DATABASE MANAGEMENT
SYSTEMS

R G HEALEY

Database Management Systems (DBMS) are an integrated and crucial component of
most successful GIS. DBMS are used to store, manipulate and retrieve data from a
database. A key element in creating a spatial database is database design using a
variety of data modelling techniques. Although the range of DBMS structures used
in G1S includes inverted list, hierarchical, network and relational designs, it is the
latter which has come to dominate the field. Two main approaches have been used in
the design of GIS software systems: the hybrid and integrated models. Both have
advantages and disadvantages for specific applications. Looking to the future, the
main issues facing the spatial database world are the likely impact of the ideas of the
object-oriented community and the need to develop distributed systems capable of
handling temporal data in an efficient manner.

INTRODUCTION

Among the different threads that can be observed in
the development of GIS methodology, one major
one has been the progressive realization of the
importance of database management systems
(DBMS), initially for handling map attribute data,
but increasingly for handling digital cartographic
data also. While many of the operations required
for data manipulation in GIS are now seen to be
specific instances of more general classes of
database problem, standard database tools have
also been shown to have a number of limitations
when applied to GIS processing.

This chapter examines the principles of
database management, as they apply to GIS, and
the strengths and weaknesses of alternative
approaches to the use of database tools. The first
section examines the fundamental characteristics of
DBMS. This is followed by sections on data
modelling, database design, database structures and
alternative methods of utilizing a DBMS within
GIS. The final section examines future
developments and the ways in which they may

contribute to the solution of outstanding technical
and methodological problems in database
management for GIS.

FUNDAMENTAL CHARACTERISTICS OF
DBMS

To clarify definitions at the outset, the term
‘database management system (DBMS)’ will be
used to refer to a software package for the storage,
manipulation and retrieval of data from a database.
A database is a collection of one or more data files
or tables stored in a structured manner, such that
interrelationships which exist between different
items or sets of data can be utilized by the DBMS
software for manipulation and retrieval purposes.
The database will, in general, serve the data
requirements of a variety of users rather than a
single individual. If the restriction is enforced that
the DBMS software provides the only means of
access to the database, there are a number of
important implications (Martin 1976):
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® The method of data storage can be considered
independently of the programs that access the
database.

® A controlled and standardized approach to data
input and update can be enforced, with
appropriate validation checks to ensure data
integrity and consistency between data files.

® Security restrictions on access to specific data
subsets can be applied.

® A consistent approach can be adopted for
managing simultaneous multi-user read and
update operations on specific files or tables.

It is these factors, coupled with the elimination of
unnecessary redundancy in data storage because
multiple users can share data, that gives the
combination of DBMS software and database its
greatly enhanced efficiency and productivity in data
management, as compared to individuals working
with their own programs and file structures.

DBMS software components

The central component of a DBMS is the kernel
software, usually written in C or FORTRAN, which
controls the processing of queries, access paths to
data, storage management, indexing and multi-user
read/update operations. Linked to the kernel are a
variety of interfaces to the user. These include
query language interfaces, bulk data loaders, screen
forms management systems, menu handlers, report
writers and programming language interfaces.
Query language interfaces allow the user to issue ad
hoc queries against the database which result in data
from one or several linked tables or files being
retrieved. These queries are expressed in high level
languages, which formerly were often system
specific (Collins 1982; Martin 1983). Now there is
convergence in the commercial marketplace on
SQL, the ANSI standard for DBMS query
languages. If the query language contains additional
procedural functionality, which SQL itself does not,
it can be called a ‘fourth generation language’. Since
these languages operate with query language
commands, which may individually cause large
amounts of program code in the database kernel to
be executed, they are at once very powerful and
potentially CPU intensive.
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Programming language interfaces perform a
different function. They enable users to embed
query language statements within programs written
in standard general purpose ‘third generation’
languages such as FORTRAN or C. Data can be
retrieved from the database directly into variables
or data structures accessible to the program, where
they can be further processed. This approach is
more flexible and efficient in the use of computing
resources than employing a fourth generation
language, but it is considerably more costly in terms
of users’ time! Interface programs such as screen
handling systems, referred to above, are generally
implemented as stand-alone utility programs which
use these programming language interfaces to pass
requests for data from the users through to the
database kernel. A simplified diagram of the
relationships between the host processor, the
DBMS software and application programs is given
in Fig. 18.1.

Fig. 18.1 The DBMS as part of a layered software
model.

DATABASE DESIGN

Physical and logical database design

As a database is likely to be a shared resource which
as it develops will come to represent a major
investment by any given organization, it is most
important that this investment is protected by
careful database design. An initial distinction
should be made between physical and logical
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design. Physical design is concerned with the
location of different parts of the database within the
file system of the computer. This may include
considerations such as spreading the database across
multiple disk drives to balance input/output load or
for security in the event of disk media failure.
Physical design is the responsibility of the database
administrator and should be quite distinct from
logical design, which represents the user’s view of
the interrelationships between data sets stored in
the database. If physical and logical design are kept
separate, users can access their data sets without
having to concern themselves with details about
where and how those data sets are physically stored
(Martin 1976).

Data analysis

The first stage in logical database design is the use
of data analysis techniques to develop a clearly
defined conceptual model of the relationships
between different data sets. These relationships
may be specific to a small number of data sets
required for a single user, or they may extend to all
the components of a large corporate database.
Regardless of the size of system, if this conceptual
model is not built correctly, the likely outcome will
be an inefficient database structure with
unnecessary redundancy in data storage and a poor
match to users’ requirements for data access and
retrieval.

There are a variety of data analysis or data
modelling techniques that can be used (Howe 1985;
Worboys, Hearnshaw and Maguire 1990a), but the
entity—relationship model approach (Chen 1976)
has met with the widest acceptance. Chen’s
approach is based on a number of fundamental
concepts including entity sets, attributes, domains,
relationship sets and mappings.

Entity sets represent the generic structure of
phenomena which are relevant to the specific
database being designed. They might be towns,
census districts, hotels or national parks, for
example. Each entity belonging to a particular
entity set will have a number of characteristics or
attributes. In the case of census districts these might
include an identification number, X,Y coordinates
of a centroid and a list of census variables. Each
attribute will have a range of possible values which
constitutes its domain or value-set. For example,

identification numbers may range between 0001 and
9999 or hotels may have tourist guide quality ratings
between 1 and 5. Relationship sets are formally
defined as subsets of the cross product of two or
more entity sets (Tsichritzis and Lochovsky 1982).
The specific relationship between individual
members of the respective entity sets provides the
subsetting mechanism, for example the fact that
certain members of the hotel set are located in a
particular town. Specific relationships or mappings
between entity sets may take a variety of forms.
One-to-one mappings refer to the situation where,
for example, each town has one and only one set of
municipal offices, while a one-to-many mapping
would be where a town had a number of hotels.
Many-to-many mappings deal with cases such as
that of wholesalers distributing goods to different
shopping centres. Each centre will be served by
multiple wholesalers and each wholesaler will
distribute goods to several centres. A number of
refinements in the specification of relationships are
possible (Ellis 1985) depending, for instance, on
whether or not they are defined to be mandatory
(every hotel must be located in one and only one
town).

Using these fundamental concepts, it is possible
to develop sophisticated models of data
interrelationships. The availability of diagramming
methods linked to the concepts allows graphical
representations of models to be drawn. These are
powerful aids to model articulation and as a means
of communication. A simple example involving
national parks, scenic trails and landscape features
is given in Fig. 18.2.

Entity set

Relationship
set
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N One-to-many
mapping
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Features -
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M

[ Features I

[ Vegetation types i

Fig. 18.2 An example entity—relationship model
for a national parks database.
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While the use of data analysis techniques is
much less prevalent in the GIS literature than is
desirable, important examples of the application of
these methods to the structuring of relationships
between types of digital cartographic data can be
found in van Roessel and Fosnight (1984) Tuori and
Moon (1984) and Hearnshaw, Maguire and
Worboys (1989).

TYPES OF DBMS STRUCTURE

Once the data analysis is complete, the resulting
data model must be implemented using suitable
DBMS software. This might be developed in-house,
but unless the organization is large and the
programming resources considerable, it is unlikely it
would have the required facilities. More likely, the
software will be one of the large number of systems
currently available commercially. These systems can
be broadly categorized into four main types:

e inverted list systems;
® hierarchical systems;
® network systems;

® relational systems.

Important new approaches, which have not yet
established a major presence in the commercial
marketplace, are discussed in a later section. While
some software packages may have characteristics
drawn from more than one of the above types, in
general the category into which any given package
falls gives a clear indication of the way in which it
structures data sets and their interrelationships at
the level of logical database design. It should be
noted also that the first two categories developed
from refinement and improvement of commercial
approaches to data management and are largely
represented by older systems (Date 1986), while the
last two are in turn both more recent in origin and
more soundly based on theoretical, rather than
pragmatic considerations. Choosing any one of
these different types of system will have a major
impact on the way in which the data model for a
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particular application problem maps onto the
underlying database structure.

Inverted list systems

The basic storage mechanism for data in this DBMS
structure is by means of tables/files containing rows
(records) and columns (fields). The specific ordering
of rows within tables has importance for the ways in
which the data can be accessed. Further means of
retrieving data are provided by search keys which
index the occurrence of values for a specific field. If
the field occurs in more than one table, this
information will also be incorporated in the index
(Date 1986). The index takes the form of an
inverted list with a pointer from each row in the list
to the actual disk location where the relevant data
may be found.

The inverted list structure can be illustrated
using the national parks example. Assume that
there is a Trails entity set that has four attributes
(Table 18.1(a)): an identification number (Trail#),
Name, Category (easy E or difficult D for walking)
and an identification number for the Park in which it
is located (Park#). Similarly a Landscape Features
entity set has attributes of Feature#, Type and
Origin. The last of these describes the type of
process responsible for its formation. The Features-
visible relationship set has attributes Trail#,
Feature# and two attributes for the latitude (Lat)
and longitude (Long) in decimal degrees of the
point on the trail from which the feature is visible.
Directly translated into the format of data tables
these might appear as indicated in Table 18.1(a).

A simple inverted list representation of the
contents of the Features-visible table, if Feature#
were defined to be a search key, can be seen in
Table 18.1(b). More probably a number of search
keys would be defined, including Trail# and
Feature#, both of which appear in more than one
table, and a combined key Trail#/Feature#. The
overall sequence of index entries for the multiple
search keys might appear as in Table 18.1(c).

In this way a single index structure can be
created across all the tables in the database. Index
entries for the same data value in the corresponding
field in two different tables (cf. the first two lines of
the index in Table 18.1(c)) are found adjacent to
each other. This facilitates searches which require
information to be retrieved on both the attributes of
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Table 18.1(a) The structure of part of the example
database.

1. The National Parks Table

Park# Name Size (ha)
1 Ben Wyvis 40000
2 Braes of Tomintoul 28000
3 Inveresk Hills 63000
2. The Trails Table
Trail# Name Category Park#
1 Loch Sissons D 2
2 Linton Forest E 3
3 Hutton Crags E 1
4 Davis Valley D 2
5 Gilbert Falls D 3
3. The Features Table
Feature# Type Origin
1 Drumlins Glacial
2 Braided Channel Fluvial
3 Delta Fluvial
4 Corrie Glacial

4. The Features-Visible Table

Trail # Feature# Lat Long
1 3 57.35  4.52
1 4 57.50  4.48
2 2 56.25 5.82
2 3 56.34 594
3 1 57.82  3.55
3 4 57.88 3.62
4 1 57.60 4.45
4 2 57.68  4.39
5 3 56.53  5.79
5 4 56.41 5.86

the trail and details of the features that are visible
from it.

Proprietary systems such as ADR
DATACOM/DB and ADABAS, which use the
inverted list approach, are noted for high
performance in large database environments. In the
past they have not been heavily used in GIS

Table 18.1(b) The Features-Visible Table as an
inverted list.

Feature# Trail#
1 3
4
2 2
4
3 1
2
4 1
3
5 3
4

applications. This is more a result of their main
operating environments being IBM mainframes,
when most GIS work is performed on
minicomputers and workstations, than inherent
problems of using this type of database architecture.

Hierarchical systems

In common with inverted list systems, this type was
not developed from a formal theoretical model of
database design, but followed the approach of the
IBM IMS (Information Management System)
software, first released in 1968 and still one of the
world’s most widely used systems (Wiederhold
1983; Date 1986). The basic concept of the
hierarchical system is a familiar one, with a specific
entity set defined to be the root of the hierarchical
tree and a set of parent—child pointers from each
level down to the one below, to represent the
relationships between linked types of entity sets.
Each link at a given level must follow back through
other levels to the root. A strict interpretation of
these rules would produce an implementation of the
example national park database similar to that
shown in Fig. 18.3. It should be noted that the tree
structure is multi-dimensional and only the
branching structure for one Park (3) is shown. The
attributes of each trail would be stored on disk
together with pointers to the entities represented at
the level below.

Even from this very simple example, one of the
problems of translating the entity—relationship
model into a hierarchical structure becomes
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Table 18.1c  Possible index entries for multiple

search keys (partly following Date 1986).

Search Data Source table Pointer

key value

Trail# 1 Trails To disk address of
this row

Trail# 1 Features-visible To disk address of
first row with
Trail# =1

Trail# 1 Features-visible To disk address of
last row with
Trail# =1

Trail# 2 Trails To disk address of
this row

Trail# 2 Features-visible To disk address of
first row with
Trail# =2

Feature# 1 Features To disk address of
this row

Feature# 1 Features-visible To disk address of
first row with
Feature# =1

Trail#/

Feature# 1/3 Features-visible To disk address of
row with Trail# =
1 and Feature# =

3

Park#3

Trail#2 Trail#5

Feature Feature
#3 #4

Fig. 18.3 Part of the national parks database in a
hierarchical structure.

Feature
#3
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apparent. Although the one-to-many relationship
between a park and the trails it contains is clearly
represented, the many-to-many relationships
between trails and the features visible from them
are not handled in an equally satisfactory manner.
Features that are visible from more than one trail
will have their attributes stored multiple times,
leading to undesirable redundancy in the data. One
alternative would be ‘horizontal’ pointers from all
the other occurrences of the feature in question to
the one place in the tree where the attributes were
stored, but this violates the parent—child
requirement for linkages. The other alternative
would be to classify all the details of features in
separate tree structures and create pointers to
those, but this violates the requirement for ail
linkages to link back to a single root. This latter
approach tends to be that used for implementation
purposes.

In summary, the hierarchical approach is very
efficient for searching if all desired access paths
follow the parent—child linkages. However, it
requires a relatively inflexible structure to be placed
on the problem at the outset, when the record type
constituting the tree structure is set up. Many-to-
many relationships do not fit naturally into the
structure and extensive pointer systems are required
to deal with them. The combination of inflexible
structure and the overheads of maintaining or
changing pointer systems makes extensive
modification of the structure of hierarchical
systems, to meet new requirements, a resource
intensive operation. These reasons have contributed
to the lack of adoption of this type of DBMS for
flexible GIS requirements.

Network systems

Network systems are also referred to as CODASYL
databases, because they are based on the proposals
of the Database Task Group of the Conference on
Data Systems Languages (CODASYL), the
organization originally responsible for the definition
of the COBOL programming language (Olle 1978;
Date 1986). These proposals were subsequently
developed into specific implementations of this kind
of database structure, in products such as IDMS and
MDBS III. The most important difference between
the hierarchical and the network approach is that in
the latter, a ‘child’ entity set can have more than
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one parent and indeed any entity set can be linked
to any other (Martin 1976).

Each entity set with its attributes is considered
to be a node in the network. Relationship sets are
represented as linkages in the form of pointers
between individual entities in different entity sets.
As a result, all the different forms of mapping —
one-to-many, many-to-many, etc. — can be handled
directly with large numbers of pointers. An example
of how the parks database might be structured as a
network database is given in Fig. 18.4, with the
pointers represented as solid or dashed arrows.

o o s o
| 5626 | 582 [ ________ Feature#2
L L e
Trail#5 m 579 po=""

Fig. 18.4 Part of the national parks database in a
network structure.

Trail#2

"*| Feature#3

i

The network approach is powerful and flexible.
For many applications it is also very fast and
efficient in terms of CPU resources. From the
implementation viewpoint, however, it may be
comparatively difficult to set up the database
correctly and, although the query language is
comprehensive, it may also be complex and
confusing for less expert users. Major restructuring
of the database may be time consuming because of
the extensive pointer structures that have to be
rebuilt.

It might reasonably be thought that network
databases would have found ready application in
certain areas, such as work involving both GIS and
locational analysis, where problems may fit quite
naturally into the network structure. While
important examples of this can be found
(Armstrong, Densham and Rushton 1986;
Densham and Armstrong 1987), it appears that the
disadvantages of network systems from the user’s
viewpoint continue to militate against their
widespread use in GIS.

Relational systems

The concepts of the relational approach were first
set out by Codd (1970, 1979), as a means of

describing data with their ‘natural’ structure only
and ensuring independence of user-written
application programs from the detailed storage
formats of data within a database. In comparison to
the previous approaches, relational systems are
characterized by simplicity, in that all the data are
represented in tables (relations) of rows and
columns.

From the database design viewpoint, entity—
relationship modelling fits very closely with
relational systems. Each entity set is represented by
a table, while each row or ‘tuple’ in the table
represents the data for an individual entity. Each
column holds data on one of the attributes of the
entity set. Unlike other types of database,
relationship sets describing many-to-many
relationships between entity sets are also
represented by a table of data values. The tables
contain columns which reference the entity sets
being related, together with further columns for any
attributes of the relationship itself. Referring back
to Table 18.1(a), the ‘Features-visible’ table is a
good example of a relationship table, containing
two columns, each of which references an entity set
(the Trails and Features tables). A further pair of
columns contain locational data which are attributes
of the relationship set itself, as the coordinates are
determined by the relative location of a particular
feature with respect to viewpoints along a particular
trail. Since relationships between entities are
directly represented as tables, there is no
requirement for pointers or linkages between data
records to be set up, as was the case with
hierarchical or network systems. The principal
features of relational databases, the primary key,
relational joins and normal forms, are now
discussed in turn.

The primary key

The relational approach is firmly grounded in the
mathematical theory of relational algebra (Uliman
1982). This has important implications for the
design of database tables. Firstly, a set, as
mathematically defined, cannot have duplicate
values. Since each table or relation represents a set,
it cannot, therefore, have any rows whose entire
contents are duplicated. Secondly, as each row must
be different to every other, it follows that a value in
a single column, or a combination of values in
multiple columns, can be used to define a primary
key for the table, which allows each row to be
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uniquely identified. Irrespective of whether the
primary key is restricted to one column or spans
several, no column that forms part of a key can be
null, that is can contain a row location without a
value, because this would have the potential for
permitting duplicate rows to be stored. The
uniqueness property allows the primary key to serve
as the sole row level addressing mechanism in the
relational database model (Date 1986).

Relational joins

The mechanism for linking data in different tables is
called a relational join. Values in a column or
columns in one table are matched to corresponding
values in a column or columns in a second table.
From the second table a further match to a third
table can be made, and so on until the necessary
data from the requisite number of tables have been
retrieved. Matching is frequently based on a
primary key in one table linked to a column in the
second which is termed a foreign key. An example
of the join mechanism is shown in Fig. 18.5. It
should be noticed that in the relationship set table
for ‘Features-visible’ the primary key spans the two
columns containing id-numbers, because both are
required to identify the row uniquely. Each of the
two also acts as a foreign key to match to the id-
numbers in the entity set tables.

Trail# Name Category| Park#
Loch Sissons ] 2

Linton Forest E 3

Trails table

Trail# Feature# | Latitude |Llongitude

1
1

Features-visible
table

Feature# Type Origin
1 drumlins glacial

braided channel fluvial

Features
table

Fig. 18.5 Part of the national parks database in
relational form as relational tables and with
relational joins (see also Table 18.1).
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Normal forms

A certain amount of necessary data redundancy is
implicit in the relational model because the join
mechanism matches column values between tables.
Without careful table design it is all too easy to
introduce further unnecessary redundancy into the
database. To prevent this, table design should
follow Codd’s (1970) theory of normal forms, which
specifies what types of values columns may contain
and how columns in a table are to be dependent on
the primary key.

The first requirement of the theory is that all
the tables must contain rows and columns as already
noted, and column values must be atomic, that is
they do not contain repeating groups of data, such
as multiple values of a census variable for different
years. The second requirement or normal form is
that every column, which is not part of the primary
key, must be fully dependent on the primary key.
This can be understood most readily by considering
the example in Fig. 18.6 of a table which is not in
second normal form. In this case the feature name is
dependent on Feature#, but not Trail#, because
feature Type is not an attribute of the ‘Features-
visible’ relationship set, but of the Features entity
set. The effect of not meeting the requirement can
be seen by the introduction of unnecessary
redundancy into the table in rows 1 and 4. If the
feature Type was changed in the first row and the
corresponding change in the fourth row was
overlooked, the database would be left in an
inconsistent state.

Primary key
I 1
trail# feature# type latitude longitude
1 3 Deita
1 4 Corrie
2 2 Braided channel
2 3 Delta

Fig. 18.6 An example of a national parks database
table not in second normal form.

The third normal form requires that every non-
primary key column must be non-transitively
dependent on the primary key. Again, an example
which is not in third normal form will be used for
illustration (Fig. 18.7(a)). At first sight this may
appear to be a convenient way of finding out which
vegetation types can be seen in which parks, but the
unnecessary redundancy in rows 1 and 3 highlights
the error. The Park# is related to the Veg-type#
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via the Trail#, that is two distinct relationship sets
have been conflated. This transitive dependence is
to be avoided (Fig. 18.7(b)). Instead, the
relationship set tables should be kept distinct,
thereby avoiding the transitive dependence problem
(Figs. 18.7(c) and 18.7(d)). This eliminates the
redundancy while making it very easy to add new
Veg- type/Trail or Trail/Park combinations to the
database. Further refinements of the basic normal
forms to deal with a variety of design requirements,
have led to the identification of Boyce-Codd, fourth
and fifth normal forms (Fagin 1979). Nevertheless,
the fundamental working rule for most
circumstances has been summarized by Kent (1983)
as ensuring that each attribute of a table represents
a fact about the primary key, the whole primary key
and nothing but the primary key. While this is
entirely valid from the design viewpoint, it must
also be said that practical implementation
requirements may, on occasion, override theoretical
considerations and lead to tables being merged and
de-normalized, usually for performance reasons.

(a)
veg-type# trail# park#

28

37

18

6

42

LY N
WP W

(b)

trail#

(c) ) !
Primary key Primary key
[ 1 1

veg-type# [ trail# | trail# l park# ]

(d)

I veg-type# ]—»i trail# l I trail# H

Fig. 18.7 The national parks database in relational
form: (a) a table not in third normal form; (b) an
illustration of transitive dependence; (c)
normalizing the table structure; (d) avoidance of
transitive dependence.

park# ]

Advantages and disadvantages of relational systems

The advantages can be summarized as follows:

® Rigorous design methodology based on sound
theoretical foundations.

® All the other database structures can be reduced
to a set of relational tables, so they are the most
general form of data representation.

® Ease of use and implementation compared to
other types of system.

® Modifiability, which allows new tables and new
rows of data within tables to be added without
difficulty.

® Flexibility in ad hoc data retrieval because of
the relational join mechanism and powerful
query language facilities.

Disadvantages include:

® A greater requirement for processing resources
with increasing numbers of users on a given
system than with the other types of database.

® On heavily loaded systems, queries involving
multiple relational joins may give slower
response times than are desirable. This problem
can largely be mitigated by effective use of
indexing and other optimization strategies,
together with the continued improvement in
price performance in computing hardware from
mainframes to PCs.

The important advantages of the relational
approach and the availability of good proprietary
software systems such as ORACLE, INGRES and
DB2 have contributed greatly to the rapid adoption
of this technology, both in the GIS field and
automated data processing operations of all other
kinds, since the beginning of the 1980s. Relational
systems now dominate the market for DBMS in the
GIS sector and this will continue for the foreseeable
future.

Hybrid and Integrated Approaches to GIS
Database Management

With continued developments in database design,
storage methods and retrieval performance, it is
now quite feasible to hold tens of gigabytes of
digital cartographic data, map attribute data or
both, using proprietary software and the more
powerful hardware platforms available from a
variety of vendors. Some examples of large spatial
databases are shown in Table 18.2. Sheer data
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volume, therefore, may no longer be a severe
problem other than for the most demanding
requirements of the military or national mapping
agencies. Yet, if digital cartographic data, in
particular, are to be retrieved from a commercial
database for display mapping purposes at the user’s
screen, it may be necessary to retrieve thousands of
rows of data in a small number of seconds, for
effective graphical interaction to be possible (Frank
1984, 1988). This remains-a problem even for fast
workstations, because of the overheads of query
language processing, index access and data
unpacking that accompany the use of database
software. Use of the computer file system directly,
rather than through the intermediate step of the
DBMS will generally yield faster response times.
On the other hand, the DBMS provides a wide
range of ready made data manipulation tools so
programming effort can be concentrated on
algorithms for spatial analysis and user interface
requirements.

Table 18.2 Some large spatial databases.

Database Object types No. of co- Nature of data
ordinates
(X 10%)
WDDES polygons, lines 300 contours, rivers,
boundaries
SOTER polygons 150 soil polygons
CORINE polygons, lines 50 natural resource
and political
CGIS-CLI polygons 90 land use potential
Alberta LrRIS  polygons, lines 140 land tenure
Edmonton City polygons, lines,
points 4 urban
infrastructure

wDDESs = World Digital Data for the Environmental
Sciences; SOTER = Soil and Terrain Database; CORINE =
Coordinated Information on the Europcan Environment;
cG1s = Canada Geographic Information System; LRIS =
Land Resources Information System.

The differing emphasis placed by GIS system
designers on the advantages of the file system
approach versus the database approach for storage
of digital map coordinates, has led to the
development of two different approaches to
implementation, based on either a hybrid or an

integrated data model (Bracken and Webster 1989).

These will now be examined in greater detail.
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The hybrid data model

The starting point for this approach is that data
storage mechanisms which are optimal for
locational information are not optimal for attribute/
thematic information {Morehouse 1985; Aronson
1985). On this basis, digital cartographic data are
stored in a set of direct access operating system files
for speed of input/output, while attribute data are
usually stored in a standard commercial relational
type DBMS such as INFO, ORACLE, INGRES or
INFORMIX (Fig. 18.8). The GIS software manages
linkages between the cartographic files and the
DBMS during different map processing operations
such as overlay. While a number of different
approaches to the storage of the cartographic data
are used, the linking mechanism to the database is
essentially the same, based on unique identifiers
stored in a database table of attributes that allow
them to be tied to individual map elements.

Coordinate and
topological files

bespoke Database
software

linkages

attribute tables

Fig. 18.8 The hybrid GIS model.

poly-id attribute

X y poly-id line-id
24 12 24 104

244 265

23.8 448 14 26 734
26.8 494 17 27 808
27.9 427 21 28 207
. . 78 29 43
84 31 81

Point table Polygon table | | Attributes table

relational join
Database

Fig. 18.9 The integrated GIS model with a
normalized structure.
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Since most hybrid systems use relational
databases, any classification of hybrid types must
rely largely on differences in the cartographic data
storage mechanism. Several types can be identified,
including CAD-based, vector-topological and
quadtree-based systems. In CAD-based systems,
map features are held as graphics elements, but
without any topological information, so it is
legitimate to enquire as to whether they really fall
into the category of GIS rather than digital mapping
systems, because spatial analysis cannot readily be
performed. Examples of this type would include
INTERGRAPH IGDS/DMRS and
MICROSTATION-32. The former, it should be
noted, uses a network rather than a relational
DBMS. Smaller systems that provide links between
graphics software such as AUTOCAD and PC
DBMS would also fit into this category (cf. Cowen
et al. 1986). Vector—topological systems may hold
the topological map information in a set of linked
files very similar to the structure that might be
expected if the data were inside, rather than
outside, the relational DBMS (Morehouse 1989).
Alternatively, a more compact file structure may be
used. The ESRI ARC/INFO, GEOVISION and
INTERGRAPH MICROSTATION GIS systems
are examples of this approach. The last of these
provides software to convert graphics-based design
files into topologically structured files (Intergraph
Corporation 1989a). Quadtree-based systems do
not have the same level of representation in the
commercial marketplace, at the time of writing, as
the previous types, but research using such systems
shows considerable promise (Gahegan and Hogg
1986; Gahegan and Roberts 1988). It is also
expected that commercial quadtree-based systems
such as SPANS will provide linkages to relational
databases in the future.

From an initial situation where each GIS
supported only one DBMS, a clear trend is now
being established to provide access to multiple
DBMS systems (McLaren 1990), with vendors such
as ESRI, INTERGRAPH and others developing
generic relational DBMS interfaces (ESRI 1989;
Intergraph Corporation 1989b). Since these DBMS
systems are also actively developing a distributed
capability, to allow data to be stored transparently
on different computer nodes, but accessed and
updated as though they were held locally (Date
1985), the potential number of issues raised in
relation to system configuration, performance and

management is very large indeed. Some of these
have been examined by Webster (1988) and
Seaborn (1988).

The integrated data model

The integrated data model approach is also
described as the spatial database management
system approach, with the GIS serving as the query
processor sitting on top of the database itself
(Guptill 1987; Morehouse 1989). Most
implementations to date are of the vector—
topological kind, with relational tables holding map
coordinate data for points/nodes and line segments,
together with other tables containing topological
information, in a manner partly similar to that
described by van Roessel (1987). Attributes may be
stored in the same tables as the map feature
database or in separate tables accessible via
relational joins (Fig. 18.9).

The integrated data model has a number of
implications in terms of the special characteristics of
spatial data. From the database viewpoint, it is
perfectly possible to store both the coordinates and
the topological information required to characterize
digital cartographic elements using a design based
on Codd’s Normal Forms, as van Roessel’s detailed
analysis has shown. Using this approach, X,Y
coordinate pairs for individual vertices along line
segments are stored as different rows in a database
table. However, from the GIS viewpoint, these data
often need only to be accessed as ‘bundles’, each
one comprising all the pairs of coordinates for a
given line, or all the line identifiers for the lines
forming the bounding edges of polygons. This is the
case when the data are being retrieved for display
purposes and little or no analysis is being performed
on individual coordinate values.

Under these circumstances, storage of
individual coordinate pairs in different rows of a
database table creates substantial performance
overheads, if large amounts of data have to be
retrieved quickly for graphics purposes. To achieve
satisfactory retrieval performance it has been found
necessary to store coordinate strings in long or ‘bulk
data’ columns in tables. This means, however, that
the table is strictly no longer in first Normal Form,
because each column value is not atomic (Fig.
18.10). This point has been emphasized by
independent developments on several different
integrated data model systems (Lorie and Meier
1984; Bundock 1987; Charlwood, Moon and Tulip
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1987; Waugh and Healey 1987). Empirical evidence
of the performance differential is given in Lewis
(1987). It has also been shown that retrieving
batches of rows containing coordinates using an
‘array fetch’ mechanism {Dimmick 1985), can
reduce the performance overhead while avoiding
the use of non-normalized tables (Sinha and Waugh
1988).

Coordinate:

Line table

Linelist

12141721 ...
78849395. ...
43456756 .. ..

Polygon table

Fig. 18.10 The integrated GIS model using long
data types.

The performance issue must also be addressed
in respect of very large digital cartographic data
banks, since both the US Geological Survey
(Guptill 1986; Starr and Anderson 1991 in this
volume) and the Ordnance Survey (Smith 1987;
Sowton 1991 in this volume) have developed
integrated data models for national mapping
applications, suitable for implementation in a
relational database framework. The Ordnance
Survey solution has been to implement its system
using a Britton-Lee IDM dedicated database
computer. Machines of this kind have hardware
support to accelerate standard operations such as
relational joins and can support a much larger
number of concurrent data accesses by multiple
users than a software only database system (Su
1988).

A further aspect of handling large spatial
databases is the need to convert 2-D coordinate
information into 1-D spatial keys that can be stored
as database table columns. These can then be
indexed in the normal way and used for fast
retrieval of map elements contained within or
overlapping a specified geographical search area
(Abel and Smith 1986; Waugh and Healey 1987;
Abel 1988).
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Comparison of hybrid and integrated data model
approaches

From the commercial viewpoint, the success of
hybrid systems cannot be denied, while integrated
systems such as Prime’s SYSTEM9, although
developed later, have yet to make a comparable
impact on the market. In the past, the problem for
integrated systems may have been a function of the
powerful hardware required to achieve good
performance and the correspondingly high cost of
entry. With the rapid growth of the graphics
workstation market and technological
improvements this factor is rapidly declining in
importance. Much more significant for the future,
when comparing hybrid and integrated approaches,
will be the rapid expansion of networked and
distributed computing. This increases the problems
of multi-user data access, data security, data
integrity and overall database management
(Bundock 1987) for which the DBMS vendors, as
opposed to GIS vendors, are well advanced in
attempting to provide solutions. In hybrid systems,
special purpose programming is currently used to
link the digital cartographic and attribute data,
instead of the standard relational join mechanism
used in an integrated system. Extending the
argument, there is a danger that a great deal of
further specialist programming will have to be done,
for a distributed hybrid GIS to attain the
functionality that can already be provided by the
leading DBMS packages. The performance
advantage of hybrid systems remains, but it can be
expected that integrated systems will progressively
close the gap by the use of memory caching
techniques, bulk data types and array fetching
mechanisms, to minimize database input/output.
Further improvements in determining optimal
search paths for database queries, particularly when
distributed processing is involved, can also be
anticipated.

Both hybrid and integrated approaches can,
therefore, be expected to coexist for the foreseeable
future, but with a growing appreciation of the
advantages of the integrated model, as the price—
performance of hardware continues to improve.

SPATIAL QUERY LANGUAGES

Implicit in the spatial database approach is a
requirement to query and interrelate different data
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sets in a manner that is meaningful in the GIS
context. Unfortunately, standard query languages
like the Structured Query Language, SQL, are
restricted to supporting queries based on relational
joins, sub-queries, grouping functions and query
combination operators. Some types of GIS
function, such as retrieving map elements that fail
within or overlap a rectangular window, can be
performed using standard, albeit complex SQL
queries. Others, such as data layer intersection
(overlay), cannot, because they require operations
to be applied to the data which are beyond the
scope of the available query language functions. A
summary of the range of operators required for
spatial query languages is given by Guptill (1986).
There are now several systems where the query
language has been extended to incorporate such
operators (Charlwood, Moon and Tulip 1987;
Ingram and Phillips 1987; Herring, Larsen and
Shivakumar 1988). With relational DBMS systems
there are different ways in which such facilities can
be implemented. One approach is to pre-process
non-standard SQL and convert, if possible, the
spatial operators into more complex but standard
SQL, which is then passed to the database kernel. A
second approach, at the pre-processing stage, is to
convert the query into a component that can be
used to retrieve data from the DBMS. These data
are then further processed by calls to user-supplied
code which perform the GIS operations. A third
approach is to link the user-supplied code directly to
the database kernel, which will render the
developer unpopular with the vendor, but will
enable the spatial operators to become fully part of
the query language!

OBJECT-ORIENTED DBMS: THE FUTURE
FOR GIS DATABASE MANAGEMENT?

Extensions of the integrated model to incorporate
spatial query language functions are a tacit
recognition that, in the final analysis, it is not
sufficient merely to hold data on map elements in
the database. For GIS purposes it must also be
possible to access the operations to be performed on
these elements. This brings the conceptualization of
the problem very close to that provided by the
object-oriented approach (Aronson 1987).

As the most recent of the models for data

handling and processing discussed here, care needs
to be taken with the term ‘object oriented’
(Maguire, Worboys and Hearnshaw 1990). Even
some of the main proponents are reluctant to use it
too widely, since ‘few people agree on exactly what
it means’ (Rowe and Stonebraker 1987). Following
Somerville (1989) and Rowe (1986) an object can be
defined as an entity that has a state represented by
the values of local variables (instance variables) and
a set of operations or methods (instance methods)
that operate on the object. Individual objects
belong to a class that defines the type of object.
Classes may have variables that describe
characteristics of the class as a whole. Each class has
a superclass from which it can inherit both instance
variables and methods. For example, an object class
called polygon may be defined which is also the
superclass for another class called land parcel. The
object definitions might, therefore, appear as
indicated in Table 18.3(a) and 18.3(b). By
convention, the superclass (object) is at the top of
the object hierarchy, which might be structured as
in Fig. 18.11. All the instance methods and
variables of the polygon superclass are inherited by
the land parcel class, unless they are re-defined at
the land parcel level.

OBJECT

LAND
POLYGON PARCEL
Polygon-1 Polygon-2 Land parcel-1) (Land parcel-2) (Land parcel-3

Fig. 18.11 A hierarchy of object classes.

The designers of POSTGRES, an object-
oriented DBMS designed to be the successor to
INGRES, the relational DBMS, have developed a
variety of techniques to facilitate object
management within a database environment. These
include storage of the structure of object hierarchies
in relational tables, inheritance of instance variables
and methods, storage of query language or
programming language procedures representing
instance methods, as special fields in relational
tables, and support for abstract/user defined data
types and the operations supported on them. It
should be noted that the POSTGRES designers
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Table 18.3(a) Polygon object definition.

Superclasses (object)

Class variables
Number__of__polygons

Instance variables

List__of__nodes
List__of__arcs
Area

Instance methods

Calculate__centroid
Draw
Overlay

Table 18.3(b) Land parcel object definition.

Superclasses (polygon)
Class variables
Instance variables

Value
Owner

Instance methods

Transfer__ownership
Re__zone

regard an evolutionary approach as the best way
forward, that is adding object-oriented facilities to
an existing relational database framework. This is in
contrast to some of the proponents of object-
oriented programming, who wish to achieve the
same kind of functionality, but without the
perceived constraints of the relational model (Cox
1986; Wells 1988; Stroustrup 1988). Other
authorities expect to see convergence of the
programming and database viewpoints in future
(Tsichritzis and Nierstrasz 1988).

The major example of the object-oriented
approach in the GIS field is the INTERGRAPH
TIGRIS system (Herring 1987) which utilizes
object-oriented programming, rather than object-
oriented DBMS techniques or an object-oriented
interface. Further work in this area has been
reported, in terms of user interface aspects
(Egenhofer and Frank 1988), data modelling (Kemp
1990; Orenstein 1990; Worboys, Hearnshaw and
Maguire 1990a} and query modelling (Worboys,
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Hearnshaw and Maguire 1990b). It is clear,
however, that a fuller exploration of the potential of
object-oriented DBMS systems, as the organizing
framework for spatial databases, may have to wait
until they move further from the ‘proof-of-concept’
stage (Thatte 1988) towards widespread availability.

CONCLUSIONS

Evolving trends in the design and implementation
of general purpose database management systems
have been examined, with regard to their
significance for the handling of both digital
cartographic and attribute data. The leading role of
relational methods has been identified. The fact that
their widespread adoption in the data processing
world at large coincided with the rapid upsurge of
interest in GIS in the 1980s, has undoubtedly
contributed to their success. Extensions to the
relational model and query languages to handle
both spatial operators and object orientation are
already well advanced. Further developments in the
handling of temporal attributes in spatial databases
will assume greater importance in future, as data
volumes grow and database update in mature
systems takes over from database creation
(Snodgrass 1987; Rowe and Stonebraker 1987;
Langran 1988, 1989; Price 1989).

Finally, across the entire spectrum of database
applications there is the possibility of using methods
from knowledge-based systems and natural
language processing; but these are discussed by
Smith and Ye Jiang (1991 in this volume). In an
analogous manner to object-oriented methods,
however, it remains uncertain as to whether an
extended relational or other type of DBMS should
act as the repository for the knowledge base
(Tsichritzis and Nierstrasz 1988). Past history
suggests that while in the research phase a variety of
approaches will vie for position, subsequently
market pressures will enforce a concentration on
standardized solutions, characterized by
maintainability and simplicity of structure.
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