GIS AND REMOTE SENSING
F W DAVIS AND D S SIMONETT

This chapter briefly reviews remote sensing as both a data collection technology
providing data for GIS and a user of spatially referenced data for scientific analysis.
The discussion focuses on the importance of linking raster remote sensing systems
with vector GIS to create Integrated GIS (IGIS). The use of IGIS is examined in
applications such as image classification, calibration and environmental modelling.
There is clearly great complementarity between remote sensing and GIS. Both areas
developed independently to some extent, especially in the early days. By linking the
technology, concepts and theories of both in IGIS, information systems considerably
richer and more sophisticated can be created for use in substantive applications.
Almost all projects currently employing satellite data or dealing with environmental

data could potentially benefit from the development of truly integrated GIS.

INTRODUCTION

This chapter discusses the integration of digital
remotely sensed data and cartographic information
for GIS. Synergisms between remote sensing and
GIS for land surface analysis are emphasized,
specifically for surface classification, sensor
calibration and physical modelling of earth surface
processes.

There is a need to distinguish at the outset the
difference between measurements, such as radiances
obtained by a remote scanner system, and
geographical information, that is knowledge of
geographical phenomena obtained by the analysis of
surface measurements or other geographical data.
Cartographic information is geographical
information obtained from maps. Data refers to
measurements or information input to a
geographical analysis. These distinctions are
important in discussing the integration of remote
sensing and GIS. Unquestionably, a large
proportion of measurements of the earth’s surface
are now obtained from satellites and these provide
an opportunity for greatly expanding and revising
understanding of earth systems. To serve as input to
GIS, satellite data must be well calibrated and in a
suitable format and data structure. Also in the

context of GIS, it is of paramount importance to
know how best to use existing (and imperfect)
geographical information to maximize the
information potential of satellite measurements.

Early discussions of the relationship between
digital remote sensing and GIS focused on the
benefits of incorporating classified satellite imagery
into land information systems for GIS-based
analysis (e.g. Peplies and Keuper 1975). Treating
the output of a remote sensing analysis as input to
GIS tended to isolate the respective analysts and
hindered the integration of remote sensing and GIS
(Marble et al. 1983). The separation grew
increasingly artificial as remote sensing analysts
relied on ancillary geographical information to
improve image classification (e.g. Hoffer et al. 1979;
Strahler 1981; Mason et al. 1988) and as GIS
analysts relied on satellite data for purposes such as
cartographic rectification and map update (e.g. Hill
and Kelly 1987).

Several recent papers have treated remote
sensing and GIS in the more general framework of
integrated spatial analysis, considering remotely
sensed imagery as one element of a GIS for earth
surface modelling (e.g. Marble et al. 1983; Jackson
and Mason 1986; Ehlers, Edwards and Bedard
1989; Parker 1988; Star and Estes 1990). This has
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expanded the discussion of remote sensing and GIS
from methods for improving image classification
accuracy and data structure conversion, towards the
more general problem of jointly representing and
analysing disparate geographical data that can vary
in structure, acquisition date, resolution, and level
of pre-processing or human interpretation (e.g.
Zhou 1989; Logan and Bryant 1987). The objective
of this chapter is to extend this discussion in the
light of recent advances in remote sensing theory
and application. For a general review of remote
sensing principles, the reader is referred to the
Manual of Remote Sensing (Colwell 1983) and
recent texts by Richards (1986), Elachi (1987) and
Asrar (1989). The discussion focuses on the
following issues:

® spatial resolution of digital satellite
measurements, and the regularization of surface
spatial variation by remote sensing systems;

® temporal resolution of satellite measurements
and remote monitoring of earth surface
dynamics;

® data structures for handling remotely sensed
data and integrated geographical analysis;

e integrated GIS analysis for land surface
classification, sensor calibration and physical
modelling of surface properties.

There are other important aspects of the
integration of remote sensing and GIS that will not
be addressed because of space restrictions. The
close links between aerial photointerpretation,
existing map products and GIS will not be discussed
explicitly. For example, since 1957 all operational
maps produced by the US Government have used
some form of remote sensing data as a base.
Advances in production of digital orthophotography
are especially significant in accelerating the
integration of non-satellite remote sensing and GIS.
The practical problems that hinder the integration
of digital satellite data into existing land
information systems for local planning are also not
addressed, although many of the issues raised are
germane to this important subject area.

Similarly, the significant fiscal and institutional
impediments to integrating remote sensing and GIS
technologies (Ehlers et al. 1989) are not considered.
These issues are addressed in part by other authors
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in this volume. The discussion instead concentrates
on some scientific issues that need to be considered
in order to take fullest advantage of integrated GIS
for research, resource analysis and management.

REMOTE SENSING AS A SOURCE OF
GEOGRAPHICAL DATA

Remote sensing is defined narrowly here as
measurement of the electromagnetic properties of a
surface or object without being in contact with it.
The discussion here is limited to digital data
collected by aircraft or satellite. While most local
environmental surveys still depend on manual
interpretation of aerial photography, the use of
digital imagery for regional analysis is now
commonplace and will undoubtedly increase in the
future. As a source of geographical information,
digital remote sensing represents more than a
simple extension of conventional aerial
photography, requiring fundamentally different
approaches to the analysis of earth surfaces (Everett
and Simonett 1976).

Spatial characteristics of remotely sensed data

Remote sensing systems range from active
microwave systems, which measure how a signal is
scattered by the surface, to passive systems, which
measure surface reflectance or emission. In a GIS
context, especially important features of remotely
sensed data are their sampling characteristics in the
space and time domains.

The basic properties of a remote sensor can be
summarized as:

® spectral coverage (spectral band locations);
® spectral resolution (spectral band width);

® spectral dimensionality (number of bands);
¢ radiometric resolution (quantization);

® instantaneous field of view (IFOV);

® angular field of view;

® point spread function (PSF);
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¢ temporal response function (Strahler,
Woodcock and Smith 1986).

Sensor spatial resolution has deliberately not
been listed, as this term can be defined in several
ways that give quite different values (Forshaw et al.
1983). Image resolution is the ground area covered
by picture elements (pixels), which are themselves a
function of the sensor IFOV, scene characteristics
and data pre-processing. Even estimates of sensor
IFOV can vary depending on the criteria that are
used, and can change through time depending on
the satellite orbital altitude. For example, estimates
of the IFOV for the Landsat MSS have ranged from
73.4 to 81 metres (Simonett et al. 1983).

From a practical point of view, spatial
resolution is defined by the size of the smallest
object that can be reliably detected against a
spectrally contrasting background, referred to as the
effective resolution element (ERE). ERE is image
specific, depending not only on the sensor IFOV,
but on a host of other factors including the sensor
PSF, surface—sensor geometry, atmospheric
conditions, scene properties such as spectral
contrast and object geometry, and data processing
such as image rectification or enhancement
(Billingsley et al. 1983; Duggin 1985; Strahler et al.
1986). Image dependencies become crucial as pixel
size approaches the Nyquist limit for scene elements
of interest (see below).

In a broader sense, the spatial resolution of a
remote sensor varies with the task to which the data
are applied, specifically: (1) detection, determining
the presence of an object; (2) identification or
labelling of an object; or (3) analysis, where
information is obtained about an object beyond its
initial detection and identification. Simonett et al.
(1983) suggest that for low contrast targets the
effective resolution of sensors required for analysis
may be as much as 10 times less than that for
identification and 30 times less than that for
detection.

Autocorrelation and regularization in satellite
imagery

Spatial variation in a satellite image is produced by
the convolution of intrinsic variation in surface
electromagnetic properties with the sampling field
of the sensor. Surface variation can be categorized

as continuous (gradients), discrete (mosaics), linear
or localized (e.g. intermittent extreme events, point
processes and disc processes) (see also Getis and
Boots 1978). It is also important to recognize
whether the surface process being investigated is
stationary, so that its statistical properties do not
depend on absolute spatial location (Cliff and Ord
1981), and whether the pattern of surface variation
is random, contagious or regular.

Statistical properties of environmental
processes are typically highly scale dependent. Scale
is the interval of space or time over which a
measurement is made, so that scale dependence
refers to the relationship between the magnitude or
variability of a spatial process and the scale of
measurement. Most natural surfaces are non-
stationary over large areas, manifesting many
different types of variation within and between
different measurement scales. This renders satellite
measurements highly sensitive to sensor IFOV, scan
angle effects (e.g. National Oceanographic and
Atmospheric Administration (NOAA) Advanced
Very High Resolution Radiometer (AVHRR)
pixels range from 1.1 x 1.1 km at nadirto 4 x 1.1km
at 55.4° off-nadir) and pre-processing involving
pixel resampling and interpolation. Multiple scales
of surface variation also make it unreliable to
calibrate sensors using ground measurements made
over sample areas that depart significantly from
sensor resolution.

Much research is needed on spatial variability
of earth surfaces to utilize satellite data fully. Some
recent studies have examined scale-dependent
variation in terrain variables such as topography
and radiation (e.g. Mark and Aronson 1984; Mulla
1988; Dubayah, Dozier and Davis 1990), and soils
(Burrough 1983; Oliver and Webster 1986). Digital
satellite data have been analysed to study scale
dependence in vegetation patterns (e.g. Woodcock
and Strahler 1987; Davis, Dubayah and Dozier
1989; Townshend and Justice 1990). Inferring
surface variation from spatial variation in satellite
data is not straightforward, however, because
satellite radiances are affected by non-surface
factors such as sun—earth—satellite geometry and
atmospheric characteristics. Furthermore, as
mentioned earlier, surface variation is filtered by
the sensor in the process known as scene
regularization. This is an important feature of
satellite data that distinguishes them from most
other sources of geographical information (Star and
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Estes 1990). Recent work by Jupp, Walker and
Penridge (1986) and Jupp, Strahler and Woodcock
(1989) provides useful insight into how surface
variability is regularized by satellites. Some of their
results are summarized below.

The reflected radiance of a surface at location x
at time ¢ can be summarized as (Moik 1980):

fx A\ p) = r(x,\t,p) i(x,A,0)

where r(x,\.z,p) is the reflectance of the surface as a
function of position (x), wavelength (M), time (¢)
and polarization (p), and i(x,\,t) is the incident
illumination. For simplicity, consider only the
variation in reflectance with spatial position, f(x).
One important property of this variation is its
spatial autocorrelation or autocovariance, which
measures how f(x) varies as a function of the
distance and orientation between observations.
Ignoring directional effects, spatial autocovariance
in reflectance of a surface at points separated by
distance &, denoted by cov(k), can be described
using the isotropic variogram, where

V(h) = cov(0) — cov(h) = 112 E(f(x) — f(x + h))*
[14.2]

[14.1]

In remote sensing, surface spatial variation is
‘regularized’ through the convolution of f(x) with
the sampling field of the sensor, Z. For intermittent
surfaces, the regularization of f(x) by Z leads to a
new spatial function

FAY) = VMes(Z)[f(x) dix

where Z, is the sampling field (e.g. square pixel)
centred at location y and Mes(Z) is the sample area.
The variogram for the regularized image then
becomes:

[14.3]

Vz = (T+V), = (T+V)o (14.4]
where T is the overlap function for Z,
T=1,*15/ Mes*(Z) [14.5]

where * is convolution and [, is the indicator
function (I,(x) = 1 forx € Z, Oelse, and I3(¢) =
Iz(— 1)). Equation [14.4] states that the variogram
that results from the regularization of a surface by a
satellite sensor is related to the variogram of the
surface convolved with the covariance function of
the pixel.

The variograms that result as a surface is
regularized to different pixel sizes can be predicted
from the point variogram of the unregularized
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surface (Jupp er al. 1986). However, the
unregularized variogram of natural surfaces is
usually not known. Simulations based on the
regularization of different surface types has proven
useful. For example, Jupp et al. (1986) analyse
binary surfaces covered by discs of different size and
pattern, a simple analogy to scattered trees on
uniform terrain, to relate image regularization to
image texture, fractal behaviour and estimated
cover (see also Goodchild 1980).

The semi-variogram of an image is closely
related to image local variance, which is the average
standard deviation of image brightness in a moving
three-by-three window:

il e+l |,
Tj=|%L L — %) "
k=i-t [=j—1

[14.6]

This measure, which is often used for edge
detection and for image segmentation and
classification, is the regularized value of the semi-
variogram at a step size equal to or slightly greater
than (for diagonals) image resolution or pixel size
(Jupp et al. 1989).

Strahler et al. (1986) distinguish two
fundamentally different models, the H-resolution
model, in which scene elements are large compared
to image resolution, and the L-resolution model, in
which elements are smaller than the image
resolution area and are not individually detectable.
Image texture increases as image resolution
approaches the dimensions of scene elements.
Large local variance can be problematic in image
classification using high resolution sensors such as
Landsat Thematic Mapper (TM) and SPOT to map
land cover types such as urban areas or woody
vegetation, where sensor resolution approaches the
size of individual buildings or clearings. Scene
elements are often organized into larger features
(e.g. buildings into blocks and trees into stands)
that are manifested as additional peaks in image
texture at larger pixel sizes. To the degree that
different surface processes have characteristic scale
dependencies, multi-resolution imagery (image
pyramids) ranging from H- to L-resolution may be
effective in surface recognition and classification
(e.g. Wharton 1989).

The regularization of surface spatial variation
by imaging systems means that information derived
from analysis of satellite data differs fundamentally
from most cartographic information, which usually
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derives from generalization of perceived spatial
variation (e.g. in producing soils maps) or
interpolation of point measurements of the surface
(e.g. mapping of surface topography or climate
data). The intermixing of regularized, generalized
and interpolated surfaces in GIS convolves intrinsic
surface variation with the effects of resolution and
processing of the satellite data, map scale and
generalization procedures, data structure and data
conversion, modelling procedures, etc. The theory
of GIS is still along way from a formal
decomposition of these effects. Special attention
must be paid to non-linear scale dependencies of
some surface types, because these surfaces will be
highly sensitive to source image resolution (e.g.
Lovejoy and Shertzer 1985).

Temporal characteristics of remotely sensed
data

Satellite sensors provide the opportunity for
consistent multi-temporal measurements of large
areas over time periods of days to decades. Sensor
coverage and repeat interval are determined by
platform altitude, angular velocity, orbital
inclination relative to the Equator and orbital
orientation relative to the vernal equinox (Elachi
1987). Many optical sensors are placed in sun-
synchronous near-polar orbits to achieve global

coverage and consistent illumination geometry (e.g.

Landsat, AVHRR). The repeat interval varies
among these sensors depending on their altitude
and velocity. Others are placed in geosynchronous
orbits to provide high frequency coverage of the
same region (e.g. the GOES meteorological
satellites).

The ability to detect changes in a surface
imaged over time depends on the spatial
(geometrical registration and resolution), spectral
(band location and width), radiometric and
temporal (imaging frequency) properties of the
sensor system (Townshend and Justice 1988). The
comparison of images acquired by the same sensor
on different dates is complicated by any changes in
instrument gain and offset as well as differences in
atmospheric properties, notably in sub-pixel cloud
cover. Change detection is considerably more
complicated when more than one sensor system is
used because of differences in sensor IFOV, PSF,

bandwidths and spectral response properties
(Duggin 1985).

Many techniques have been developed for
atmospheric correction and radiometric calibration
of satellite imagery for multi-temporal analysis (e.g.
Holben and Fraser 1984; Hall and Badhwar 1987,
Singh and Saull 1988; Schott, Salvaggio and
Volchok 1988; Suits, Malila and Weller 1988). Less
easily accounted for are changes in surface
reflectance properties caused by illumination
geometry. These are especially problematic because
they can greatly affect the relationship between
satellite radiances and surface properties (Deering
1989). Thus extracting detailed quantitative
information from multi-date imagery requires
sophisticated algorithms to correct for scene-specific
illumination geometry, atmospheric effects and
sensor characteristics.

Much of the previous discussion about spatial
environmental variation applies to temporal
variation as well. A process operating through time
can be described as continuous, discrete or
intermittent, as stationary or non-stationary, and as
random, autocorrelated or regular (Jenkins and
Watts 1968). For many applications, remote sensing
can be treated as point sampling in the time domain
(i.e. the time interval over which the image is
acquired can be assumed negligibly short).

Equation [14.1] can be rewritten as a function
of time:

f0) = r() i(z)

If T is the time interval between successive
samples, then a series of repeated satellite
observations of a location can be considered the
convolution of continuous spectral change in the
environment by the temporal sampling filter i),
which can be modelled as a series of delta functions:

[14.7]

i(t) = Y.8(t — nT)

n—=—w

[14.8]
Thus

fr0) = f0)i1)

f(#) can be recovered from f{t) for temporal
changes manifested over periods of = 2T, or less
than the Nyquist frequency of 1/2T. Processes that
change at higher frequencies (shorter periods) will
be aliased into f#{r).

Surface electromagnetic properties change over

[14.9]
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time scales from fractions of seconds to years. For
example, vegetated surfaces change within seconds
as a result of physiological adjustments of plant
canopies and wind-driven changes in leaf
orientation, whereas successional processes can
operate over decades to centuries. The high
frequency variation contributes unavoidable noise
in multi-temporal imagery. Rapid atmospheric
changes and surface reflectance changes with
illumination also contribute noise, but it may be
possible to remove these effects.

Despite considerable high frequency ‘noise’,
satellite data have been used effectively to monitor
surface processes that are continuous or persist over
more than a few days and that can manifest
detectable change within a few years. Detection of
intermittent high magnitude events such as fires and
floods is feasible but their short duration means that
they can only be described probabilistically over
large areas (Robinson 1987). Systems undergoing
gradual directional change (e.g. expansion of urban
areas) or more rapid but non-directional change
(e.g. shifting cultivation of tropical forest lands
where the proportions in different stages of use or
recovery remain unchanged) are also problematic
because the information about such surfaces is
especially sensitive to both spatial and temporal
sampling properties of the sensor system.
Unfortunately, there is scant quantitative
information on scale-dependent spatio-temporal
variation of earth surfaces, though such analyses are
now feasible over large areas using satellite data.

Townshend and Justice (1988) provide a useful
example of space—time interactions in remote
sensing in the context of monitoring changes in land
cover over large regions. They note that most
landscapes undergo a wide variety of changes
through space and time at many different
characteristic scales. The ability of sensor systems to
monitor such state changes in a surface depends on
the radiometric contrast between states and on how
temporal change in states is distributed in space
(e.g. uniform area changes uniformly through time,
sharp extensive boundary between two states moves
progressively, a state expands radially from a point
through time). They conclude that high spatial
resolution is especially critical for land surface
monitoring. Presumably, an opposite conclusion
would apply to ocean surface monitoring, where
high temporal resolution is much more important
than spatial resolution (Table 14.1).
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Operational and planned satellite remote
sensors

The civilian satellite remote sensing programme in
the United States has operated since the mid-1960s,
providing global coverage by the Landsat series
since 1972 and by the NOAA AVHRR series since
1978. Landsat 1,2 and 3 alone acquired more than 1
million images (Lauer 1990). Many other sensors
have been launched subsequently, and a wide array
of research instruments are expected to be launched
over the next decade (Eos Science Steering
Committee 1987).

In summarizing the information needs for a
satellite-based Earth Observing System, Goddard
Space Flight Center (1984) listed 30 major
environmental parameters that could be measured
with operational or planned sensors over time scales
of 107*—10! years and spatial scales of 107*—10°
km?. Some surface parameters are listed in Table
14.1. Existing and planned sensor systems capable
of providing such information are summarized in
Table 14.2. Some examples of future research
sensors, such as HIRIS and MODIS, have been
included to show the remarkable capabilities
expected from the next generation of research
sensors, and to indicate the probable direction of
future operational systems.

INTEGRATING REMOTE SENSING AND GIS

Previous sections described the general features of
remotely sensed data and alluded to some of the
issues that must be addressed in integrating these
data with other information sources for
geographical analysis. In this section some technical
and analytical concerns related to data integration
and spatial modelling are considered. Three points
are particularly emphasized:

1. Satellite data differ from nearly all other
geographical data in their consistency, high
positional accuracy, high spatial and temporal
resolution, and low level of human abstraction
or interpretation. GIS require raster
capabilities to store and analyse large volumes
of these data with minimum loss of resolution
or radiometric precision.
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Table 14.1 Some important earth surface parameters that can be measured remotely, and required spatial
and temporal sampling frequencies for various applications (modified and simplified Table 2 from Goddard
Space Flight Center 1984). Spatial frequencies are expressed in terms of maximum pixel dimension germane

to the application.

Parameter Application Spatial Temporal
frequency frequency
Soil
types Geochemistry, agriculture, forestry 30m Annual
moisture Hydrology, geochemistry 30m-10km Weekly
erosion Agriculture, geochemistry 30m Annual
carbon, nitrogen Geochemistry 30m Monthly
permafrost Bioclimatology 30m Annual
Surface temperature
land Bioclimatology 1km 12h
inland waters Pollution, climatology 30m 12h
ocean Climatology 1-4km 12h
ice Climatology 1km Daily
Vegetation
types Resource analysis 30m Annual
Geochemistry, bioclimatology 1km Weekly
composition Resource analysis 30m Weekly
condition Geochemistry, bioclimatology 1km Weekly
Land use Demography, planning, 10-30m Annual
Resource analysis
Snow Hydrology 1km Weekly
Radiation (SW, LW) Climatology, hydrology 1km Daily
Precipitation Climatology, hydrology 1km Daily
Phytoplankton Fisheries, biogeochemistry 1-4km 2 days
Turbidity Pollution, erosion, 30m-1km 2 days
geochemistry
Surface elevation
land Geomorphology, hydrology, 10-30m 10 years
ecology
ocean Oceanography 25km 2 days
Rock mineralogy Geology, pedology 30m 10 years

2. Maps use points and lines to portray selected
features of reality in a highly abstracted and

generalized form. This information establishes
a conceptual spatial context for the analysis of

remotely sensed data. GIS require vector

capabilities to store such information in a

feature-oriented data model that minimizes
feature distortion and loss of topological

Spatial data structures

promote statistical and deterministic modelling.
No existing GIS has all of these capabilities.

Spatial data structure refers to the form in which
geo-referenced data are represented and stored in a

information. computer. Frank and Barrera (1990) list four major
ways that spatial data structures can differ from one
3. Integrated geographical analysis will require another:
multiple data structures and software that
support a wide range of spatial queries and 1. Type of geometrical data (point versus region)
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Table 14.2 Some operational and research satellites for earth surface analysis (Goddard Space Flight

Center 1984; Ehlers, Edwards and Bedard 1989).

Platform Sensor Year Bands Spectral IFOV Repeat Cover Country
Landsat MSS 1972- 4 VIS/NIR 80m 16d USA
TM4, 5 1982—- 7 VIS/NIR/TIR 30/120 m 16d USA
T™M6 1992— 8 VIS/NIR/TIR 20/30/120m 16d USA
NOAA AVHRR 1978- 5 VIS/NIR/TIR 1-4km 12h USA
GOES VISSR 1975- 2 VIS/TIR 0.9/8 km 12h USA
NIMBUS-7 CZCS 1978- 1 VIS 10km 27d USA
HCMM HCMR 1978~ 2 VIS/TIR 500m/600m 16d USA
1980
Shuttle LFC 1984 Film VIS/NIR 10-20m USA
SIR-A,B 1981~ 1 Radar 17-58 m USA
SIR-C 1991- 2 Radar 10-60m USA
EOS-A HIRIS 1998- 192 VIS/TIR 30m 4d USA
MODIS-N  1998- 35+ VIS/TIR 250-1000m 2d
MODIS-T  1998- 64 VIS/TIR 1km 2d
SPOT HRV-P 1986— 1 VIS 10m 2.5d France
HRV-XS 1986— 3 VIS/NIR 20m 2.5d
MOS/LOS MESSR 1987- 4 VIS/NIR 50m 17d Japan
VTIR 1987- 4 VIS/TIR 1-3km 17d
MSR 1987— 1 Radar 25m 17d
ERS-1 AMI 1990- 1 Radar 30m 3d EEC
ASTR 1990- 3 TIR 1km 3d
RADARSAT SAR 1990- 1 Radar 30m 3d Canada

2. Object handling (non-fragmenting versus
fragmenting)

3. Retrieval (direct versus hierarchical)

4. Subdivision of space (regular versus data
determined).

Data are most commonly represented in GIS in
either grid raster (region, fragmenting, direct,
regular) or vector (region, non-fragmenting, direct,
data determined) form. Satellite measurements are
acquired in raster format, whereas much existing
GIS software and many widely available databases
are in vector format. The incompatibility of these
data structures and the need for reconciling the
raster/vector dichotomy is a pervasive theme in the
literature on the integration of remote sensing and
GIS (e.g. Logan and Bryant 1987; Archibald 1987;
Smith et al. 1987a; Barker 1988; Peuquet 1988;
Ehlers et al. 1989; Zhou 1989). The discussion here
focuses on the use of one or both data structures for
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handling and analysing remotely sensed data and
for integrated geographical analysis. (Technical
features and relative merits of raster and vector
representations are discussed in detail by Egenhofer
and Herring 1991 in this volume and are only briefly
discussed here.)

Raster data structures

Raster data structures tessellate space and assign
each spatial element a unique value, thus providing
explicit information for each location (Burrough
1986). Raster structures include regular versus
irregular tessellations, and hierarchical versus non-
hierarchical models. They have been described as
field-based (Ehlers et al. 1989), as opposed to object-
based representations provided by vector structures,
referring to the fact that fields are assigned object
attributes in a raster model whereas objects are
given locations and attributes in the latter model.
The most common raster structure is a square
lattice whose values are stored as two-dimensional
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arrays in the computer. This structure is convenient
for imaging systems such as satellite sensors or other
digital scanning devices, and has many additional
advantages including (Burrough 1986):

simplicity;
® case of image display and processing;
® case of data aggregation and data overlay;

¢ uniform cell size and shape for multidimensional
spatial analysis and spatial simulation
modelling.

Also, the square grid is the only practical
structure for maintaining full radiometric precision
and spatial resolution of satellite data. This is
because the advantages of other data structures
such as hierarchical or vector structures depend on
the presence of large fields of pixels with identical
values. Such fields are uncommon in satellite data
acquired over land, where much of the variation
occurs at high spatial frequencies (e.g. Davis et al.
1989).

Although well suited to satellite data, the raster
structure has many limitations:

1. Gridding of point and line features entails loss
of locational precision.

2. Griding of uniform polygons leads to
misclassification of perimeter areas and to areal
estimation error, both of which depend on grid
resolution and polygon shape (e.g. Switzer
1975; Muller 1977; Goodchild 1980; Crapper
1980; Crapper, Walker and Nanninga 1986).

3. Many surfaces are more naturally fitted with
alternative shapes such as irregular triangles
(see Weibel and Heller 1991 in this volume).

4. Local interactions are not easily modelled on a
square lattice because of differences in the
distance and degree of connectedness among
vertical and horizontal versus diagonal
neighbours. This is especially awkward in
modelling contagious diffusion processes such
as fire spread, which are better described using
a hexagonal lattice.

5. Analyses requiring metric or topological
information (e.g. the length of a linear feature,
the size and shape of a patch, network

relationships, degree of connectedness among
patches) cannot be performed on raster data
without first reassembling those objects.

The regular lattice can impose large data
volumes because lattice resolution is generally
selected to capture the smallest feature of interest.
Raster data structures are often chosen specifically
because of the desire to incorporate satellite data,
and all other cartographic information is gridded to
the resolution of those data. In practice, such
databases rapidly grow very large because of the
analyst’s desire to use the highest resolution satellite
data that can be obtained.

Hierarchical raster data structures

Several methods of data compaction have been
developed to store raster data more efficiently,
including different coding schemes (e.g. run-length
or block coding) and hierarchical representations
such as quadtrees, hextrees, R-trees and field trees
(Samet 1984; Frank and Barrera 1990). Hierarchical
data structures require tessellations that can be
recursively decomposed into similar patterns of
smaller size (Smith et al. 1987a). The square
tessellation is used most commonly in constructing a
hierarchy in which a cell at each level in the tree can
be subdivided into four cells at the next sublevel,
down to the level of individual pixels (Bell et al.
1983). Smith et al. (1987a) distinguish image
pyramids, in which information for all levels is
retained, from quadtree regionalizations in which
information is stored to the level of a homogeneous
subregion and no further. Similar hierarchies have
been constructed for point and line data (Samet
1984).

Hierarchical data structures offer several
advantages over raster structures for integrated
analysis of satellite and map data (Jackson and
Mason 1986). Data volume and processing time can
be greatly reduced depending on image or map
complexity. Spatial overlay and proximity analyses
are facilitated by the more object-like representation
of surface variation. Similarly, this representation
makes it easier to incorporate information on size,
shape and scale dependence into algorithms for
pattern recognition and image classification, thus
lending itself to knowledge-based GIS analyses
(Chen 1987; Smith et al. 1987b; Menon 1989).
Despite these substantial advantages, hierarchical
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data structures are still field based and can provide
only limited and geometrically artificial information
about objects. Similarly, although quadtrees may
allow more precise representation of points and
lines, their raster structure still imposes some loss of
locational precision, and they are not easily adapted
to handling network phenomena.

Vector data structures

Vector data structures represent spatial variation
using lines located in continuous coordinate space.
Lines in the original analogue map are stored as
strings of coordinates, and the spatial relationships
among map entities are stored explicitly or are
computed when needed (Peuquet 1988). Vector
representations may be unlinked, in which object
boundaries are encoded without reference to
neighbours, or topologically linked, in which
sections of boundary lines (arcs) are referenced by
their endpoints, orientation and the attributes of
adjoining regions (Peucker and Chrisman 1975).
The identity of map entities is preserved by this data
structure, which can thus to some extent be
considered object oriented.

The vector data structure has some serious
disadvantages for spatial analysis. Information is
lost during data encoding due to line generalization
and digitizing errors (see Veregin 1989 for review;
Prisley, Gregoire and Smith 1989). The high data
volume per element in a vector model makes
storage costs prohibitive for dense maps or
unprocessed satellite data. The data structure is
more complex than raster or hierarchical structures,
and operations such as overlay and display are more
difficult (Burrough 1986). Spatial analyses involving
spatial statistics or simulation are much less
straightforward because each polygon has a unique
size, shape and orientation.

The evolution of vector-based GIS software has
been driven largely by the desire to encode and
analyse existing mapped information. The vector
model of points, lines and polygons in continuous
coordinate space permits the closest approximation
to the original map. Furthermore, implicit
topological relationships in the original maps such
as network linkages can be retained as attributes in
vector data structures.

The distinction between the map-oriented
vector structure and the data-oriented raster
structure calls attention once more to the
differences among cartographic information,
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remotely sensed measurements and information
derived from those data (Maffini 1987). Maps
represent surface variation in a highly generalized,
selective and abstracted form (Ehlers er al. 1989),
and the processes and data used to generate the
cartographic information are usually unknown or
irretrievable. For instance, boundary placement on
a soils map can be driven as much by the analyst’s
purposes and underlying model of reality as by
observed or measured patterns in surface variation.
Conversely, satellite measurements involve little or
no human interpretation other than for registration
and calibration.

Conversion of satellite data to vector format
generally requires classification (i.e. interpretation)
of low-level information at the expense of
measurement precision and spatial detail, whereas
rasterizing a map to be conformal with satellite data
means disaggregating and degrading high-level
cartographic information. These are fundamental
trade-offs that must be confronted in the integration
of satellite and cartographic data into a single data
structure.

Integration of disparate data structures

There are case-dependent technical and analytical
advantages and disadvantages to raster, hierarchical
and vector data structures, and recent literature has
tended to emphasize the use of more than one data
model in geographical analyses (e.g. Haralick 1980;
Logan and Bryant 1987; Rhind and Green 1988;
Peuquet 1988; Simonett 1988; Ehlers et al. 1989;
Zhou 1989). A recent survey noted that nearly half
of all GIS packages now support both vector and
raster structures, suggesting that the advantages of
flexibility in choice of data structure outweigh the
burden of additional processing software and
analysis time (Parker 1989).

The term Integrated Geographical Information
Systems (IGIS) has been coined to describe systems
capable of processing both vector and raster data.
The simplest kind of integrated system, what Ehlers
et al. (1989) term the separate but equal strategy,
provides for data conversion, data transfer between
vector GIS and image processing software, and
simultaneous display of raster and vector data.
Examples of such systems are provided by Logan
and Bryant (1987) and Goodenough (1988).
Relational GIS have also been developed in which
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raster and vector data are linked through a
relational database management system (RDBMS)
(Zhou 1989). Cartographic information can be
digitized in vector format but is converted and
processed with satellite data in a raster
environment. However, feature attributes that were
encoded during vector processing are retained in
non-spatial relational data structures and can be
linked to the raster data for analysis. Such systems
are useful, but it should be recognized that multiple
conversions of vector and raster data carry with
them the cost of data degradation through loss of
precision and accuracy.

A somewhat fuller integration would allow
tandem raster and vector processing, hierarchical
representation and object-oriented handling of
remote sensing data. Some quadtree-based GIS
such as the Knowledge Based Geographical
Information System (KBGIS) have many of these
capabilities, including heuristic search procedures
and learning capacities (Smith et al. 1987b). Ideally,
a fully integrated GIS should be seamless in
maintaining both object-oriented and field-oriented
representations of geographical data, and should
facilitate a wide range of spatial queries and
analyses that would promote both statistical and
deterministic modelling of earth surfaces (Ehlers et
al. 1989). Much of the impetus for developing such
a GIS has come from resource analysts trying to
incorporate satellite data into land information
systems, and from the scientific community
concerned with modelling physical and biological
systems at regional to global scales (e.g. Archibald
1987; Goodenough 1988; Estes and Bredekamp
1988). The remainder of this chapter is devoted to a
fuller discussion of some model types that are
specially suited to IGIS analysis, some of the issues
that need to be addressed in applying such models,
and some recent examples of IGIS analysis for
modelling terrestrial ecosystems.

INTEGRATED GIS MODELLING OF EARTH
SURFACES

Remote sensing models

Strahler er al. (1986) distinguish three basic model
types in remote sensing: sensor, atmosphere and
scene. In practice, the analysis of satellite imagery

may incorporate one or more of these. Models are
further divided into empirical versus deterministic
and invertible versus non-invertible. Empirical
models rely on the statistical association of sensor
measurements and surface characteristics, whereas
deterministic models rely on radiative and heat
transfer theory. Invertible models are those in
which unknown properties of the scene can be
inferred from remote sensing measurements.
Strahler et al. (1986) point out that these
dichotomies are really endpoints in continua of
model types. For example, deterministic models
often have empirical components, and non-
invertible models can sometimes be inverted under
restricted conditions. Classification and calibration
of satellite imagery both exemplify the empirical
invertible modelling approach, while physical scene
modelling represents the other extreme of
deterministic (and often non-invertible) models.
Each is discussed below in the context of IGIS
analysis.

Classification

Classification is the grouping of objects into classes
based on their similarity with respect to one or more
variables, whereas discrimination is the assigning of
objects to pre-defined classes based on object
properties. The objective of most remote sensing
applications is to discriminate and map pre-
determined ground information classes, usually with
the aid of statistical clustering or discrimination
methods. The literature on remote sensing often
refers to cluster analysis as unsupervised
classification and to discrimination as supervised
classification or pattern recognition. This enormous
literature cannot be reviewed here. Readers are
referred to works by Moik (1980), Haralick and Fu
(1983) and Richards (1986).

Unsupervised classification involves clustering
individual pixels into spectral classes based on
measured reflectance values in the original channels
or transformations of those channels. The spectral
classes are then assigned to ground information
classes (e.g. land use/land cover categories) by an
analyst based on field observations or interpretation
of air photos.

In supervised classification, pixels are assigned
to ground information classes through a
discriminant function based on observed spectral
properties of the information classes in a set of pre-
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selected training sites. Statistical discriminant
functions include maximum likelihood estimators,
where the spectral mean vector and covariance
matrix of the training sites are taken to be those of
the information class, and Bayesian estimators,
where the Probability Density Function (PDF) of
the information class is assumed to be known a
priori and training samples are used to refine the
PDF to obtain an a posteriori discriminant function.
Another form of discrimination is syntactic pattern
recognition, which uses hierarchical decision
structures and grammar rules to recognize
information classes based on a set of primitive
features characteristic of each class (Haralick and
Fu 1983).

Some classification approaches combine
supervised and unsupervised methods, using
unsupervised classification to generate training
classes with multivariate normal probability density
functions that are subsequently used in a supervised
classification procedure (see Richards 1986).
Another hybrid approach is guided clustering,
which involves initial seeding of spectral clusters or
pooling of spectral clusters based on training class
statistics (Peterson and Running 1989).

Problems in the statistical classification of satellite
imagery

In statistical classification and discrimination,
objects are usually classified based on measurement
variables relevant to the information classes. For
example, plant species abundance data are used to
classify vegetation samples into vegetation types. In
remote sensing, however, surface electromagnetic
properties are surrogates for relevant properties of
the information classes such as land use, timber
type, and so on (Robinove 1981). The strength of
this surrogate relationship is strongly scene
dependent because the information classes do not
possess unique electromagnetic signals (Hoffer
1978). Usually the information class pertains to one
feature of the environment, for example crop type.
The spectral signature for that type will vary with
changes in soil characteristics, stage of crop
development, illumination, atmosphere and so
forth. Atmospheric corrections and radiometric
rectification to account for illumination changes
reduce some of the unwanted signature variation.
Band ratios and spectral transformations such as the
Kauth—Thomas Tassled Cap Transformation help
to isolate the reflectance variation related to plants
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(Kauth and Thomas 1976). Classification accuracy
can also be improved by using multi-temporal
imagery. For example, multi-temporal profiles have
been used to improve crop recognition based on
crop-specific phenology (Hall and Badhwar 1987).
In the final analysis, however, local and regional
variation in physical and biological processes and
scene-specific radiative transfer conditions mean
that there is always a strong local, empirical element
to statistical classification of satellite imagery.

A second concern in satellite-based
classification of earth surfaces relates to the earlier
discussion of object-oriented versus data-oriented
analysis. Classification systems evolve through the
interaction of human needs and human capabilities
to structure available information. Environmental
classification systems in use today (e.g. Anderson,
Hardy and Roach 1976) describe entities that have
been abstracted by humans from ground
observations and, more recently, from air photo
data. Humans recognize these environmental
entities in remotely sensed imagery based in part on
local tone and colour, but principally on complex
spatial attributes of pattern, size, shape, texture and
context that are not involved in per-pixel
classification or discrimination procedures (Estes,
Hajic and Tinney 1983).

A number of digital processing procedures
have been implemented that utilize local textural or
temporal data in addition to per-pixel spectral data,
image segmentation or expert system approaches to
generate more object-like image classes (Haralick
and Fu 1983; Wang et al. 1983; Goodenough et al.
1987; Wharton 1989; Bryant 1990). These methods
tend to produce better results than per-pixel
classifiers, and, because they rely on other
information beyond absolute spectral reflectances,
reduce reliance on scene-specific optimization of
statistical classification parameters (Wharton 1989).
Furthermore, because these procedures produce
image classes with spatial properties closer to those
of idealized ground information classes, they render
satellite-based maps that are more compatible with
the traditional needs of local and regional land
planners and managers and are more readily
incorporated into vector GIS.

Errors in the classification of remotely sensed
imagery

Classification accuracies are now routinely reported
for satellite classifications of land surfaces.
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Misclassification of satellite imagery is usually
measured using a confusion matrix or contingency
table that compares image class to actual class for a
sample of pixels from the image (Dozier and
Strahler 1983). Actual class is determined by
ground survey or from more reliable image or map
data. The simplest statistic that can be derived from
the table is the per cent correctly classified,
although additional measures can be derived (Card
1982; Congalton, Oderwald and Mead 1983; see
Veregin 1989 for a review). Image class and ground
class may disagree for a variety of reasons, notably:

® misregistration of satellite data to cartographic
coordinate system;

® misregistration of ground data to cartographic
coordinate system;

® inadequate spectral separation of information
classes;

® inappropriate statistical or contextual classifier;

® analyst misclassification of actual information
class in test data;

® spatial disaggregation of a ground feature into
several spectral classes;

® mixed pixel or boundary effects.

It should be noted that it is difficult to obtain a
sufficiently large and unbiased sample of test sites to
measure confidently thematic map accuracy
(Congalton 1988a). Also, in many applications the
classification bias (class-specific errors of omission
versus commission) and spatial distribution of errors
may be as important as overall accuracy.
Experience shows that image classifications are
often biased, that error rates nearly always differ
systematically among information classes, and that
errors are rarely (if ever) randomly distributed (e.g.
Campbell 1981; Walsh, Lightfoot and Butler 1987;
Congalton 1988b). Such error distributions may be
difficult to model analytically and can have serious
consequences in a decision or spatial modelling
framework (Anselin 1989).

IGIS-based land surface classification

Integration of cartographic and satellite data has
proven an effective partial solution to many of the
problems of satellite image classification, and the

use of both data sources for land surface
classification is now commonplace. Many different
GIS variables and approaches have been used, for
example:

¢ Use of digital elevation data to account for
illumination effects in pixel radiance values (e.g.
Hutchinson 1982; Franklin ez al. 1986; Jones,
Settle and Wyatt 1988).

® Use of digital elevation data to account for
elevational zonation of environmental factors,
plant species and vegetation types (e.g. Hoffer
et al. 1979; Strahler 1981; Satterwhite, Rice and
Shipman 1984; Cibula and Nyquist 1987).

® Use of map information to stratify a satellite
scene into more homogeneous and statistically
stationary subregions in which to apply
statistical pattern recognition methods (e.g.
Gaydos and Newland 1978; Hutchinson 1982).

® Use of map information as an aid to labelling
spectral clusters in unsupervised classification
(Hutchinson 1982; Ustin et al. 1986).

® Spectral/geomorphometric mapping of terrain
features (Franklin, Peddle and Moulton 1989).

® Selection of training sites for supervised
classification.

® Selection of scene-invariant targets for
atmospheric correction.

® Location of field sites for map accuracy
assessment.

® Aid in visual interpretation of image features
(e.g. Harding and Forrest 1989).

¢ Knowledge-based image segmentation and
classification (Estes, Sailer and Tinney 1986;
Goodenough et al. 1987; Tong, Richards and
Swain 1987; McKeown 1986; Mason et al. 1988).

In several of the applications listed above, map
information provides a basis for segmenting the
scene into regions that are physically, ecologically
or spectrally more homogeneous. In this way, map
data are used to constrain the classification of
satellite reflectance measurements, to improve the
surrogate relationship between satellite
measurements and information classes, and to make
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the spatial attributes of spectral classes more
consistent with those of other geographical data.
Integration of satellite and cartographic data
for land surface classification introduces new
sources of error into the classification product
because of inaccuracies in the GIS data as well as
imperfect specification of the relationship between
ground information classes and GIS variables. GIS
errors are treated by Chrisman (1991 in this
volume), so only a few examples are cited here:

® GIS data may contain measurement or
estimation errors that will lead to incorrect
image segmentation or use of inappropriate
prior classification probabilities. For instance,
digital elevation data are prone to non-
randomly distributed errors, and derivatives of
elevation such as slope angle and aspect can be
unreliable (Walsh ez al. 1987; Weibel and Heller
1991 in this volume).

® Maps of hydrology, land use or land cover are
rapidly outdated.

® Misregistration of satellite and GIS data can be
problematic unless map features are much
larger than pixel size [satellite data may often
have higher positional accuracy than the base
maps used for their rectification (Welch and
Usery 1984)].

® Maps may be too generalized to be of much
value for image segmentation (Rhind and Clark
1988).

® Use of geographical data to develop and apply
weights or prior probabilities to image
classification depends on a correctly specified
statistical model as well as on accurate maps for
applying the model.

In general, the gains in classification accuracy
obtained by incorporating GIS data more than
offset misclassification due to GIS errors. Because
errors in image classification are often associated
with changes in illumination and background,
including information on these variables reduces
map bias and non-random spatial pattern in
classification errors. This underscores the notion
that classification products produced by IGIS are
not classified satellite imagery, as they are often
called, but are a qualitatively different amalgam
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combining features of both satellite and
cartographic data.

Calibration models

As opposed to classification models, the term
calibration models is used to refer to statistical
models that relate satellite radiances or their
derivatives to measured physical or biological
surface properties. As pointed out by Deering
(1989), calibration studies that compare surface
properties to ground-based radiometers can be the
first stage in the development of deterministic
remote sensing models. Here the concern is with the
calibration of satellite data using ground
measurements. Such modelling is increasing as
scientists attempt to take advantage of the spatial
coverage and temporal resolution of satellite data to
parameterize physically based ecological and
climatological models (Hall, Strebel and Sellers
1988). Examples include the use of radiances or
derived indices to predict surface radiation (Tarpley
1979), canopy leaf area index (LAI), photosynthesis
or respiration (Sellers 1985), soil properties such as
organic matter or moisture content (see Irons,
Weismuller and Petersen, 1989, for review),
snowpack condition (Dozier 1989) or surface
mineralogy (Goetz 1989).

A basic problem in calibration modelling is
obtaining sufficiently accurate and representative
satellite and surface measurements (Curran and
Hay 1986). Measurement accuracy can be reduced
by errors in:

® measurement of remotely sensed variables;
® measurement of ground variables;

® physical correlation of ground variables and
remotely sensed variables caused by spatial and
temporal misregistration.

Error sources in remotely sensed variables
were discussed earlier and can be summarized as
variation in irradiance over the time interval of
scene acquisition, sensor miscalibration, sensor
radiometric resolution signal digitization,
atmospheric attenuation and atmospheric path
radiance (Curran and Hay 1986). These errors are
non-trivial, but methods to minimize them continue
to be refined. Ground measurement errors, on the
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other hand, can be substantial for the many
biophysical variables that cannot be measured over
the full IFOV of a sensor, but must instead be
estimated by sub-sampling (Curran and Williamson
1986).

Curran and Hay (1986) discuss the problem of
measurement error in the context of regression
analysis, where remotely sensed radiance or
reflectance data (y) are predicted by ground
measurements of a surface variable (x) using the
linear model:

y=Bx+a+te [14.10]

a and { are regression coefficients and ¢ is an error
term due to uncontrolled exogenous variables and
errors in the measurement of y. If there are
measurement errors in x, the estimate of B will be
biased, such that:

B* = p/(1 + d*, /07 [14.11]

where B* is the estimate of 8, ¢*, is variance from
measurement errors in x and ¢?, is variance due to
‘true’ variance in x. Thus large measurement errors
in x can result in substantially underestimating (3.

A larger problem in calibration models could
be described as specification errors that occur from
using an inappropriate model form, incorrect
variables or parameter values (Anselin 1989).
Models fitted to a narrow region and/or time period
may be mis-specified for other conditions. For
example, Weiser et al. (1986) needed different
regression coefficients to relate NDVI to LAI for
burned versus unburned grasslands, and for the
same grasslands in different years. Box, Holben and
Kalb (1989) showed that the relationship between
NDVI and variables such as annual evapotranspir-
ation or net primary productivity depended on
topographic conditions and varied systematically
between different major vegetation types.

Careful field measurements of a wide variety of
environments will be needed to calibrate remotely
sensed measurements (Deering 1989). IGIS analysis
of cartographic data and satellite data offers a
means of reducing ground measurement errors
during model development and minimizing mis-
specification errors when applying these models
over large heterogeneous surfaces. The applications
of IGIS are similar to those listed in the previous
section, and involve the delineation of
homogeneous regions for stratified ground sampling
and for model application. At present, the merits of

different data types for scene segmentation are
poorly understood. There are trade-offs between:
depending solely on ground measurements and
satellite data; combining ground, map and satellite
data; and perhaps combining ground and satellite
data with lower resolution satellite data.

An example of the use of IGIS capabilities for
reducing errors in ground measurements is provided
by FIFE, the First ISLSCP Field Experiment. The
ISLSCP experiments are designed to study regional
land surface climatology and to develop methods
for deriving quantitative information about surface
climate variables from satellite observations (Sellers
et al. 1988). The experiment was conducted
between 1987 and 1989 over a 16 x 16 km? region
near Manhattan, Kansas. FIFE’s sampling approach
was to acquire simultaneously ground
measurements and remotely sensed data spanning a
range of spatial scales throughout the growing
season.

A major challenge in FIFE has been
integrating local ground measurements of surface
climate parameters such as leaf area, biomass and
soil moisture to obtain statistically reliable estimates
of these parameters over 1km? or larger areas
resolved by meteorological satellites. In an effort to
reduce errors in ground-based estimates, a stratified
sampling design was used based on topographic and
land management characteristics. Digital maps of
these variables are being used to derive site-wide
estimates of variables such as biomass and soil
moisture based on point measurements within the
different strata.

A problem encountered in FIFE and likely to
be encountered in all similar experiments was
selecting a site stratification scheme that was
appropriate for many different meteorological and
biophysical variables. The stratification used in
FIFE was based on previous research, but the
criteria for determining the number and
characteristics of strata were necessarily somewhat
ad hoc. Davis et al. (1990) subsequently showed that
an improved a priori stratification could be obtained
based on the correspondence of digital terrain
variables with TM imagery. Plate14.1 shows their
results for the Konza Long Term Ecological
Research (LTER) Area, which occupies the
northwestern portion of the FIFE site. The new
stratification, which was based on regression tree
analysis of the image and map database, performed
better that the initial stratification for integrating
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ground measurements of both soil moisture and
total biomass. Davis and Dozier (1990) used a
similar approach to develop a land classification
system for a region in coastal California based on
the association of vegetation patterns with maps of
geology and seasonal insolation. In both studies,
hierarchical land classifications were derived from
joint analysis of satellite and digital terrain data.
This is comparable to the production of index maps
from GIS weighting and overlay maps (Burrough
1986), but here variable weights and nested
combinations are constrained to have maximum
correspondence with satellite measurements.

Much of the current effort to calibrate satellite
measurements is directed towards coupling those
measurements with physical and ecological process
models for regional and global forecasting. This
coupling, which has been made possible by the
evolution of IGIS and by increasingly powerful
computers, represents a significant departure from
the early applications of remote sensing for
classification and inventory. It is also a different
application of many process models that were
originally developed to improve understanding
about the temporal dynamics of spatially
homogeneous systems (Costanza, Sklar and White
1990). Implementing these models over large areas
requires their re-formulation to account for spatial
heterogeneity, spatial interactions and stochastic
uncertainty.

Considerable progress has been made in spatial
simulation modelling and in incorporating satellite
data to parameterize models of processes such as
crop growth (Kanemasu, Asrar and Fuchs 1985),
forest photosynthesis and transpiration (Running et
al. 1989), and surface mass and energy fluxes (Smith
et al. 1990). GIS-based regionalizations have only
recently been used to account for spatial
heterogeneity in applying process models.
Examples include drainage basin partitioning for
modelling runoff (Band and Wood 1988),
evapotranspiration and photosynthesis (Running et
al. 1989). Davis and Dozier (1990) demonstrated
the potential impact of cartographic errors on the
information value of GIS-based regionalization, but
to date there has been little progress in formally
accounting for cartographic errors and their
propagation in the development and application of
physical and ecological models. Heuvelink,
Burrough and Stein (1989) have developed a
method for predicting error propagation that may
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occur when using continuously distributed random
variables in the quantitative analysis of gridded data
in a raster GIS. The method, which depends on
approximating errors by Taylor expansion, can be
applied to regression-type models. The authors
applied the method to surfaces derived by semi-
variogram analysis and Kriging of point
measurements, but note that simpler surfaces may
also be analysed. A great deal more research and
technical development is needed to support process
modelling efforts. Simonett (1988) suggests the
following areas require attention:

® Research on space—time dynamics and scale
dependence of surface processes.

® Additional investigations such as FIFE to
determine the best mix of ground
measurements, satellite measurements and
existing cartographic information for
parameterizing process models.

® Studies on the effects of satellite data
preprocessing on model outputs.

® Theoretical and empirical studies on effects of
data resolution and quality on error propagation
in process modelling.

® Tests of the model sensitivities to missing data.

e Identification of appropriate spatial statistical
models for calibration and verification.

® Development of fully integrated GIS; such an
IGIS must provide for flexible handling of
multiple data structures and multi-scale data,
and must support complex spatial queries and
spatio-temporal statistical analyses (Ehlers et al.
1989).

Deterministic models

Physical scene models are deterministic models that
use theories of radiative transfer or energy balance
to derive quantitative estimates of surface
reflectance or emission. This brief discussion is
restricted to physical models that have been
developed to describe the reflectance properties of
plant canopies. A good review of current modelling
approaches to other surface variables can be
obtained in Asrar (1989).

Physical models are often not intended for
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application to satellite data, but are formulated to
improve understanding of processes that contribute
to the signal received by satellite sensors. Many of
the models cannot be inverted, while inversion of
others requires that they be coupled to atmospheric
and sensor models and calibrated with detailed
ground and atmospheric data. All models must
make simplifying assumptions to account for
spectral heterogeneity of the medium at practically
all scales of measurement due to variations in
composition, spatial arrangement and non-
Lambertian bidirectional reflectance of constituent
elements.

Among plant canopy models, for example, one
model class (geometrical models; Goel 1989) treats
individual plants as solid objects with prescribed
shape and reflectance characteristics that are
distributed in some statistical fashion across a
ground surface possessing specified reflectance
properties (Li and Strahler 1985; Richards, Sun and
Simonett 1987). Another class of models (turbid
medium models) treats plant canopies as
homogeneous clouds of small particles with
specified orientation, absorption and reflectance
characteristics (Verhoef 1984; Norman 1979). Still
another class of Aybrid models has been developed
that considers both the geometrical arrangement of
plants and multiple scattering by plant canopy
elements (Goel 1989).

Some canopy models are sufficiently simplified
that they can be parameterized with field
reflectance measurements to invert satellite data.
These might be considered semi-empirical models,
in that physical calculations are combined with
statistical spectral mixture models to invert
reflectance data (Pech, Graetz and Davis 1986;
Jupp et al. 1986; Jasinski and Eagleson 1989).

Inversion of physically based canopy models
over actual land surfaces is still in an early stage of
development. To be made operational, these
models need to be coupled to atmosphere and
sensor models, parameterized for a representative
set of conditions and validated empirically. In
complex environments, the number of parameters
needed to model the system accurately exceeds the
dimensionality of satellite measurements (Goel
1989). Use of spatial measures such as local image
variance, as well as multi-temporal and multi-view
imagery, can provide additional dimensions (Kimes
1981; Li and Strahler 1985). Also, cartographic
information can be used to segment the scene or

add other variables so that the model inversion
provides more realistic results. For example,
Woodcock, Strahler and Jupp (1989) have used
digital elevation data and forest stand maps to
segment TM imagery into stand types before
applying the Li-Strahler geometrical-optical
canopy model to map timber volume in the
Stanislaus National Forest in California.

For those models that cannot be implemented
due to their complexity or to the lack of appropriate
data, IGIS offer a powerful tool for conducting
simulation and model sensitivity studies over
realistic surfaces. For example, Generic Scene
Simulation Software (GENESSIS) has been
developed that combines physically based
atmosphere and scene models to simulate spatially
and radiometrically accurate visible and infrared
imagery (Acquista 1986; Reeves, Anding and Mertz
1987). Model inputs include illumination geometry,
atmospheric properties, surface topography and
surface reflectance and emittance. Sub-pixel
electromagnetic variation can also be specified.
Scene simulation is performed by aggregating point-
by-point ray calculations to produce apparent
radiances for each pixel of specified spatial
resolution. The model has performed well across a
wide range of sensor and environmental
parameters, and appears to offer many
opportunities to investigate IGIS-based physical
modelling of terrestrial phenomena. Computing
demands are a practical concern in applying
GENESSIS or many other spatial simulation
models to realistically large and heterogeneous data
sets, and may well require additional IGIS
capabilities such as parallel processing (Costanza et
al. 1990; Ehlers 1989).

RESEARCH CHALLENGES IN THE
INTEGRATION OF REMOTE SENSING AND
GIS

This chapter has highlighted some of the technical
and scientific chalienges to fuller utilization of
remote sensing and GIS. The coupling of satellite
measurements with other spatial data has
tremendous potential for characterization and
analysis of earth surfaces, but the relationship
between these hybrid products and the surfaces that
they represent is still poorly understood on both
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physical and statistical grounds. Some of the recent
research cited here has just begun to address the
difficult issues of ‘artifacting, indeterminacy,
improper extrapolation between scales, and
environmental modulation of spatial error budgets
(Simonett 1988:124) that were identified 15 years
ago by Everett and Simonett (1976). However, such
studies are few in number and have been nearly
exclusively at local to regional scales.

In closing, the following list of general research
topics, some repeated from earlier sections is
offered. These must be given high priority in
integrated analysis of geographical data:

b}

® Characterize space-time interactions and scaling
properties of terrain variables.

e Compile/create high quality, representative real
and simulated data sets for IGIS model testing
and validation.

¢ Develop appropriate sampling, measurement
and modelling strategies for different
environment types, including identification of
the best mix of ground, satellite and map data
for classification, calibration and process
models.

® Improve methods for display and visualization
of IGIS products.

® Determine the error properties of IGIS
products and error propagation in modelling
using those products.

e [dentify appropriate methods to calibrate and
test the performance of spatial models
implemented over large regions (e.g. Turner,
Costanza and Sklar 1989).

® Develop parallel processing capabilities to
operate complex spatial models on large data
sets.

® [Improve software and hardware interfaces
among existing data handling and analysis
systems, notably image processing, GIS,
database management, expert systems, and
statistical packages.

¢ Identify appropriate data structures and data
management strategies for processing large
quantities of satellite data, including the use of
GIS data to guide the timing and location of
image acquisition (e.g. areas of change) and the
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choice of suitable image resolution, and spatial
and non-spatial statistical packages.

® Develop specific technical and scientific
guidelines and data standards for future IGIS
hardware and software development.

REFERENCES

Acquista C (1986) GENESSIS computer code reference
manual. Photon Research Associates Report R-135-86.
PRA Inc, La Jolla California

Anderson J E, Hardy E E, Roach J T (1976) A land use
and land cover system for use with remote-sensor data. US
Geological Survey Professional Paper 964: 28

Anselin L (1989) What is special about spatial data?
Alternative perspectives on spatial data analysis. Technical
Paper 89—4. National Center for Geographic Information
and Analysis, Santa Barbara California

Archibald P D (1987) GIS and remote sensing data
integration. Geocarto International 3: 67-73

Asrar G (ed.) (1989) Theory and Applications of Optical
Remote Sensing. Wiley, New York

Band L E, Wood E F (1988) Strategies for large-scale
distributed hydrologic simulation. Applied Mathematics
and Computation 27: 23-37

Barker G R (1988) Remote sensing: the unheralded
component of geographic information systems.
Photogrammetric Engineering and Remote Sensing 54:
195-9

Bell S B M, Diaz B M, Holroyd F, Jackson M J (1983)
Spatially referenced methods of processing raster and
vector data. Image and Vision Computing 1: 211-20
Billingsley F C, Anuta P E, Carr J L, McGillem C D, Smith
D M, Strand T C (1983) Data processing and reprocessing.
In: Colwell R N (ed.) Manual of Remote Sensing.
American Society of Photogrammetry, Falls Church
Virginia, pp. 719-88

Box E O, Holben B N, Kalb V (1989) Accuracy of the
AVHRR Vegetation Index as a predictor of biomass,
primary productivity and net CO, flux. Vegetatio 80: 71-89
Bryant J (1990) AMOEBA clustering revisited.
Photogrammetric Engineering and Remote Sensing 56:
41-7

Burrough P A (1983) Multiscale sources of spatial
variation in soil. 1. The application of fractal concepts to
nested levels of soil variation. Journal of Soil Science 34:
577-97

Burrough P A (1986) Principles of Geographical
Information Systems for Land Resource Assessment.
Clarendon Press, Oxford

Campbell J B (1981) Spatial correlation effects upon
accuracy of supervised classification of land cover.



GIS and Remote Sensing

Photogrammetric Engineering and Remote Sensing 47:
355-63

Card D H (1982) Using known map category marginal
frequencies to improve estimates of thematic map
accuracy. Photogrammetric Engineering and Remote
Sensing 48: 431-9

Chen Z (1987) Quadtree and Quadtree Spatial Spectra in
Large Geographic Information Systems: the hierarchical
handling of spatial data. Unpublished PhD dissertation,
University of California, Santa Barbara California
Chrisman N R (1991) The error component in spatial data.
In: Maguire D J, Goodchild M F, Rhind D W (eds.)
Geographical Information Systems: principles and
applications. Longman, London, pp. 165-74, Vol 1
Cibula W G, Nyquist M O (1987) Use of topographic and
climatological models in a geographic database to improve
Landsat MSS classification for Olympic National Park.
Photogrammetric Engineering and Remote Sensing 53:
67-75

CIliff A D, Ord J K (1981) Spatial Processes: models and
applications. Pion, London

Colwell R N (1983) Manual of Remote Sensing. American
Society of Photogrammetry, Falls Church Virginia
Congalton R G (1988a) A comparison of sampling schemes
used in generating error matrices for assessing the
accuracy of maps generated from remotely sensed data.
Photogrammetric Engineering and Remote Sensing 54:
593-600

Congalton R G (1988b) Using spatial autocorrelation
analysis to explore the errors in maps generated from
remotely sensed data. Photogrammetric Engineering and
Remote Sensing 54: 587-92

Congalton R G, Odervwald R, Mead R (1983) Assessing
Landsat classification accuracy using discrete multivariate
analysis statistical techniques. Photogrammetric
Engineering and Remote Sensing 6: 169-73

Costanza R, Sklar F H, White M L (1990) Modeling
coastal landscape dynamics. Bioscience 40: 91-107
Crapper P F (1980) Errors incurred in estimating an area
of uniform land cover using Landsat. Photogrammetric
Engineering and Remote Sensing 10: 1295-301

Crapper P F, Walker P A, Nanninga P M (1986)
Theoretical prediction of the effect of aggregation on grid
cell data sets. Geo-processing 3: 155-66

Curran P J, Hay A M (1986) The importance of
measurement error for certain procedures in remote
sensing at optical wavelengths. Photogrammetric
Engineering and Remote Sensing 52: 229-41

Curran P J, Williamson H D (1986) Sample size for ground
and remotely sensed data. Remote Sensing of Environment
20: 31-41

Davis F W, Dozier J (1990) Information analysis of a
spatial database for ecological land classification.
Photogrammetric Engineering and Remote Sensing 56 (5):
605-13

Davis F W, Dubayah R, Dozier J (1989) Covariance of
greenness and terrain variables over the Konza Prairie.
Proceedings of IGARRS 89, pp. 1322-5

Davis F W, Michaelsen J, Dubayah R, Dozier J (1990).
Optimal terrain stratification for integrating ground data
from FIFE. Proceedings of the AMS Symposium on the
First ISLSCP Field Experiment (FIFE). American
Meteorological Society, Boston Massachusetts, pp. 11-15
Deering D (1989) Field measurements of bidirectional
reflectance. In: Asrar G (ed.) Theory and Applications of
Optical Remote Sensing. Wiley, New York, pp. 14-65
Dozier J (1989) Spectral signature of alpine snow cover
from the Landsat Thematic Mapper. Remote Sensing of
Environment 28: 9-22

Dozier J, Strahler A H (1983) Ground investigations in
support of remote sensing. In: Colwell R N (ed.) Manual
of Remote Sensing. American Society of Photogrammetry,
Falls Church Virginia, pp. 959-86

Dubayah R, Doezier J, Davis F W (1990) Topographic
distribution of clear-sky radiation over the Konza Prairie,
Kansas. Water Resources Research 26 (4): 679-90

Duggin M J (1985) Factors limiting the discrimination and
quantification of terrestrial features using remotely sensed
radiance. International Journal of Remote Sensing 6: 3-27

Egenhofer M J, Herring J R (1991) High-level spatial data
structures for GIS. In: Maguire D J, Goodchild M F,
Rhind D W (eds.) Geographical Information Systemns:
principles and applications. Longman, London, pp. 227-
37, Vol 1

Ehlers M (1989) Remote sensing and geographic
information systems: towards integrated spatial
information processing. Proceedings of IGARRS 89, pp.
63-6

Ehlers M, Edwards G, Bedard Y (1989) Integration of
remote sensing with geographic information systems: a
necessary evolution. Photogrammetric Engineering and
Remote Sensing 55: 1619-27

Elachi C (1987) Introduction to the Physics and Techniques
of Remote Sensing. Wiley, New York

Eos Science Steering Committee (1987) Earth Observing
System Volume 1. From pattern to process: the strategy of
the Earth Observing System. National Aeronautics and
Space Administration, Washington DC

Estes ] E, Bredekamp J H (1988) Activities associated with
global databases in the National Aeronautics and Space
Administration. In: Mounsey H M (ed.) Building
Databases for Global Science. Taylor & Francis, London,
pp. 251-69

Estes J E, Hajic E J, Tinney L R (1983) Manual and digital
analysis in the visible and infrared regions. In: Simonett
D S, Ulaby F T (eds.) Manual of Remote Sensing, 2nd
edn. Vol. 1. American Society of Photogrammetry, Falls
Church Virginia, 987-1123

Estes J E, Sailer C, Tinney L R (1986) Applications of
artificial intelligence techniques to remote sensing.
Professional Geographer 38: 133-41

Everett J, Simonett D S (1976) Principles, concepts and
philosophical problems. In: Lintz J L, Simonett D S (eds.)
Remote Sensing of Environment. Addison-Wesley,
Reading Massachusetts, pp. 85-127

Forshaw M R B, Haskell A, Miller P F, Stanley D J,

209



F W Davis and D S Simonett

Townshend J R G (1983) Spatial resolution of remotely
sensed imagery: a review paper. International Journal of
Remote Sensing 4: 497-520

Frank A U, Barrera R (1990) The fieldtree: a data
structure for geographic information systems. In:
Buchmann A, Gunther O, Smith T R, Wang Y-F (eds.)
Design and Implementation of Large Spatial Databases.
Springer-Verlag, New York, pp. 29-44

Franklin J, Logan T L, Woodcock C E, Strahler A H
(1986) Coniferous forest classification and inventory using
Landsat and digital terrain data. IEEE Transactions on
Geoscience and Remote Sensing GE-24: 139-46

Franklin S E, Peddle D R, Moulton J R (1989) Spectral/
geomorphometric discrimination and mapping of terrain: a
study in Gros Morne National Park. Canadian Journal of
Remote Sensing 15: 28-42

Gaydos L, Newland W L (1978) Inventory of land use and
land cover of the Puget Sound region using Landsat digital
data. US Geological Survey Journal of Research 6: 80714
Getis A, Boots B (1978) Models of Spatial Processes
University Press, Cambridge

Goddard Space Flight Center (1984) Earth Observing
System: Science and Mission Requirements, Working
Group Report, Volume H 1. NASA Goddard Space Flight
Center Technical Memorandum 86129. National
Acronautics and Space Administration, Greenbelt
Maryland

Goel N S (1989) Inversion of canopy reflectance models for
estimation of biophysical parameters from reflectance
data. In: Asrar G (ed.) Theory and Applications of Optical
Remote Sensing. Wiley, New York, pp. 205-51

Goetz A F H (1989) Spectral remote sensing in geology. In:
Asrar G (ed.) Theory and Applications of Optical Remote
Sensing. Wiley, New York, pp. 491-526

Goodchild M F (1980) The effects of generalization in
geographical data encoding. In: Freeman H, Pieroni G
(eds.) Map Data Processing. Academic Press, New York,
pp. 191-205

Goodenough D G (1988) Thematic Mapper and SPOT
integration with a geographic information system.
Photogrammetric Engineering and Remote Sensing 54:
167-76

Goodenough D G, Goldberg M, Plunkett G, Zelek J (1987)
An expert system for remote sensing. IEEFE Transactions
on Geoscience and Remote Sensing GE-25: 349-59

Hall F G, Badhwar G D (1987) Signature-extendable
technology: global space-based crop recognition. JEEE
Transactions on Geoscience and Remote Sensing GE-25:
93-103

Hall F G, Strebel D E, Sellers P J (1988) Linking
knowledge among spatial and temporal scales: vegetation,
atmosphere, climate and remote sensing. Landscape
Ecology 2:3-22

Haralick R M (1980) Edge and region analysis for digital
image data. Computer Graphics and Image Processing 12:
60-73

Haralick R M, Fu K (1983) Pattern recognition and

210

classification. In: Colwell R N (ed.) Manual of Remote
Sensing, 2nd edn. American Society of Photogrammetry,
Falls Church Virginia, pp. 793-805

Harding A E, Forrest M D (1989) Analysis of multiple
geological data sets from the English Lake District. JEEE
Transactions on Geoscience and Remote Sensing 27: 732-9
Heuvelink G B M, Burrough P A, Stein A (1989)
Propagation of errors in spatial modelling with GIS.
International Journal of Geographical Information Systems
3:303-22

Hill G J E, Kelly G D (1987) A comparison of existing map
products and Landsat for land cover mapping.
Cartography 16: 51-7

Hoffer R M (1978) Biological and physical considerations
in applying computer-aided analysis techniques to remote-
sensor data. In: Swain P H, Davis S M (eds.) Remote
Sensing: the quantitative approach. McGraw-Hill, New
York, pp. 227-87

Hoffer R M, Fleming M D, Bartolucci L A, Davis S M,
Nelson R F (1979) Digital processing of Landsat MSS and
topographic data to improve capabilities for computerized
mapping of forest cover types. LARS Technical Report
011579, p. 159

Holben B N, Fraser R S (1984) Red and near-infrared
sensor response to off-nadir viewing. International Journal
of Remote Sensing 5: 145-60

Hutchinson C F (1982) Techniques for combining Landsat
and ancillary data for digital classification improvement.
Photogrammetric Engineering and Remote Sensing 48:
123-30

Irons J R, Weismuller R A, Petersen G W (1989) Soil
reflectance. In: Asrar G (ed.) Theory and Applications of
Optical Remote Sensing. Wiley, New York, pp. 66-106

Jackson M J, Mason D C (1986) The development of
integrated geo-information systems. International Journal
of Remote Sensing 7: 723-40

Jasinski M F, Eagleson P S (1989) The structure of red-
infrared scattergrams of semivegetated landscapes. IEEE
Transactions on Geoscience and Remote Sensing 27:
441-51

Jenkins G M, Watts D G (1968) Spectral Analysis and Its
Applications. Holden-Day, Oakland California

Jones AR, Settle J J, Wyatt B K (1988) Use of digital
terrain data in interpretation of SPOT HRV-1
multispectral imagery. International Journal of Remote
Sensing 9: 669-76

Jupp D L B, Strahler A H, Woodcock C E (1989)
Autocorrelation and regularization in digital images: I1.
Simple image models. IEEE Transactions on Geoscience
and Remote Sensing 27: 247-56

Jupp D L B, Walker J, Penridge L K (1986) Interpretation
of vegetation structure in Landsat MSS imagery: a case
study in disturbed semi-arid Eucalypt woodlands. Part 2.
Model-based analysis. Journal of Environmental
Management 23: 35-57

Kanemasu E T, Asrar G, Fuchs M (1985) Application of
remotely sensed data in wheat growth modeling. In: Day



GIS and Remote Sensing

D W, Atkin R K (eds.) Wheat Growth and Modelling.
Plenum, New York, pp. 407-25

Kauth R J, Thomas G S (1976) The tasselled cap: a graphic
description of the spectral-temporal development of crops
as seen by Landsat. Proceedings of the 3rd Symposium on
Machine Processing of Remotely Sensed Data, Vol. 4B.
Purdue University, West Lafayette Indiana, pp. 41-51
Kimes D S (1981) Remote sensing of temperature profiles
in vegetation canopies using multiple view angles and
inversion techniques. I[EEE Transactions on Geoscience
and Remote Sensing GE-19: 85-90

Lauer D (1990) An Evaluation of National Policies
Governing the United States Civilian Satellite Land Remote
Sensing Program. Unpublished PhD dissertation,
Department of Geography, University of California, Santa
Barbara California

Li X, Strahler A H (1985) Geometric-optical modeling of a
conifer forest canopy. IEEE Transactions on Geoscience
and Remote Sensing GE-23: 705-21

Logan T L, Bryant N A (1987) Spatial data software
integration: merging CAD/CAM/mapping with GIS and
image processing. Photogrammetric Engineering and
Remote Sensing 53 (10): 1391-5

Lovejoy S, Schertzer D (1985) Generalised scale
invariance in the atmosphere and fractal models of rain.
Water Resources Research 21: 1233-50

Maffini G (1987) Raster versus vector encoding and
handling: a commentary. Photogrammetric Engineering
and Remote Sensing 53: 1397-8

Marble D F, Peuquet D J, Boyle A R, Bryant N, Calkins
H W, Johnson T (1983) Geographic information systems
and remote sensing. In: Colwell RN (ed.) Manual of
Remote Sensing. American Society of Photogrammetry,
Falls Church Virginia, pp. 923-57

Mark D M, Aronson P B (1984) Scale-dependent fractal
dimensions of topographic surfaces: an empirical
investigation, with applications in geomorphology and
computer mapping. Mathematical Geology 16: 671-83
Mason D C, Corr D G, Cross A, Hoggs D C, Lawrence
D H, Petrou M, Tailor A M (1988) The use of digital map
data in the segmentation and classification of remotely-
sensed images. International Journal of Geographical
Information Systems 2: 195-215

McKeown D M (1986) The role of artificial intelligence in
the integration of remotely sensed data with Geographic
Information Systems. Report CMU-CS-86-174.
Department of Computer Science, Carnegie-Mellon
University, Pittsburgh Pennsylvania

Menon S (1989) Spatial Search for Multi-component
Objects in a Geographic Information System Using
Symbolic Models and Hierarchical Data Structures.
Unpublished PhD dissertation, University of California,
Santa Barbara California

Moik J G (1980) Digital processing of remotely sensed
images. NASA SP-431. Scientific and Technical
Information Branch National Aeronautics and Space
Administration, Washington DC

Mulla D M (1988) Using geostatistics and spectral analysis
to study spatial patterns in the topography of southeastern
Washington State, USA. Earth Surface Processes and
Landforms 13: 389-405

Muller J-C (1977) Map griding and cartographic errors: a
recurrent argument. The Canadian Cartographer 14:
152-67

Norman J (1979) Modeling of complete crop canopy. In:
Barfield B G, Gerber J F (eds.) Modification of the Aerial
Environment of Plants. American Society of Agricultural
Engineers, St Joseph Mississippi, pp. 249-77

Oliver M A, Webster R (1986) Semi-variograms for
modelling the spatial pattern of landform and soil

properties. Earth Surface Processes and Landforms 11:
491-504

Parker H D (1988) The unique qualities of a geographic
information system: a commentary. Photogrammetric
Engineering and Remote Sensing 54: 1547-9

Parker H D (1989) GIS software 1989: a survey and
commentary. Photogrammetric Engineering and Remote
Sensing 55: 1589-91

Pech R P, Graetz R D, Davis A W (1986) Reflectance
modelling and the derivation of vegetation indices for an
Australian semi-arid shrubland. International Journal of
Remote Sensing 7: 389-403

Peplies R W, Keuper H F (1975) Regional analysis. In:
Reeves R G, Anson A, Landen D (eds.) Manual of
Remote Sensing, Vol. 2. American Society of
Photogrammetry, Falls Church Virginia, pp. 1947-98
Peterson D L, Running S W (1989) Applications in forest
science and management. In: Asrar G (ed.) Theory and
Applications of Optical Remote Sensing. Wiley, New
York, pp. 429-73

Peucker T K, Chrisman N R (1975) Cartographic data
structures. The American Cartographer 2: 55-69

Peuquet D J (1988) Issues involved in selecting appropriate
data models for global databases. In: Mounsey HM (ed.)
Building Databases for Global Science. Taylor & Francis,
London, pp. 66-78

Prisley S P, Gregoire T G, Smith J L (1989) The mean and
variance of area estimates computed in an arc-node
Geographic Information System. Photogrammetric
Engineering and Remote Sensing 55: 1601-12

Reeves R, Anding D, Mertz F (1987) First principles
deterministic simulation of IR and visible imagery. Photon
Research Associates Report R-024-88. PRA Inc., La Jolla
California

Rhind D, Clark P (1988) Cartographic data inputs to
global databases. In: Mounsey H (ed.) Building Databases
for Global Science. Taylor & Francis, London, pp. 79-104
Rhind D W, Green N P A (1988) Design of a geographical
information system for a heterogeneous scientific
community. International Journal of Geographical
Information Systems 2: 171-89

Richards J A (1986) Remote Sensing Digital Image
Analysis: an introduction. Springer-Verlag, New York
Richards J A, Sun G Q, Simonett D S (1987) L-band radar

211



F W Davis and D S Simonett

backscatter modeling of forest stands. JEEE Transactions
on Geoscience and Remote Sensing GE-25: 487-98
Robinove C J (1981) The logic of multispectral
classification and mapping of land. Remote Sensing of
Environment 11: 231-44

Robinson J (1987) The role of fire on earth: a review of the
state of knowledge and a systems framework for satellite
and ground based observations. NCAR Cooperative Thesis
112. National Center for Atmospheric Research, Boulder
Colorado

Running S W, Nemani R R, Peterson D L, Band L E, Potts
D F, Pierce L. L, Spanner M A (1989) Mapping regional
forest evapotranspiration and photosynthesis by coupling
satellite data with ecosystem simulation. Ecology 70:
1090-101

Samet H (1984) The quadtree and related hierarchical data
structures. ACM Computing Surveys 16: 187-260
Satterwhite M, Rice W, Shipman J (1984) Using landform
and vegetation factors to improve the interpretation of
LANDSAT imagery. Photogrammetric Engineering and
Remote Sensing 50: 83-91

Schott J R, Salvaggio C, Volchok W J (1988) Radiometric
scene normalization using pseudoinvariant features.
Remote Sensing of Environment 26: 1-16

Sellers P J (1985) Canopy reflectance, photosynthesis, and
transpiration. International Journal of Remote Sensing 6:
1335-72

Sellers P J, Hall F G, Asrar G, Strebel D E, Murphy RE
(1988) The first ISLSCP field experiment (FIFE). Bulletin
of the American Meteorological Society 69: 22-7

Simonett D S (1988) Considerations on integrating remote
sensing and Geographic Information Systems. In:
Mounsey H (ed.) Building Databases for Global Science.
Taylor & Francis, London, pp. 105-28

Simonett D S, Reeves R G, Estes ] E, Bertke S E, Sailer

C T (1983) The development and principles of remote
sensing. In: Colwell R N (ed.) Manual of Remote Sensing.
American Society of Photogrammetry, Falls Church
Virginia, pp. 1-32

Singh S M, Saull R J (1988) The effect of atmospheric
correction on the interpretation of multitemporal
AVHRR-derived vegetation index dynamics. International
Journal of Remote Sensing 25: 37-51

Smith E A, Crosson W L, Cooper H J, Weng H (1990)
Heat and moisture flux modeling of the FIFE grassland
canopy aided by satellite derived canopy variables.
Proceedings of the Symposium on FIFE. American
Meteorological Society, Boston Massachusettes, pp.
154-62

Smith T R, Menon S, Star J L, Estes J E (1987a)
Requirements and principles for the implementation and
construction of large-scale geographic information
systems. International Journal of Geographical
Information Systems 1: 13-31

Smith T R, Peuquet D, Menon S, Agarwal P (1987b)
KBGIS-II. A knowledge-based geographical information
system. International Journal of Geographical Information
Systems 1: 149-72

212

Star J, Estes J E (1990) Geographic Information Systems:
an introduction. Prentice Hall, Englewood Cliffs New
Jersey

Strahler A H (1981) Stratification of natural vegetation for
forest and rangeland inventory using Landsat digital
imagery and collateral data. International Journal of
Remote Sensing 2: 15-41

Strahler A H, Woodcock C E, Smith J A (1986) On the
nature of models in remote sensing. Remote Sensing of
Environment 20: 121-39

Suits G, Malila W, Weller T (1988) Procedures for using
signals from one sensor as substitutes for signals of
another. Remote Sensing of Environment 25: 395-408
Switzer P (1975) Estimation of the accuracy of qualitative
maps. In: Davis ] C, McCullagh M J (eds.) Display and
Analysis of Spatial Data. Wiley, New York, pp. 1-13

Tarpley J D (1979) Estimating incident solar radiation at
the earth’s surface from geostationary satellite data.
Journal of Applied Meteorology 18: 1172-81

Tong L, Richards J A, Swain P H (1987) Probabilistic and
evidential approaches for multisource data analysis. I[EEE
Transactions on Geoscience and Remote Sensing GE-25:
283-93

Townshend J R G, Justice C O (1988) Selecting the spatial
resolution of satellite sensors required for global
monitoring of land transformations. International Journal
of Remote Sensing 9: 187-236

Townshend J R G, Justice C O (1990) The spatial variation
of vegetation at very coarse scales. International Journal of
Remote Sensing 11: 149-57

Turner M G, Costanza R, Sklar F H (1989) Methods to
evaluate the performance of spatial simulation models.
Ecological Modelling 48: 1-18

Ustin S L, Adams J B, Elvidge C D, Rejmanek M, Rock

B N, Smith M O, Thomas R W, Woodward R A (1986)
Thematic Mapper studies of semiarid shrub communities.
Bioscience 36: 446-52

Veregin H (1989) A taxonomy of error in spatial
databases. Technical Paper 89—12. National Center for
Geographic Information and Analysis, Santa Barbara
California

Verhoef W (1984) Light scattering by leaf layers with
application to canopy reflectance modeling: the Sail
model. Remote Sensing of Environment 16: 125-41

Walsh S J, Lightfoot D R, Butler D R (1987) Recognition
and assessment of error in geographic information
systems. Photogrammetric Engineering and Remote
Sensing 53: 1423-30

Wang S, Elliott D B, Campbell J B, Erich R W, Haralick
R M (1983) Spatial reasoning in remotely sensed data.
IEEE Transactions on Geoscience and Remote Sensing
GE-21: 94-101

Weibel R, Heller M (1991) Digital terrain modelling. In:
Maguire D J, Goodchild M F, Rhind D W (eds.)



GIS and Remote Sensing

Geographical Information Systems: principles and
applications. Longman, London, pp. 269-97, Vol 1
Weiser R L, Asrar G, Miller G P, Kanemasu E T (1986)
Assessing grassland biophysical characteristics from
spectral measurements. Remote Sensing of Environment
20: 141-52

Welch R, Usery E L (1984) Cartographic accuracy of
Landsat-4 MSS and TM image data. [EEE Transactions
on Geoscience and Remote Sensing GE-22: 281-8
Wharton S W (1989) Knowledge-based spectral
classification of remotely sensed image data. In: Asrar G

(ed.) Theory and Applications of Optical Remote Sensing.

Wiley, New York, pp. 548-77
Woodcock C E, Strahler A H (1987) The factor of scale in

remote sensing. Remote Sensing of Environment 21:
311-32

Woodcock C E, Strahler A H, Jupp D L B (1988) The use
of variograms in remote sensing: I. Scene models and
simulated images. Remote Sensing of Environment 25:
323-48

Woodcock C E, Strahler A H, Jupp D L B (1989)
Autocorrelation and regulatization in digital images: II.
Simple image models. IEEE Transactions on Geoscience
and Remote Sensing 27: 247-56

Zhou Q (1989) A method for integrating remote sensing

and geographic information systems. Photogrammetric
Engineering and Remote Sensing 55: 591-6

213



