Generalized Linear Mixed
Models

Introduction

Generalized linear models (GLMs) represent a class
of fixed effects regression models for several types of
dependent variables (i.e., continuous, dichotomous,
counts). McCullagh and Nelder [32] describe these in
great detail and indicate that the term ‘generalized lin-
ear model’ is due to Nelder and Wedderburn [35] who
described how a collection of seemingly disparate
statistical techniques could be unified. Common Gen-
eralized linear models (GLMs) include linear regres-
sion, logistic regression, and Poisson regression.

There are three specifications in a GLM. First,
the linear predictor, denoted as 7;, of a GLM is of
the form

ni :xi/ﬂ! (1)

where x; is the vector of regressors for unit i with
fixed effects B. Then, a link function g(-) is specified
which converts the expected value u; of the outcome
variable Y; (i.e., u; = E[Y;]) to the linear predictor n;

g(ui) = mn;. 2

Finally, a specification for the form of the variance
in terms of the mean y; is made. The latter two
specifications usually depend on the distribution of
the outcome Y;, which is assumed to fall within the
exponential family of distributions.

Fixed effects models, which assume that all obser-
vations are independent of each other, are not appro-
priate for analysis of several types of correlated data
structures, in particular, for clustered and/or longitu-
dinal data (see Clustered Data). In clustered designs,
subjects are observed nested within larger units, for
example, schools, hospitals, neighborhoods, work-
places, and so on. In longitudinal designs, repeated
observations are nested within subjects (see Lon-
gitudinal Data Analysis and Repeated Measures
Analysis of Variance). These are often referred to as
multilevel [16] or hierarchical [41] data (see Linear
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Multilevel Models), in which the level-1 observa-
tions (subjects or repeated observations) are nested
within the higher level-2 observations (clusters or
subjects). Higher levels are also possible, for exam-
ple, a three-level design could have repeated obser-
vations (level-1) nested within subjects (level-2) who
are nested within clusters (level-3).

For analysis of such multilevel data, random
cluster and/or subject effects can be added into the
regression model to account for the correlation of
the data. The resulting model is a mixed model
including the usual fixed effects for the regressors
plus the random effects. Mixed models for continuous
normal outcomes have been extensively developed
since the seminal paper by Laird and Ware [28].
For nonnormal data, there have also been many
developments, some of which are described below.
Many of these developments fall under the rubric of
generalized linear mixed models (GLMMs), which
extend GLMs by the inclusion of random effects
in the predictor. Agresti et al. [1] describe a variety
of social science applications of GLMMs; [12], [33],
and [11] are recent texts with a wealth of statistical
material on GLMMs.

Let i denote the level-2 units (e.g., subjects) and
let j denote the level-1 units (e.g., nested obser-
vations). The focus will be on longitudinal designs
here, but the methods apply to clustered designs
as well. Assume there are i = 1,..., N subjects
(level-2 units) and j =1,...,n; repeated observa-
tions (level-1 units) nested within each subject. A
random-intercept model, which is the simplest mixed
model, augments the linear predictor with a single
random effect for subject i,

nij =X;B + vi, 3)

where v; is the random effect (one for each subject).
These random effects represent the influence of
subject i on his/her repeated observations that is not
captured by the observed covariates. These are treated
as random effects because the sampled subjects are
thought to represent a population of subjects, and they
are usually assumed to be distributed as N0, Gf).
The parameter o2 indicates the variance in the
population distribution, and therefore the degree of
heterogeneity of subjects.

Including the random effects, the expected value
of the outcome variable, which is related to the linear
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predictor via the link function, is given as
wij = EYij|vi, xi5]. “)

This is the expectation of the conditional distribu-
tion of the outcome given the random effects. As a
result, GLMMs are often referred to as conditional
models in contrast to the marginal generalized esti-
mating equations (GEE) models (see Generalized
Estimating Equations (GEE)) [29], which represent
an alternative generalization of GLMs for correlated
data (see Marginal Models for Clustered Data).
The model can be easily extended to include mul-
tiple random effects. For example, in longitudinal
problems, it is common to have a random subject
intercept and a random linear time-trend. For this,
denote z;; as the r x 1 vector of variables having ran-
dom effects (a column of ones is usually included for
the random intercept). The vector of random effects
y; is assumed to follow a multivariate normal distri-
bution with mean vector 0 and variance—covariance
matrix X, (see Catalogue of Probability Density
Functions). The model is now written as

nij = x,;B +2zvi. &)

Note that the conditional mean p;; is now specified
as E[Yj;|v;, x;;], namely, in terms of the vector of
random effects.

Dichotomous Outcomes

Development of GLMMs for dichotomous data has
been an active area of statistical research. Several
approaches, usually adopting a logistic or probit
regression model (see Probits) and various methods
for incorporating and estimating the influence of the
random effects, have been developed. A review arti-
cle by Pendergast et al. [37] discusses and compares
many of these developments.

The mixed-effects logistic regression model is a
common choice for analysis of multilevel dichoto-
mous data and is arguably the most popular GLMM.
In the GLMM context, this model utilizes the logit
link, namely

Mij
L — pij

g(uij) = logit(u;;) = log [ i| =nij. (6

Here, the conditional expectation w;; = E(Y;;v;, x;;)
equals P(Y;; = 1|v;, x;;), namely, the conditional

probability of a response given the random effects
(and covariate values).
This model can also be written as

P(Yij = v, xij,zij)) = g ' (nij) = W(nij), (7)

where the inverse link function W(#;;) is the logis-
tic cumulative distribution function (cdf), namely
W(n;;) = [1+exp(—n;;)]~". A nicety of the logis-
tic distribution, that simplifies parameter estimation,
is that the probability density function (pdf) is related
to the cdf in a simple way, as ¥ (n;;) = ¥ (n;;))[1 —
W (n;;)]-

The probit model, which is based on the standard
normal distribution, is often proposed as an alterna-
tive to the logistic model [13]. For the probit model,
the normal cdf and pdf replace their logistic counter-
parts. A useful feature of the probit model is that it
can be used to yield tetrachoric correlations for the
clustered binary responses, and polychoric correla-
tions for ordinal outcomes (discussed below). For this
reason, in some areas, for example familial studies,
the probit formulation is often preferred to its logistic
counterpart.

Example

Gruder et al. [20] describe a smoking-cessation study
in which 489 subjects were randomized to either a
control, discussion, or social support conditions. Con-
trol subjects received a self-help manual and were
encouraged to watch twenty segments of a daily TV
program on smoking cessation, while subjects in the
two experimental conditions additionally participated
in group meetings and received training in support
and relapse prevention. Here, for simplicity, these
two experimental conditions will be combined. Data
were collected at four telephone interviews: postin-
tervention, and 6, 12, and 24 months later. Smoking
abstinence rates (and sample sizes) at these four time-
points were 17.4% (109), 7.2% (97), 18.5% (92), and
18.2% (77) for the placebo condition. Similarly, for
the combined experimental condition it was 34.5%
(380), 18.2% (357), 19.6% (337), and 21.7% (295)
for these timepoints.

Two logistic GLMM were fit to these data: a ran-
dom intercept and a random intercept and linear trend
of time model (see Growth Curve Modeling). These
models were estimated using SAS PROC NLMIXED
with adaptive quadrature. For these, it is the probabil-
ity of smoking abstinence, rather than smoking, that
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Table 1 Smoking cessation study: smoking status (0 = smoking, 1 = not smoking) across time (N = 489), GLMM logistic

parameter estimates (Est.), standard errors (SE), and P values

Random intercept model

Random int and trend model

Parameter Est. SE P value Est. SE P value
Intercept —2.867 .362 .001 —2.807 432 .001
Time 113 122 .36 —.502 274 .07
Condition (0 = control; 1 = experimental) 1.399 379 .001 1.495 415 .001
Condition by Time —.322 136 .02 —.331 .249 184
Intercept variance 3.587 .600 3.979 1.233

Intercept Time covariance .048 371

Time variance 1.428 468

—2 log likelihood 1631.0 1594.7

Note: P values not given for variance and covariance parameters (see [41]).

is being modeled. Fixed effects included a condition
term (0O = control, 1 = experimental), time (coded 0,
1, 2, and 4 for the four timepoints), and the con-
dition by time interaction. Results for both models
are presented in Table 1. Based on a likelihood-ratio
test, the model with random intercept and linear time
trend is preferred over the simpler random intercept
model (X22 = 36.3). Thus, there is considerable evi-
dence for subjects varying in both their intercepts and
time trends. It should be noted that the test statistic
does not have a chi-square distribution when testing
variance parameters because the null hypothesis is on
the border of the parameter space, making the P value
conservative. Snijders and Bosker [46] elaborate on
this issue and point out that a simple remedy, that has
been shown to be reasonable in simulation studies, is
to divide the P value based on the likelihood-ratio
chi-square test statistic by two. In the present case,
it doesn’t matter because the P value is <.001 for
x5 = 36.3 even without dividing by two.

In terms of the fixed effects, both models indicate
a nonsignificant time effect for the control condition,
and a highly significant condition effect at time 0
(e.g., z=1.495/.415=3.6 in the second model).
This indicates a positive effect of the experimental
conditions on smoking abstinence relative to control
at postintervention. There is also some evidence of
a negative condition by time interaction, suggesting
that the beneficial condition effect diminishes across
time. Note that this interaction is not significant (P <
.18) in the random intercept and trend model, but it is
significant in the random intercept model (P < .02).
Since the former is preferred by the likelihood-ratio
test, we would conclude that the interaction is not
significant.

This example shows that the significance of model
terms can depend on the structure of the random
effects. Thus, one must decide upon a reasonable
model for the random effects as well as for the
fixed effects. A commonly recommended approach
for this is to perform a sequential procedure for model
selection. First, one includes all possible covariates
of interest into the model and selects between the
possible models of random effects using likelihood-
ratio tests and model fit criteria. Then, once a
reasonable random effects structure is selected, one
trims model covariates in the usual way.

IRT Models

Because the logistic model is based on the logis-
tic response function, and the random effects are
assumed normally distributed, this model and models
closely related to it are often referred to as logis-
tic/normal models, especially in the latent trait model
literature [4]. Similarly, the probit model is some-
times referred to as a normal/normal model. In many
respects, latent trait or item response theory (IRT)
models, developed in the educational testing and psy-
chometric literatures, represent some of the earliest
GLMMs. Here, item responses (j = 1,2, ...,n) are
nested within subjects (i = 1,2,..., N). The sim-
plest IRT model is the Rasch model [40] which
posits the probability of a correct response to the
dichotomous item j (¥;; = 1) conditional on the ran-
dom effect or ‘ability’ of subject i (6;) in terms of
the logistic cdf as

P(Yi; = 116;) = ¥ (6; — b)), ®)



4 Generalized Linear Mixed Models

where b; is the threshold or difficulty parameter
for item j (i.e., item difficulty). Subject’s ability
is commonly denoted as 6 in the IRT literature
(i.e., instead of v). Note that the Rasch model
is simply a random-intercepts model that includes
item dummies as fixed regressors. Because there is
only one parameter per item, the Rasch model is
also called the one-parameter IRT model. A more
general IRT model, the two-parameter model [5], also
includes a parameter for the discrimination of the
item in terms of ability.

Though IRT models were not originally cast as
GLMMs, formulating them in this way easily allows
covariates to enter the model at either level (i.e.,
items or subjects). This and other advantages of
casting IRT models as mixed models are described
by Rijmen et al. [43], who provide a comprehensive
overview and bridge between IRT models, mixed
models, and GLMMSs. As they point out, the Rasch
model, and variants of it, belong to the class of
GLMMs. However, the more extended two-parameter
model is not within the class of GLMMs because the
predictor is no longer linear, but includes a product
of parameters.

Ordinal Outcomes

Extending the methods for dichotomous responses
to ordinal response data has also been actively pur-
sued; Agresti and Natarajan [2] review many of these
developments. Because the proportional odds model
described by McCullagh [31], which is based on the
logistic regression formulation, is a common choice
for analysis of ordinal data, many of the GLMMs
for ordinal data are generalizations of this model,
though models relaxing this assumption have also
been described [27]. The proportional odds model
expresses the ordinal responses in C categories (¢ =
1,2,...,C) in terms of C — 1 cumulative category
comparisons, specifically, C — 1 cumulative logits
(i.e., log odds). Here, denote the conditional cumula-
tive probabilities for the C categories of the outcome
Yi; as Py = P(Y;; < clvi,x;j) = Y., pije» Where
Pijc represents the conditional probability of response
in category c. The logistic GLMM for the conditional
cumulative probabilities (. = Pjj. is given in terms
of the cumulative logits as

1og[ﬂ] —mije (c=1,....C=1), ()
I — pjje

where the linear predictor is now

Nije = Ye — [x;B +2;;vil, (10)

with C —1 strictly increasing model thresholds
ye (.., Y1 <y2--+- < yc—1). The thresholds allow
the cumulative response probabilities to differ. For
identification, either the first threshold y; or the
model intercept By is typically set to zero. As the
regression coefficients B do not carry the ¢ sub-
script, the effects of the regressors do not vary across
categories. McCullagh [31] calls this assumption of
identical odds ratios across the C — 1 cutoffs the pro-
portional odds assumption.

Because the ordinal model is defined in terms of
the cumulative probabilities, the conditional proba-
bility of a response in category c is obtained as the
difference of two conditional cumulative probabili-
ties:

P(Yij = clvi, xij, zij) = VY(0ije) — Y(ije—1). (11)

Here, yp = —o0 and y¢ = 00, and so ¥ (1;;0) =0
and W(n;;jc) = 1 (see Ordinal Regression Models).

Example

Hedeker and Gibbons [25] described a random-
effects ordinal probit regression model, examining
longitudinal data collected in the NIMH Schizophre-
nia Collaborative Study on treatment related changes
in overall severity. The dependent variable was
item 79 of the Inpatient Multidimensional Psychi-
atric Scale (IMPS; [30]), scored as: (a) normal or
borderline mentally ill, (b) mildly or moderately ill,
(c) markedly ill, and (d) severely or among the most
extremely ill. In this study, patients were randomly
assigned to receive one of four medications: placebo,
chlorpromazine, fluphenazine, or thioridazine. Since
previous analyses revealed similar effects for the
three antipsychotic drug groups, they were combined

Table 2 Experimental design and weekly sample sizes

Sample size at week

Group 0 1 2 3 4 5 6

Placebo (n =108) 107 105 5 87 2 2 70
Drug (n = 329) 327 321 9 287 9 7 265

Note: Drug = Chlorpromazine, Fluphenazine, or Thioridazine.
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in the analysis. The experimental design and corre-
sponding sample sizes are listed in Table 2.

As can be seen from Table 2, most of the mea-
surement occurred at weeks 0, 1, 3, and 6, with some
scattered measurements at the remaining timepoints.

Here, a logistic GLMM with random intercept
and trend was fit to these data using SAS PROC
NLMIXED with adaptive quadrature. Fixed effects
included a dummy-coded drug effect (placebo =0
and drug = 1), a time effect (square root of week;
this was used to linearize the relationship between
the cumulative logits and week) and a drug by time
interaction. Results from this analyses are given in
Table 3.

The results indicate that the treatment groups do
not significantly differ at baseline (drug effect), the
placebo group does improve over time (significant
negative time effect), and the drug group has greater
improvement over time relative to the placebo group
(significant negative drug by time interaction). Thus,
the analysis supports use of the drug, relative to
placebo, in the treatment of schizophrenia.

Comparing this model to a simpler random-
intercepts model (not shown) yields clear evidence of
significant variation in both the individual intercept
and time-trends (likelihood-ratio )(22 =77.7). Also, a
moderate negative association between the intercept
and linear time terms is indicated, expressed as a cor-
relation it equals —.40, suggesting that those patients
with the highest initial severity show the greatest
improvement across time (e.g., largest negative time-
trends). This latter finding could be a result of a

‘floor effect’, in that patients with low initial sever-
ity scores cannot exhibit large negative time-trends
due to the limited range in the ordinal outcome vari-
able. Finally, comparing this model to one that allows
nonproportional odds for all model covariates (not
shown) supports the proportional odds assumption
(X62 = 3.63). Thus, the three covariates (drug, time,
and drug by time) have similar effects on the three
cumulative logits.

Survival Analysis Models

Connections between ordinal regression and survival
analysis models (see Survival Analysis) have led to
developments of discrete and grouped-time survival
analysis GLMMs [49]. The basic notion is that the
time to the event can be considered as an ordinal
variable with C possible event times, albeit with
right-censoring accommodated. Vermunt [50] also
describes related log-linear mixed models for survival
analysis or event history analysis.

Nominal Outcomes

Nominal responses occur when the categories of the
response variable are not ordered. General regression
models for multilevel nominal data have been con-
sidered, and Hartzel et al. [22] synthesizes much of
the work in this area, describing a general mixed-
effects model for both clustered ordinal and nomi-
nal responses.

Table 3 NIMH Schizophrenia Collaborative Study: severity of illness
(IMPS79) across time (N = 437), GLMM logistic parameter estimates
(Est.), standard errors (SE), and P values

Parameter Est. SE P value
Intercept 7.283 467 .001
Time (sqrt week) —.879 216 .001
Drug (0 = placebo; 1 = drug) .056 388 .88
Drug by Time —1.684 .250 .001
Threshold 2 3.884 209 .001
Threshold 3 6.478 .290 .001
Intercept variance 6.847 1.282
Intercept-time covariance —1.447 515

Time variance 1.949 404

—2 log likelihood 3326.5

Note: Threshold 1 set to zero for identification. P values not given for variance
and covariance parameters (see [41]). NIMH = National Institute of Mental
Health; IMPS79 = Inpatient Multidimensional Psychiatric Scale, Item 79.
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In the nominal GLMM, the probability that ¥;; =
¢ (a response occurs in category c¢) for a given
individual i, conditional on the random effects v, is
given by:

Dije = P(Yij = clvi, xij, zij)

= M forc=2,3,...C, (12)
L+ exp(mijn)
h=1
1
pij1 = P(Y;; = 1|v;, xi5,zij) = c )
1+ ZeXp(m_,‘h)
h=1

(13)

with the linear predictor 7;;. = xl/j B —}—z/jvic. Both
the regression coefficients B, and the random-effects
carry the ¢ subscript; the latter allows the vari-
ance—covariance matrix X, to vary across cate-
gories. In the model above, these parameters rep-
resent differences relative to the first category. The
nominal model can also be written to allow for any
possible set of C — 1 contrasts, see [24] for an exam-
ple of this.

Ranks

In ranking data, individuals are asked to rank C dis-
tinct options with respect to some criterion. If the
individuals are only asked to provide the option with
the highest (or lowest) rank of the C categories,
then the resulting data consist of either an ordinal
outcome (if the C options are ordered) or a nom-
inal outcome (if the C options are not ordered),
and analysis can proceed using the models described
above. In the more general case, individuals are
asked for, say, the top three options, or to fully
rank the C options from the ‘best’ to the ‘worst’
(i.e., all options receive a rank from 1 to C). The
former case consists of partial ranking data, while
the latter case represents full ranking data. As these
data types are generalizations of nominal and ordi-
nal data types, it is not surprising that statistical
models for ranking data are generalizations of the
models for ordinal and nominal models described
above. In particular, since the C options are usu-
ally not ordered options, models for ranking data
have close connections with models for nominal
outcomes. GLMMs for ranking data are described

in [6] and [45]. These articles show the connections
between models for multilevel nominal and rank-
ing data, as well as develop several extensions for
the latter.

Counts

For count data, various types of Poisson mixed
models have been proposed. A review of some of
these methods applied to longitudinal Poisson data is
given in [47]. For computational purposes, it is con-
venient for the univariate random effects to have a
gamma distribution in the population of subjects [3].
However, as described in [11], adding multiple nor-
mally distributed random effects on the same scale
as the fixed effects of the Poisson regression model
provides a more general and flexible model.

Let Y;; be the value of the count variable (where
Y;; can equal 0O, 1, ...) associated with individual i
and timepoint j. If this count is assumed to be drawn
from a Poisson distribution, then the mixed Poisson
regression model indicates the expected number of
counts as

log ij = nij, (14)

with the linear predictor n;; = x/;8 +2;;v;. In some
cases the size of the time interval over which the
events are counted varies. For example, McKnight
and Van Den Eeden [34] describe a study in which
the number of headaches in a week is recorded,
however, not all individuals are measured for all
seven days. For this, let #; represent the follow-
up time associated with units i and j. The linear
predictor is now augmented as

nij = logtij +x/;B +z/vi, 15)
which can also be expressed as
Mij = tij exp(x;; B +z/vi) (16)

or w;jltij = exp(x/ B +Z,-/]~Vi) to reflect that it is the
number of counts per follow-up period that is being
modeled. The term logt);; is often called an offset.

Assuming the Poisson process for the count Yj;,
the probability that Y;; = y, conditional on the ran-
dom effects v, is given as

(ij)?
y!o

P(Y;; = yl|vi, xij, zij) = exp(—Lij) (17)
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It is often the case that count data exhibit more
zero counts than what is consistent with the Poisson
distribution. For such situations, zero-inflated Poisson
(Z1P) mixed models, which contain a logistic (or
probit) regression for the probability of a nonzero
response and a Poisson regression for the zero
and nonzero counts, have been developed [21]. A
somewhat related model is described by Olsen and
Schafer [36] who propose a two-part model that
includes a logistic model for the probability of a
nonzero response and a conditional linear model for
the mean response given that it is nonzero.

Estimation

Parameter estimation in GLMMs typically involves
maximum likelihood (ML) or variants of ML. Addi-
tionally, the solutions are usually iterative ones that
can be numerically quite intensive. Here, the solu-
tion is merely sketched; further details can be found
in [33] and [12].

For the models presented, (7), (11), (12)—(13), and
(17), indicate the probability of a level-1 response Y;;
for a given subject i at timepoint j, conditional on the
random effects v;. While the form of this probability
depends on the form of the response variable, let
P(Y;jlv;) represent the conditional probability for
any of these forms. Here, for simplicity, we omit
conditioning on the covariates x;;. Let ¥; denote the
vector of responses from subject i. The probability of
any response pattern Y; (of size n;), conditional on
v;, is equal to the product of the probabilities of the
level-1 responses:

(¥;lvi) = [ Pijvo). (18)

i=1

The assumption that a subject’s responses are inde-
pendent given the random effects (and therefore can
be multiplied to yield the conditional probability of
the response vector) is known as the conditional
independence assumption. The marginal density of
Y; in the population is expressed as the following
integral of the conditional likelihood £(-)

h(Y;) = / L(Xilvi) f (vi) dvi, (19)
Vi
where f(v;) represents the distribution of the ran-
dom effects, often assumed to be a multivariate nor-
mal density. Whereas (18) represents the conditional

probability, (19) indicates the unconditional probabil-
ity for the response vector of subject i. The marginal
log-likelihood from the sample of N subjects is then
obtained as log L = ZlN log h(Y;). Maximizing this
log-likelihood yields ML estimates (which are some-
times referred to as maximum marginal likelihood
estimates) of the regression coefficients g and the
variance-covariance matrix of the random effects X,,.

Integration over the random-effects distribution

In order to solve the likelihood solution, integra-
tion over the random-effects distribution must be
performed. As a result, estimation is much more
complicated than in models for continuous nor-
mally distributed outcomes where the solution can
be expressed in closed form. Various approximations
for evaluating the integral over the random-effects
distribution have been proposed in the literature;
many of these are reviewed in [44]. Perhaps the most
frequently used methods are based on first- or second-
order Taylor expansions. Marginal quasi-likelihood
(MQL) involves expansion around the fixed part of
the model, whereas penalized or predictive quasi-
likelihood (PQL) additionally includes the random
part in its expansion [17]. Unfortunately, these pro-
cedures yield estimates of the regression coefficients
and random effects variances that are biased towards
zero in certain situations, especially for the first-order
expansions [7].

More recently, Raudenbush et al. [42] proposed
an approach that uses a combination of a fully mul-
tivariate Taylor expansion and a Laplace approxima-
tion. This method yields accurate results and is com-
putationally fast. Also, as opposed to the MQL and
PQL approximations, the deviance obtained from this
approximation can be used for likelihood-ratio tests.

Numerical integration can also be used to per-
form the integration over the random-effects dis-
tribution. Specifically, if the assumed distribution
is normal, Gauss—Hermite quadrature can approx-
imate the above integral to any practical degree
of accuracy. Additionally, like the Laplace approx-
imation, the numerical quadrature approach yields a
deviance that can be readily used for likelihood-ratio
tests. The integration is approximated by a summa-
tion on a specified number of quadrature points for
each dimension of the integration. An issue with the
quadrature approach is that it can involve summation
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over a large number of points, especially as the num-
ber of random-effects is increased. To address this,
methods of adaptive quadrature have been developed
which use a few points per dimension that are adapted
to the location and dispersion of the distribution to
be integrated [39].

More computer-intensive methods, involving iter-
ative simulations, can also be used to approximate
the integration over the random effects distribu-
tion. Such methods fall under the rubric of Markov
chain Monte Carlo (MCMC; [15]) algorithms. Use
of MCMC for estimation of a wide variety of mod-
els has exploded in the last 10 years or so; MCMC
solutions for GLMMs are described in [9].

Estimation of random effects

In many cases, it is useful to obtain estimates
of the random effects. The random effects v; can
be estimated using empirical Bayes methods (see
Random Effects in Multivariate Linear Models:
Prediction). For the univariate case, this estimator v;
is given by:

o= Eeiv) =i [ wegoodn @0
Vi

where ¢; is the conditional probability for subject i

under the particular model and 4; is the analogous

marginal probability. This is simply the mean of the

posterior distribution. Similarly, the variance of the

posterior distribution is obtained as

V<ﬁ,-|Y,~>=h;1f(v,~ — 0% fnd. D)

These quantities may then be used, for example, to
evaluate the response probabilities for particular sub-
jects (e.g., person-specific trend estimates). Also, Ten
Have [48] suggests how these empirical Bayes esti-
mates can be used in performing residual diagnostics.

Discussion

Though the focus here has been on two-level GLMMs
for nonnormal data, three-level (and higher) gener-
alizations have also been considered in the litera-
ture [14]. Also, software for fitting GLMMs is readily
available in the major statistical packages (i.e., SAS
PROC NLMIXED, STATA) and in several indepen-
dent programs (HLM, [8]; EGRET, [10]; MLwiN,

[18]; LIMDEP, [19]; MIXOR, [26]; MIXNO, [23];
GLLAMM, [38]). Not all of these programs fit all
of the GLMMs described here; some only allow
random-intercepts models or two-level models, for
example, and several vary in terms of how the
integration over the random effects is performed.
However, though the availability of these software
programs is relatively recent, they have definitely
facilitated application of GLMMs in psychology and
elsewhere. The continued development of these mod-
els and their software implementations should only
lead to greater use and understanding of GLMMs for
analysis of correlated nonnormal data.
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