COORDINATE SYSTEMS AND
MAP PROJECTIONS FOR GIS

D H MALING

The subjects of coordinate systems and map projections are treated under three
major headings. First, it is necessary to emphasize the need for economical methods
of handling GIS data and to describe some of the ways in which economies may be
introduced to the transformation processes. Secondly, there is a short account of
some of the methods of transformation which may be used in G1S. Thirdly, there is a
description of a method of choosing suitable projections for particular GIS

applications.

INTRODUCTION

This chapter is concerned with a review of the
principal methods which may be used to transform
positional data so that they may be registered with
other positional data and so that the results of
analyses can be output as maps. The terminology
relating to map projections is that used by Maling
(1968, 1973), Royal Society (1966) and ICA (1973);
the appropriate theoretical background is to be
found in Richardus and Adler (1972) and Maling
(1973). Because this chapter is wholly concerned
with geometric transformations applied to
positional data, unqualified use of the word data in
this chapter refers to the positions of points on a
map, photograph, remotely sensed image, or in a
file.

Figure 10.1 illustrates the various types of
coordinate system which are used in this chapter.
The discussion proceeds from the initial assumption
that the primary sources for GIS positional data are
printed maps which have been converted by
digitizing into machine readable form. This
information may be converted into either three-
dimensional terrestrial coordinates or two-
dimensional plane coordinates. In the first form
these are either geographical coordinates of latitude
and longitude, (¢,\) or three-dimensional Cartesian
coordinates (X, Y, Z). In the second form the
stored data are referred to a plane coordinate

system. This may be simple plane Cartesian, polar
coordinates, a raster grid or a map projection. At
first sight it seems sensible to use terrestrial
coordinates as the preferred method of storing data.
However, the objection to relying upon this
procedure is the sheer volume of data which needs
to be handled and stored. A file representing a
vector digitized map may comprise many tens of
thousands of points. For example, Cocks, Walker
and Parvey (1988) have described the contents of
the GIS of Australia (AIS) in which each map base
comprises 20 000 coordinate pairs for the low
resolution outline and 300 000 coordinate pairs for
high resolution use. A Landsat Multi-spectral
Scanner (MSS) image for only one waveband
comprises more than 7 million pixels; a complete
Landsat Thematic Mapper (TM) image (seven
bands each comprising 5700 lines of 6900 pixels)
occupies 262 Mb of storage. From the point of view
of handling these data economically in the
transformation from geographical position through
the formation and registration of layers, it is
desirable to transform the raw data extracted from
map sources into a uniform system of positional
referencing within the system itself. This removes
the need for preliminary processing of each layer
every time it is registered to another layer. This is
especially important if there is a mixture of vector
and raster data to be standardized.

One of the commonest solutions is that of the
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Fig. 10.1 The coordinate systems used in this chapter. (a) and (b) Terrestial systems: (a) Geographical
coordinates of latitude (¢) and longitude (A). (b) Three-dimensional Cartesian coordinates (X, Y, Z). (¢} -
(h) Plane systems: (c) Plane Cartesian (x, y) coordinates. (d) Raster (c, r) coordinates in which position is
determined by counting cells rather than by analogue measurement. (¢) Plane polar (p, 8) coordinates. (f) A
map grid is another example of a plane grid expressed in linear measurement (E, N), which are usually
metres on the ground. (g) Graticule in which ¢ and X are expressed in either (x, y) or (p, 8) coordinates.

At the output stage, map projections are defined either in Cartesian or in polar coordinates vis:

X =f1(‘P’)‘)’
y zfz(‘PJ\),
p = f3(@.A),
8 :f4(“P7}‘)a

(h) Grid cells are a compromise between geographical coordinates and a grid. They are created by
subdividing the graticule into quadrangles of suitable dimensions. In this example, quadrangles of size 1° X 1°

and 15° X 14° are illustrated.

grid cell, comprising a fairly close pattern of
spherical quadrilateral cells which are derived from
subdivision of the graticule into one-degree or half-
degree units. They are, therefore, much larger than
a typical raster cell. The Australian AIS makes use
of both of these dimensions, together with even
larger units (Cocks, Walker and Parvey 1988; see
also O’Callaghan and Garner 1991 in this volume).
Grid cells are neither square nor rectangular
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because their sides are formed from two meridians
and two parallels. The convergence of the meridians
towards the poles means that the grid cells have a
pair of sides of different length (Fig. 10.1h). Since
great use is made of this unit by the United States
Geological Survey (USGS) as the basis for the sheet
lines of its maps, the word ‘quadrangle’ is frequently
used to describe it.
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GIS FRAMEWORK

The next development from using grid celis to hold
data is to use a map projection at this intermediate
stage. The concept is so important that it is here
called the ‘GIS framework’ to distinguish it from the
methods already considered and any other
projection which may be used for purposes of
illustration of the same data. This device is
obviously of increasing importance the greater the
area to be covered by a GIS, for two reasons. First,
the database for the whole of a large country or a
continent will be large and storage of data in
terrestrial coordinates is impractical. Secondly, the
area covered will be far too large for any convenient
approximations that the earth is flat so a plane grid
will not suffice. The GIS framework is most likely to
be that used for national surveys, usually the
Universal Transverse Mercator (UTM), the Soviet
equivalent to UTM, or the Lambert Conformal
Conical projection. However, in many instances the
coverage of the GIS extends beyond the single state
so that the different origins and projections used by
different states must be reconciled. Also, the
projections used for some thematic maps to be
incorporated into the GIS may differ from those of
the topographical base. Maps of maritime
distributions are almost invariably on different
projections to those used for land maps.

Briggs and Mounsey (1989) and Mounsey (1991
in this volume) have emphasized the difficulties
which arise in handling numerous and disparate
sources in creating CORINE, the environmental
database for the European Community. They have
cogently argued the need for a common projection
framework to relate all the component layers. For a
continental GIS it may even be necessary to use
more than one type of projection as the framework.
In the design of the environmental GIS for
Antarctica, Sievers and Bennat (1989) describe the
design of a set of Lambert conformal conical and
stereographic projections created as raster grids to
serve as the mathematical framework for the
system.

Economy of data handling

A fundamental principle of conventional
cartography is that there is a limit to the smallest
size of object which can be shown legibly on a map.

This is usually taken to be a map distance of about
0.15mm and it is often called the zero dimension. It
has the important effect of placing a limit upon the
degree of complexity which is needed in the design
and production of a map (see Fisher 1991 in this
volume). If a particular computation or
cartographic technique affects the plotted position
of a point by less than this amount, a simpler
procedure may suffice. Thus the zero dimension
permits a series of assumptions to be made about
the way in which original surveys are computed and
plotted and how much credence should be put on
measurements (including digitizing) made from
maps. It is also important in making a choice about
the suitability of a certain projection for a particular
job, even if this is often used in the negative sense
of deciding whether the projection of the existing
map, though incorrect, will suffice. Since maps are
the primary source of data for a GIS, the limit
created by the zero dimension and any other
imperfections (see Maling 1989) revealed during
measurement from it, are transferred to the GIS,
irrespective of the degree of sophistication of the
methods of data capture used to digitize the maps.
This is just reiteration of the fundamental truth that
no data are better than their sources.

Assumptions about the shape and size of the earth

Short cuts may be made to computations involving
the shape and size of the earth by assuming that its
shape is geometrically simpler than it actually is.
The first of these assumptions made in surveying
and mapping, as described in varying detail in books
on geodesy, surveying and map projections (e.g.
Richardus and Adler 1972; Maling 1973; Jackson
1980}, is that the rather complicated surface of the
geoid may be replaced by a reference figure or
spheroid. There is considerable temptation to write
programs which apply transformations with
geodetic precision so that distances and directions
between points on the curved surface and plane
coordinates for the principal projections used for
topographical and cadastral mapping are all
referred to a particular spheroid. Although such
practices are appropriate to field surveys and
simulated maps, they do not necessarily apply to
handling those GIS layers whose sources were
paper maps. It follows that the spherical assumption
is still justified in transforming most map data. For
example, Snyder (1985, 1987b), Shmutter (1981)
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and Doytsher and Shmutter (1981) have all
presented formulae for transforming data to and
from various projections, all of which have been
derived for a spherical earth. Thus the spherical
assumption is still as valid as it was in the days
before computers made it so easy to refer all
calculations to the spheroid.

The simplest assumption of all is, of course,
that the earth is flat, so that a satisfactory map can
be made by plane surveying. For many local surveys
carried out for municipal, civil and mining
engineering purposes, the extent of the survey and,
therefore, the influence of earth curvature is so
small that the plane assumption will suffice.
Vincenty (1989) has reconsidered this subject in the
light of modern survey practice. Extending the flat-
earth argument to photogrammetry, an analogue
plotter has a plane datum surface which is simulated
by its base carriage. Therefore, the pair of aerial
photographs placed within the plotter are referred
to a plane datum.

Economy in the design of formulae

The actual formulae used in the transformations
may be redesigned for more economical processing.
Those which have been taken straight from the
literature of geodesy and map projections were
originally designed for ease of computation using
tables and logarithms. Vincenty (1971), Williams
(1982), Snyder (1985) and King (1988) have all
demonstrated how the well-known geodetic and
projection formulae may be improved for digital
processing by a little reorganization. An example of
such an improvement is given in eqn [10.24].

An apparent complication of the geodetic and
projection formulae used before digital computing
is the frequent appearance of the term sin 1”, used
to convert from an angle expressed in radians into
seconds of arc or vice versa. For an explanation of
this computing trick see Maling (1973). The
conversion was necessary in the days when tables of
trigonometric functions were used and the argument
was in degree measure. With digital computers
came the subroutines for calculating trigonometric
functions which had to be accessed using the angles
expressed in radians as the argument.
Consequently, the need for making the majority of
the conversions disappeared. Nevertheless, many
early programs written to compute Transverse
Mercator coordinates of the spheroid were copied
straight from the literature of the pre-digital era,
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including all the sin 1” terms, so that CPU time was
wasted in making unnecessary conversions of angles
from seconds of arc into radians and back again for
no reason. Some of these economies which have so
far been described appear to offer a negligible
saving when used to transform only a few points,
but the cumulative effect of applying them to each
point in turn can result in considerable savings in
both storage space and CPU time when a whole
map is transformed. A number of other economies
which have greater impact upon the design of GIS
are discussed below.

Economies in map use

Most national topographical maps are based upon
conformal projections and, consequently, this has
become the commonest base for the GIS
framework. However, an equal-area projection
would theoretically be a more suitable base for
many distribution maps. Therefore, it is appropriate
to question whether the difference matters.

In using topographical maps as a source for
distribution mapping in a country the size of
Britain, the influence of the projection can usually
be ignored without any serious consequences.
Ordnance Survey maps of Britain are based upon a
particular version of the Transverse Mercator
projection so that there is a certain amount of area
distortion on these maps. However, for maps of
mainland Britain the area scale nowhere exceeds
the range 0.999 08—1.00092; in other words it varies
from the constant area scale of an equal area
projection by less than 0.1 per cent. Since this is
likely to be smaller than the errors which arise from
the imperfections of the source map, it follows that
judgements about density of distribution or
measurement of area occupied by different
categories of land use, for example, are unaffected
by the fact that the map projection used is
theoretically incorrect.

Economies through independence from artificial
boundaries

Nearly all spatial data collected for administrative
and cadastral purposes are recorded in parcels (or
polygons) which are parts of the earth enclosed by
political, administrative or property boundaries (see
Dale 1991 in this volume). This is how they are
entered in data files, simply because there is no
other way of handling the data initially. However,
the polygons thus defined do not usually correspond
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to other kinds of boundary, such as those of
geology, vegetation or land use. Moreover, the
artificial boundaries of administrative units are
often frequently changed so that much time may be
spent in revising and updating these files. Cocks,
Walker and Parvey (1988) argue that the difficulties
of revising such files are an important objection to
using them and that this is sufficient reason for
converting, wherever possible, to holding the data.
in grid cells.

Economies through interpolation algorithms

Alternative methods may be used to eliminate
particularly slow computations by introducing
interpolation methods. Thus the detail shown in a
small square or quadrangle on a map may be
transformed to another projection by carrying out
the full transformation for the corner points of the
figure only and then using interpolation formulae to
change the internal detail. This is the digital
equivalent of using proportional dividers; it has
been particularly well exploited in mapping from
remotely sensed imagery. Since the algorithms are
- xdescribed elsewhere (e.g. see Mather 1987), they
need not be described here.

THE TRANSFORMATION METHODS

The Cartesian coordinates (x, y) of a point on a map
are functionally related to position on the earth’s
surface expressed in geographical coordinates (¢,\)

x =f1(“P’)‘) } [101]

y= f2((P’)‘)
There are three basic methods of relating (x, y) to
(¢,\) or various forms of plane coordinates used on
other maps, aerial photographs or scanned imagery.
These are referred to here as:

® Analytical transformation;

® Direct or grid-on-grid transformation;

® Polynomial transformation.

Analytical transformation

Analytical transformation is the most obvious and
straightforward solution to the problem of relating

Cartesian coordinates on a map to geographical
coordinates on the earth’s surface. This is because it
approximates to the methods of classical
cartography, that is, locating and plotting points
from their geographical coordinates. In the
automated applications, the objective is to convert
the (x’,y") coordinates of points digitized on a
source map into their geographical coordinates.
These, in turn, are used to determine the (x, y)
coordinates for the GIS framework or to create a
new map.

The conversion from geographical coordinates
into plane coordinates is the normal practice of
constructing a map projection and is regarded as the
forward solution. The preliminary conversion
required to find the geographical coordinates from
the (x',y") system of digitized coordinates is
correspondingly called the inverse solution. Thus
the transformation model is:

(x'y) = (@A) —  (xy) [10.2]

<Inverse solution><Forward solution>

Most of the standard works on map projections
only provide the equations for the forward solution.
This is because in the days before digital mapping
became a practical possibility, only the forward
equations were needed to construct a graticule; all
subsequent transfer of detail was manual. It was
only in the field of topographic mapping, using the
Transverse Mercator and Lambert Conformal
Conical projections in particular, that the two
conversions ‘geographicals to grid’ and ‘grid to
geographicals’ were likely to be employed and both
were provided for by the projection tables. The only
comprehensive source for both the forward and
inverse equations for the commonly used map
projections is Snyder (1987a). This manual also
includes worked examples of both computations for
spherical and spheroidal assumptions.

The analytical transformation equations for
Mercator’s projection

The relationship between the forward and inverse
coordinate expressions may be exemplified by the
sets of equations used to define the normal aspect of
Mercator’s projection which is the basis of virtually
all nautical charts. For the projection of the sphere,
eqn [10.3] for the forward solution is to be found in
most of the standard works on map projections:

x =R\
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y = R.Intan (n/4 + ¢/2) [10.3]

where In is the natural logarithm (to base €), the
longitude, A, is expressed in radians and the radius
of the earth, R, is expressed in millimetres at the
scale of the proposed map. In order to express (¢,\)
in terms of (x, y), which is the inverse solution, it is
necessary to write

¢=m/2—2tan"! (e'R)

A =x/R+ X\ [10.4]

where A is the datum meridian from which
longitudes are measured. Here e is the base of
natural logarithms (= 2.7182818...). It is written as
the Greek epsilon to avoid confusion with the
eccentricity of the spheroid, e, in the next three
equations.

The first complication which needs to be
considered is the corresponding relationships for the
projection of the spheroid, having semi-axes a and b
with eccentricity e derived from

e’ = (a® — bH)la* = 0.0067... [10.5]

For the forward solution of Mercator’s projection of
the spheroid, eqn [10.3] has to be modified to the
corresponding equations

X =a\
y = a.Intan (/4 + ¢/2)[(1 — e.sin 9)/(1 + e.sin ¢)]*?

[10.6]

For the inverse calculation the equation to find
latitude is transcendental, needing an iterative
solution

¢ =m/2 — 2tan! {{(1 — e.sin ¢)/(1 + e.sin ¢)]7?}
[10.7]

and f = ¢ 7 The first trial solution is to find

¢=m/2—2tan"! (¢) [10.8]

The result is inserted as ¢ in the right hand side of
eqn [10.7] to calculate a new value for ¢ on the left-
hand side. The process is repeated until the results
have converged to a difference between the two
values for ¢ which the user considers to be
insignificant and the final value for ¢ may be
accepted. Longitude, is obtained from a simple
modification for the \ expression in eqn [10.6],
namely

A=xla+ N [10.9]
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Further transformations

The number of stages in the inverse solution may
have to be extended for various other reasons.
Because most digitizing is done in Cartesian
coordinates and it is sometimes appropriate to deal
with a map projection which is best derived in polar
coordinates, it may be necessary to change plane
rectangular coordinates (x’,y’) into plane polar
coordinates (p,d) before determining the
geographical coordinates. Thus the transformation
model contains an additional stage, as follows:

'y = @8 — () — (xy) [10.10]

< inverse solution ><Forward solution>

Similarly a change in aspect, for example to a
transverse or oblique projection, involves yet
another stage in the succession of transformations.
Change in aspect is commonly effected through the
system of (z,a) bearing and distance coordinates
(Maling 1973), using spherical trigonometry to
convert from (¢,A) into (z,a). Thus:

(z0) = (xy)

><Change in aspect>><Forward solution>

[10.11]

= y)—= (pd) = (eh) —

< Inverse solution

An alternative to this method of changing aspect is
to use a three-dimensional Cartesian system (X, Y,
Z) instead of geographical coordinates to relate
positions on the spherical surface. Following the
work of Wray (1974), Barton (1976) and Arthur
(1978) the change in aspect may also be obtained by
rotating these axes through the three Eulerian
angles at the centre of the sphere. This time the
transformations are:

'y = (M) = (XY, Z) > (XY, Z') > (¢' ) > (x,y)

< Inverse solution >< > < Forward >

solution

(10.12]

Change in aspect

where (X',Y’,Z’) are the rotated coordinates of the
point (X, Y, Z).

The advantages and disadvantages of the analytical
method

The analytical method is rigorous and it is
independent of the size of the area to be mapped.
However, it can be inconveniently slow. It seems at
first sight that this is no longer a problem; that
modern high-speed computers have reduced these
considerations to insignificance. However, the
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clumsiness of the analytical method becomes
apparent when applied to large data files. This is
well demonstrated by eqn [10.11] relating to change
in aspect, where each additional transformation
stage may involve either the solution of a separate
spherical triangle or, in eqn [10.12], the
determination of three-dimensional coordinates and
rotation of them for every point on the map.

A further problem, highlighted by Snyder
(1985, 1987¢), is that the naming of projections on
existing maps leaves much to be desired and that
even when the correct name has been used,
important information such as the positions of the
standard parallels in a conical projection or the
central meridian of the particular version of the
Transverse Mercator projection in use has not been
stated. Snyder (1985) has written a program which
attempts recognition of the projection in use, based
upon the digitized coordinates of nine points (on
three parallels and three meridians) of the map, but
even this can only distinguish between fairly simple
examples.

Direct transformation by the Grid-on-Grid
Method

This method does not require inverse solution of the
geographical coordinates (¢,\) of the original map,
but is based upon the relation between the
rectangular coordinates of the same points on the
two projections. This technique was used in
traditional cartography for such purposes as
regridding or plotting a second grid on a military
topographical map — hence the name ‘grid-on-grid’.
This method is also important in mapping from
remote sensing and is the method adopted in
modern analytical plotters for use with conventional
aerial photography. Practically all the methods of
applying geometrical corrections to remote sensing
imagery, including that derived from Landsat MSS,
Landsat TM and SPOT sensors, utilize such
techniques employing ground control points of
known position to determine the transformation
parameters.

The simplest transformation model is, of
course:

(x".y")— (x.y) [10.13]

Two relatively simple numerical procedures
which are commonly employed in the mapping

sciences are the linear transformations from one
plane Cartesian coordinate system into another.
There are two major kinds of transformation: the
linear conformal, similarity or Helmert
transformation; and the affine transformation. The
former is expressed in the general form:

x=A+ Cx"+ Dy’

y=B—-Dx'"+ Cy’ [10.14]
The affine transformation is as follows:
x=A+Cx'+ Dy

y=B-Ex'+ Fy' [10.15]

In these equations, the known (or digitized) (x, y')
coordinates of a point in one system are
transformed into the (x, y) coordinates of the
second system, through the use of four or six
coefficients A—F. In the Helmert transformation the
C and D coefficients are common to both the
equations for x and y, but in affine transformation it
is necessary to introduce separate corrections for
each direction. Both transformations may be
resolved into three components:

® Translation of the axes or change of origin,
corresponding to the coefficients A and B in
both eqns [10.14] and [10.15].

® A change in scale from one grid system to the
other.

® The rotation of the axes of one grid system with
respect to their directions in the other. These
are illustrated in Fig. 10.2.

Helmert transformation

For the Helmert transformation the effects of all
three displacements are combined to produce the
pair of equations

x=(mx'-cosa+ m-ysina) + A [10.16]

y=(—mx'ssina+my-cosa)+ B [10.17]

where A and B are the coefficients in eqn [10.14]
which correspond to the shift in the origin of the
coordinates parallel with the x and y axes, the angle
a is the rotation of the axes required to make these
axes parallel and m is a scale factor. Thus if two
points, j and £ in the first system correspond to J
and K in the second, the ratio of the distances jk/JK
must be applied to the first system to bring it to the
same scale as the second.
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0 X
(c)
Fig. 10.2 The geometry of Helmert
transformation. (a) Initial conditions: showing two
points j and k referred to Cartesian axes O'X’ and
O'Y" which are orthogonal. (b) The three stages in
transformation superimposed upon one another.
These are, first the scale change by which the line jk
is transformed into the line JK. Secondly, the
rotation of the X’ and Y’ axes through the angle «
about the point O’ to make the axes parallel to the
final OX and OY system. Third is the translation of
the origin O’ through the distances A and B
respectively to refer J and K to the (X, Y) system.
(c) Final conditions: indicating the positions of J
and K within the (X, Y) system.

The complete transformation may be expressed
in matrix form as

G- 9-0)+()

where D = m’'sin « and C = m/'cos a. The inverse
transformation is that of determining the (x’, y')
coordinates of points whose (x, y) coordinates are
already known. Thus

()-G 2)-6)-6)

where C' = cos a/m and D’ = sin a/m

If there are only two points (x'y, y';) and (x',,
y'2) on the first surface corresponding to (x;, y,) and
(%2, ¥2) on the second surface whose coordinates are
known or have been measured, the method of
finding C and D is through eqns [10.20] and {10.21].

[10.18]

[10.19]

C = [3x-3y’ — 8y-dx'}/[dx'% + 3y’?] [10.20]
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D = [3y-8y’ + dx-3x')/[dx'? + 8y'}]

where

[10.21]

dx = (x1 —x2), 8x' = (x"y — x'2), By = (y; — y2)
and
oy’ = (y'1 —y")

If there are more than two common points,
such as occurs in vector digitizing, the adjustment of
aerial triangulation or fitting a remotely sensed
image to many ground control points, the
determination of the coefficients from only two or
three of them is inadequate because the coordinates
of any of those points may contain small errors,
which, in turn, introduces errors into the
transformation of all other points. Therefore, all of
the data available for the determination of C and D
ought to be taken into consideration. This involves
a solution of the coefficients by the method of least
squares which is described under the determination
of polynomial coefficients.

Affine transformation

The assumption which is made in the Helmert
transformation is that the scalar, m, is a single
unique value. In other words the ratio jk/JK is the
same whatever the directions of these lines. This is a
reasonable assumption for some purposes but it
may not always be justifiable. For example, in
photogrammetry the location of image points on a
film may be affected by deformation of the film base
by stretching and shrinking and this is not usually
the same in all directions. In the extraction of
positional information by digitizing a paper map,
the influence of differential stretching or shrinking
of the paper is even more erratic. For these
applications it is desirable to use the affine
transformation or even a higher order polynomial
because this allows for different scales in the
directions of the two axes, n, and m,. This may also
be combined with small departures of the
coordinate axes from the perpendicular, as
illustrated in Fig. 10.3. Here it can be seen that the
(x, y) axes intersect at an angle y # 90°. The
solution is described in greater detail by Mikhail
(1976) and Sprinsky (1987).

Numerical transformation methods

The third method of relating Cartesian coordinates
on a map to geographical coordinates on the earth’s
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Fig. 10.3 The geometry of affine transformation.
(a) Initial condition: showing two points j and k
referred to Cartesian axes O'X’ and O'Y’ which are
not orthogonal but intersect at some angle~y. The
same effect is produced by differential scales in the
directions of the two axes. (b) Creation of the
orthogonal axes. here shown by the broken line.
This is also equivalent to making the linear scale in
the X’ direction equal to that in the Y’ direction (c)
All transformation stages are superimposed. The
third, fourth and fifth stages comprise those in the
Helmert transformation, i.e. the uniform scale
change to represent jk by JK; the rotation of the
axes through the angle o and, finally, the translation
through A and B to refer the points J and K to the
OX and OY axes. (d) Final transformation
illustrates this stage, where J and K are shown
within the OXY system.

surface is to construct polynomial expressions to fit
the data and use the resulting coefficients to
transform the coordinates of the remaining points of
map detail. This method is, of course, important in
numerical analysis and has many different
applications. In the narrower field of transforming
positional data for GIS applications this method
may be used with equal efficiency for
transformation from geographical into grid
coordinates (eqn [10.22]) as for making the grid-to-
grid transformations (eqn [10.23]).The required
number of commeon points needed to determine the
coefficients and the amount of computation needed
vary according to the order or degree of the
polynomial. For example, a third-order polynomial,
containing terms in ¢ and X up to ¢ and A’ requires

ten coefficients denoted ay;, and the ten in b;; as in

eqn [10.22] determined by solving ten or more
equations.

The third-order polynomial expression relating
grid to geographical coordinates may be written in
the form:

X = ag + a1oMgi® + axN’ + aphe + age? + az\’
+ au N + aphe? + age’
Y = boo + bioh + by@ + byh® + byhe + byyg® +

b30)\3 + bZIAZ(P + b]2)\(P2 + b(}3(P3 [1022]

Similarly the polynomial equations used to
transform from grid to grid are:

X =coo+ o’ + coy' + x4 cpx'y + eyt +
X + cax'?y + epx'y? + oy

y = doy + digx’ + dory’ + daox’* + dyyx'y" + dppy'?
+dsox + dayxy' + dipx'y’? + dggy® [10.23]

In pre-computer days polynomial expressions were
usually left in this form because it was generally
easier to compute each term individually. However,
in view of what has already been said about
economy in the design of equations, a nested form
of each equation may be obtained from a little
algebraic rearrangement. For example, the
expression for x in eqn [10.22] may also be written
(Snyder 1985) as:

x = ay + ¢(aop + ape) + Map + elay + a29)) +
}\2(02() + a ¢ + ag())\)... [1024]

This example is particularly instructive. Snyder
(1985) has reported that the savings which result
from using eqn [10.24] rather than the expression
for x in eqn [10.22] are between 20 and 30 per cent
in the solution of a fifth-order polynomial.

Snyder has also shown that conformal
projections of the spheroid may be transformed
more accurately (therefore requiring a lower-order
polynomial) by using the isometric latitude s, in
place of geodetic latitude in eqns [10.22]. For an
explanation of the purpose and use of isometric,
and other auxiliary latitudes, the reader is referred
to Snyder (1987a) and Richardus and Adler (1972).

Determination of the polynomial coefficients

In order to find the 20 coefficients a;;, by in the
third-order polynomials above, it is necessary to
know the plane rectangular coordinates of 10
corresponding points x;, y; and ¢;, A; to form the
linear equations from which the coefficients can be
solved. The amount of data needed to determine
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the coefficients of a polynomial depends upon the
order of the polynomial, which, in turn, depends
upon the highest powers of the independent
variables used in the terms. For example, first,
second, third, fourth and fifth degree polynomials
require a minimum of 3, 6, 10, 15 and 21
corresponding points respectively. The common
solution is to use even more than these minimum
numbers, to obtain the required coefficients by the
method of least squares. This is the condition that
the sum of squares of differences between the
measured and the theoretical coordinates in the new
projection should be minimized. Modern textbooks
on survey adjustments and computations, for
example, Cooper (1974), Mikhail (1976) and
Methley (1986) all deal with this subject. The
following (m X n) matrix solution is applicable for
any number of coefficients, n, and common points,
m, but a practical limit is usually created by the
capacity of the computer. It is well known in
numerical analysis that although a polynomial may
be extended to include higher powered terms in
o'\, ¢° A3, etc., the labour of determining the
coefficients will hardly justify the extra computing
time. Snyder (1985) provides the example of the
solution of eqns [10.22] which shows that increasing
the degree of the polynomial from third order to
fourth order barely justifies the greater accuracy
obtained for any purpose other than geodetic work.

In eqns [10.25] and [10.26], the individual
coefficients form the column matrix on the left hand
side and the control, or common point coordinates
are the column matrix on the right hand side.

oo X1

Qo1 X2

..... =D-[.....

apm Xm [10.25]

boo Y1

boy Y2

..... =D-1].....

b,, VYom [10.26]
The matrix D is calculated from
D =[AT.A]7LAT [10.27]

where the (m X n) matrix A is formed from the
geographical (or grid) coordinates of the
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corresponding points. Thus for the third degree
polynomial requiring ten terms per line, n = 10

1 N ¢ )\21 Neroed AS }\lzﬁPl Aoy ‘013
Lox e M e @8 N Mo e @)

L T D W S D W D W
[10.28]

This solution is due to Wu and Yang (1981) with a
fuller derivation by Snyder (1985). The method
depends for its accuracy upon the size of the area
mapped. This is because a polynomial
transformation works well enough with
homogeneous data, but a file comprising data
digitized from a paper map may not be
homogeneous because different parts of it have
been affected differently by paper deformation. Just
as it is necessary to treat separately the panels of a
map which has at some time been folded, it may be
necessary to divide the whole map into blocks and
transform each block separately.

SOME FACTORS INFLUENCING THE
CHOICE OF A SUITABLE PROJECTION

The principles and methods of transformation which
have been described are applicable to maps of any
scale. However, application of a GIS to a large
country or even a continent necessitates choice of a
projection, first to serve as the GIS framework and
possibly as a suitable projection for displaying the
results. It is a fundamental principle of distortion
theory that the particular scales and, therefore,
exaggeration of areas and angles increase from the
origin of the projection towards its edges.
Therefore, it is desirable to choose a projection in
which either the average or the extreme distortions
are small. The amount of distortion on a map
depends upon the location, size and shape of the
area to be mapped. Distortion is least in the
representation of a small, compact country and
greatest in maps of the whole world. The three
variables — location, size and shape - usually
determine the choice of origin, aspect and class of a
suitable projection. These may be chosen by the
graphical and analytical methods described by
Maling (1973). These are based upon the principle
that the distortion pattern, its fundamental
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property, remains constant within a particular
projection even when the aspect of the projection is
changed. Therefore, the plotted pattern of
distortion isograms may be regarded as a frame
which can be used to imagine how the distortion will
occur, just as an artist may compose a picture by
looking at objects through a small rectangular
cardboard frame or a photographer uses the
rectangular ground glass screen of the camera
viewfinder.

In the pre-computer period when the methods
were evolving, this was carried out using
transparent overlays which were placed singly or in
groups over a rough outline sketch map of the
country or continent drawn at the same scale. By
shifting the position and orientation of the overlay it
is possible to estimate any advantage to be gained
from a change in origin or change in orientation of
the lines of zero distortion. The actual choice of
projection depends upon comparison of the patterns
of distortion isograms for different projections.
When two or more overlays for different
projections are superimposed, the extreme values
for area scale or maximum angular deformation
may be estimated from the isograms. Fig. 10.4
illustrates such a comparison.

It must be realized that the outlines shown on
the underlying map are only a rough guide, for the
detailed relationship between these and the
isograms is only true for that aspect and projection
upon which the map was compiled. The purpose of
the outline is to indicate approximately the extent of
the country or continent; it is the comparison
between the distortion isograms which is important.

TOWARDS AN AUTOMATIC METHOD OF
CHOICE OF MAP PROJECTION

Although the method just described was developed
using sheets of transparent plastic to represent the
overlays, this method of choice is obviously well
suited to GIS applications. However, the author has
no knowledge whether this particular application
has yet been attempted so that there is plenty of
scope for further research here.

The only example of the development of an
interactive program intended to choose a suitable
projection appears to be that by Jankowski and
Nyerges (1989) who have tackled the problem in a

Point of zero \
distortion |

{Azimuthal

Equal-area)

Line of zero distortion (Bonne)

Fig. 10.4 The comparison of the relative merits of
Bonne’s projection and the Azimuthal Equal-area
projection for a map of the North American
continent. Both of these are equal-area projections
so that the best way of comparing them is through
maximum angular deformation, w. The origin of
both projections is the point with latitude 45° North,
100° West. Isograms for maximum angular
deformation are shown for both projections at
intervals of w = 5° and 10°. The shaded patterns
refer to the isograms for Bonne’s projection. Note
that the coastlines are drawn roughly to indicate
their approximate location. They do not coincide
with their positions on either of these projections
accurately and are only an approximate guide to the
extent of the area to be mapped. Although this
example is for maps and systems of continental
dimensions, the same method may be employed for
comparison of maps for individual countries. In
such cases the isograms would be for values of w for
every degree or even every half degree.

(Source: Maling 1973)

wholly different fashion. They have proceeded
through the medium of existing software packages
resulting in the series of programs which they have
called the ‘Map Projection Knowledge-Based
System’. Among the many questions asked in the
interactive development of a choice of projection,
the user must specify a preference for special
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property which only distinguishes between
conformality, equidistance and equivalence. The
default is equivalence and there seems to be, at
present, no way of selecting a projection which does
not possess one of these special properties. At the
stage when Jankowski and Nyerges published their
paper, work on the system was still in progress.
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