDesign scripting documentation. The InDesign CD contains a 600-plus-page PDF file that
explains VBA programming for InDesign. This document, although a bit on the technical side, is
a valuable resource. It includes an overview of VBA scripting and the object model, as well as a
list of InDesign-specific scripting terms and scripting examples.

If you want still more information about VBA and its two “sister” technologies, several books are avail-
able, including Programming Microsoft Visual Basic 6.0, by Francesco Balena; Visual Basic 6 For
Dummies, by Wallace Wang; and VBScript in a Nutshell by Paul Lomax and Ron Petrusha.

734 Part VIII ✦ Going Beyond the Program

What you need to write and run scripts
To use InDesign scripting in Windows, you’ll need Microsoft Visual Basic or an
application that contains Visual Basic for Applications (VBA); these include
Microsoft Office, Microsoft Visio, and AutoCAD. In Microsoft Office, you can run the
Microsoft Script Editor by choosing Tools➪Macros➪Microsoft Script Editor, which
lets you create scripts, edit them, test your code, and fix errors. Figure 37-4 shows
the editor with a sample script.

You can also write scripts in VBScript, a VBA subset, in a text editor such as
WordPad. You’ll need Microsoft’s free Windows Scripting Host (WSCRIPT.EXE),
which is usually installed with Windows and can be downloaded from Microsoft’s
Web site.

There’s a third choice for your scriptwriting: You can also use the full Microsoft
Visual Basic product from Microsoft.

To use InDesign scripting in Windows, your user profile must have Administrator
privileges.

Figure 37-4: The Microsoft Script Editor window containing sample VBA text. When you
work on a script, the Microsoft Script Editor applies indents automatically.

Note

735Chapter 37 ✦ Using Scripts

Running your script
To run a VBA, Visual Basic, or VBScript program, simply double-click the script. You
can also run the script directly from the application that you create a VBA or Visual
Basic script in, such as the Microsoft Script Editor. (For VBScripts, you can run
them from the Scripting Host application.) If you’ve done everything correctly,
you’ll see InDesign become the active program, and then the actions you put in
your script will take place. Voilà — and congratulations! You can now call yourself a
scripter without blushing. That’s all there is to creating and running a script.

Saving your script
When you’re finished writing and testing a script, choose Save from the script edi-
tor’s File menu. Name your script and choose its storage location. It’s best to save
the script in the Scripts folder inside the InDesign folder (usually C:\Program
Files\Adobe\InDesign CS), so it will show up in the Scripts menu (after you
restart InDesign).

Creating and Running Scripts
At this point, I’m assuming that the appropriate scripting software is installed on
your computer. If this is the case, you’re ready to begin. For your first trick, you’re
going to make InDesign roll over — sort of. Actually, you’re going to rotate an EPS
graphic. First, you’ll prepare InDesign for its role. Launch the program, and then
create a new document (do not check Automatic Text Box). In the middle of the
first page, place an EPS graphic. Make sure that it remains active after you place it.

Writing simple scripts
The following three scripts, taken from Adobe’s InDesign script examples, do the
same thing in AppleScript and VBA: Rotate an EPS graphic and its frame. (For
JavaScript versions, go to the companion Web site at www.INDDcentral.com.)

You can get the example scripts shown in this chapter, as well as other samples,
from the PDF scripting manual that comes on the InDesign CS CD. Just cut and
paste them from the PDF file into the appropriate scripting editor. Adobe’s user
forums are also a good place to go for scripting help.

Enter the lines that follow this paragraph exactly as they’re written for the scripting
language you’ve chosen. Enter a return character at the end of each line. Note also
the use of straight quotation marks instead of curly typesetter’s quotes (the script
editor does this for you). Be very careful when you enter the text: Typos are script
killers.

Cross-
Reference

736 Part VIII ✦ Going Beyond the Program

JavaScript
for(myCounter = 0; myCounter <

app.activeDocument.pages.item(0).pageItems.length;
myCounter ++){

var myPageItem =
app.activeDocument.pages.item(0).pageItems.item(myCounter);

var myPageItemType =
myPageItem.getElements()[0].constructor.name;

alert(myPageItemType);
if (myPageItemType == "EPS"{

myPageItem.rotation = 30;}
}

This script first searches through all the items on the page and checks if any are
EPS; if so, it sets the rotation of the item to 30. The code above would be part of a
function defined in JavaScript that sets up the various objects.

AppleScript
tell application "InDesign CS"

set myPageItems to {EPS, oval, rectangle, polygon}
set mySelection to selection
if class of item 1 of mySelection is in myPageItems and ¬

(count mySelection) > 0 then
if class of item 1 of mySelection is EPS then

set myFrame to parent of mySelection
else

set myFrame to item 1 of mySelection
end if
set rotation angle of myFrame to 30

end if
end tell

Note the use of the ¬ character; it indicates that the code continues onto the next
line. You would not actually type in this character; the AppleScript Editor would
insert it automatically to akert you that it wrapped the code on screen to keep it all
visible to you.

Make sure to enter the name of your InDesign program exactly as it appears on
the desktop. Because you’re free to rename your program, the name may not
match the name in the first line of the script.

Finally, perhaps you noticed the chain of command used in the preceding script.
First, the script addresses InDesign, then the active document (layout), and finally
the active frame. If you understand this concept, you’ll be scripting like a pro in no
time.

Note

737Chapter 37 ✦ Using Scripts

If you’re in an adventurous mood, try substituting the statement set rotation
angle of myFrame to 30 in the preceding script with each of the following
statements:

set text wrap of myFrame to off
set shear angle of myFrame to 30
set vertical scale of myFrame to 200

If you want to get really fancy, combine all the set statements into a single script,
so you can use the script to make all the changes at once.

VBA
Dim myInDesign As InDesign.Application
Set myInDesign = CreateObject("InDesign.Application.CS")
Set mySelection = myInDesign.Selection
If TypeName(mySelection.Item(1)) = "EPS" Then

mySelection.Parent.RotationAngle = 30
Else

mySelection.RotationAngle = 30
End If

Perhaps you noticed the chain of command used in the preceding script. First, the
script addresses InDesign, then the active document (layout), and finally the active
frame. If you understand this concept, you’ll be scripting like a pro in no time.

Labeling items
As you can see from the examples in the previous section, scripts often refer to
items by their type and location in the document. But there’s another way to refer
to objects that makes sure you can select an item precisely: You can label, or name,
an item. You do so in the Script Label pane (Window➪Scripting➪Script Label). The
process is easy: Select the object, then enter a name in the pane. That’s it!

When writing scripts, you refer to the labeled object as follows. In these examples,
the label is TargetFrame, and don’t worry that the samples seem to do different
things — they in fact are unrelated examples, not variations of the same command.

JavaScript
with(app.documents.item(0).pages.item(0)){

myTargetFrame = textFrames.item("myTargetFrame");
}

AppleScript
select (page item 1 of page 1 of myTargetDocument whose label
is "TargetFrame")

738 Part VIII ✦ Going Beyond the Program

VBA
Set myAsset = myLibrary.Assets.Item("TargetFrame")

Writing conditional scripts
Some scripts simply automate a set of tasks in documents whose content is pre-
dictable. But more often than not, documents differ, and so you need conditional
statements to evaluate if certain things are true before applying a script’s actions.
Otherwise, you’ll get an error message when something turns out not to be true. As
a simple example, a script that does a search and replace needs to have a docu-
ment open and a frame selected. If no frame is selected, the script won’t know what
to search, and the user will get an error message.

The same issue arises for repeated series of actions, where you want the script to
do something for all occurrences. The script will need to know what to do when it
can’t find any more such occurrences. As an example, look at the following script,
which counts all open documents. For it to work, at least one document has to be
open, so the script checks first to see if in fact any documents are open, and deliv-
ers an error message that the user can understand if none are open. The rotate-EPS-
graphic script earlier also used a conditional to make sure there was an EPS graphic
in the document. Notice that in all three scripting languages, it is the command If
that you use to set up such conditionals.

JavaScript
if(app.documents.length==0){

alert("No InDesign documents are open!");
}

JavaScript uses == for comparing values (as in the example above) and = for
assigning values. Visual Basic and AppleScript use = for both purposes.

AppleScript
tell application "InDesign CS"

set myNumberOfDocuments to (count documents)
if myNumberOfDocuments = 0 then

display dialog "No InDesign publications are open!"
end if

end tell

VBA
Dim myInDesign as InDesign.Application

Set myInDesign = CreateObject ("InDesign.Application.CS")
If myInDesign.Documents.Count

MsgBox "No InDesign publications are open!"

Note

739Chapter 37 ✦ Using Scripts

End If
End Sub

Another form of conditional is what’s called a control loop, in which an action
occurs either for a specified number of iterations or until a condition is met. The
following scripts show an example of each for each language. Note the use of com-
ments in the scripts — a handy way to document what you’re doing for later refer-
ence. In JavaScript, a comment begins with /* and ends with */ (or you can use //
at the beginning of each line instead). In AppleScript, a comment begins with --
and continues until you press Enter or Return. In VBA, it begins with Rem or ' fol-
lowed by a space, and it continues until you press Enter or Return.

JavaScript
for(var myCounter = 0; myCounter < 20; myCounter++){

//do something
}

while (myStop == false){
/* do something, at some point setting myStop to true
to leave the loop. */

}

AppleScript
repeat with counter from 1 to 20

--do something
end repeat

set myStop to false
repeat while myStop = false

--do something, at some point setting myStop
--to true to leave the loop.

end repeat

VBA
For counter = 1 to 20

Rem do something
Next counter

Do While myStop = false
Rem do something, at some point setting myStop
Rem to true to leave the loop.

loop

740 Part VIII ✦ Going Beyond the Program

Summary
If your workflow goes beyond original designs for each client and reaches into
repetitive production, scripting is for you. Scripts are ideal for automating repeti-
tive tasks — from importing pictures to creating and formatting entire documents.
You can even link InDesign to other scriptable applications.

Because InDesign supports JavaScript on the Mac and Windows, as well as
AppleScript on the Mac only and VBA on Windows only, you can choose the script
language you’re most familiar with and/or that is compatible with your other appli-
cations. Even better, you can use more than one scripting language with InDesign
(though any individual script can use only one language).

✦ ✦ ✦

741Chapter 37 ✦ Using Scripts

Exploring AppleScript
AppleScript is a scripting language developed by Apple and initially released with
System 7.5 that can be used to control Macs, networks, and scriptable applications,
including InDesign. The AppleScript language was designed to be as close to normal
English as possible so that average Mac users — specifically, those who aren’t
familiar with programming languages — can understand and use it.

New Feature
InDesign can now run text-only AppleScripts in addition to compiled (binary)
ones.

Learning the language
Many of the actions specified in AppleScripts read like sentences you might use in
everyday conversation, such as:

set color of myFrame to "Black"

or

set applied font of myCharacterStyle to "Times"

Getting more information on AppleScript

Before you venture too far into scripting, you should review the AppleScript-related information pro-
vided with the Mac OS and with InDesign:

✦ Mac scripting documentation and tools. Apple places the AppleScript documentation on its
Web site at www.apple.com/applescript. In your hard drive’s Applications folder, you
should have a folder called AppleScript that contains the Script Editor program, along with a
folder of example scripts and the AppleScript Script Menu that adds the Script menu to the
Finder. Apple also offers a professional AppleScript editor called AppleScript Studio for down-
load at its developer Web site, http://developers.apple.com/tools.macosxtools
.html.

✦ InDesign scripting documentation. The InDesign CD contains a 600-plus-page PDF file that
explains scripting, including AppleScript programming, for InDesign. This document, although a
bit on the technical side, is a valuable resource. It includes an overview of Apple events scripting
and the object model, as well as a list of InDesign-specific scripting terms and scripting exam-
ples.

If you want still more information about AppleScript, several books are available, including AppleScript
in a Nutshell: A Desktop Quick Reference, by Bruce W. Perry; Danny Goodman’s AppleScript Handbook,
2nd Edition; and AppleScript 1-2-3, by Sal Soghoian.

742 Part VIII ✦ Going Beyond the Program

What you need to write and run scripts
The Script Editor, provided with the Mac OS, lets you write scripts. You’ll find the
Script Editor inside the AppleScript folder inside your Applications folder (at the
root level of your hard drive). An uncompiled script is essentially a text file, so you
can actually write scripts with any word processor. The Script Editor, however, was
created for writing AppleScripts and includes several handy features for scriptwrit-
ers.

Checking for syntax errors
The next step is to determine if the statements are correctly constructed. Click the
Check Syntax button. If the Script Editor encounters a syntax error, it alerts you and
highlights the cause of the error. If the script’s syntax is correct, all statements
except the first and last are indented, and a number of words are displayed in bold,
as illustrated in Figure 37-3. Your script has been compiled and is ready to test.

Figure 37-3: The Script Editor window containing sample AppleScript text. When you
check the syntax of a script, the Script Editor applies formatting and indents.

