DEVELOPING APPROPRIATE
SPATIAL ANALYSIS METHODS
FOR GIS

S OPENSHAW

The geographical information revolution demands a new style of spatial analysis that
is GIS appropriate and GIS proof. The existing spatial analytical toolbox is largely
inadequate, consequently there is an urgent need to create more relevant methods
and also to educate users not to expect the impossible when analysing geographical
data. The real challenge is the need to develop new, largely automated, spatial data
exploratory techniques that can cope with the nature of both the geographical data
created by GIS and the skill base of typical GIS users. It also needs to emphasize the
creative, hypothesis generating, and artistic aspects of geographical analysis, avoid
being too dependent on a blinkered and inadequate inferential statistical mentality,
and recognize the limitations of working within a geographical domain. A number
of useful and applicable techniques are described and optimism is expressed about
the opportunities that abound for making good use of spatial analysis within GIS

environments.

ON THE NATURE OF SPATIAL ANALYSIS

A good GIS will today probably contain over 1000
commands (or their equivalent) but few, typically
none, will be concerned with what might correctly
be termed spatial analysis rather than data
manipulation. This distinction is critical since spatial
data handling procedures such as buffering, overlay,
and query are not ‘real’ analysis operations except
in a data descriptive or cartographic sense. It is
useful, therefore, to define first what is meant by
spatial analysis and then briefly outline the available
technology.

The origins of spatial analysis lie in the
development of quantitative and statistical
geography in the 1950s. Spatial analysis was
originaily based on the application of the available
statistical methods to spatial data (Berry and
Marble 1968). Later, it was extended to include
mathematical model building and operational
research methods (Taylor 1977; Wilson and Bennett
1985). Hagerstrand (1973:69) provided an adequate

definition of spatial analysis when he wrote ‘to no
small degree the recent quantitative analysis in
geography represents a study in depth of the
patterns of points, lines, areas, and surfaces
depicted on maps of some sort or defined by co-
ordinates in two- or three-dimensional space’. Most
other definitions are similar, for example, Johnston,
Gregory and Smith (1986: 446) define spatial
analysis as ‘quantitative (mainly statistical)
procedures and techniques applied in locational
analytic work’. Unwin (1981) presents spatial
analysis as concerned with the arrangements on
maps of four types of data portrayed there: points,
lines, areas, and surfaces. The techniques allow
both description of the arrangements on individual
maps and the comparison of two or more maps so
that relationships might be identified. A variety of
statistical and geographical analysis procedures
have been developed to serve these objectives
(Goodchild 1988).

Clearly, spatial analysis is extremely relevant to
GIS and the gradual absorption of spatial analysis
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tools into GIS systems is inevitable. Spatial analysis
offers a toolbox that can in principle be applied to
all the standard types of geographical information
and be performed in one-dimensional space, more
commonly in two-, occasionally in three-, and rarely
in four-dimensional space. It is important as a
means of increasing the functionality of GIS by
providing a link between the essentially
cartographic domain in which the origins of GIS lie
and key areas of applied quantitative, statistical and
mathematical analysis, and modelling, of interest to
many users of GIS. However, in seeking to meet
these objectives the recommended technology has
to be capable of coping with the peculiarly complex
nature of the spatial data. Several years ago Ripley
(1984) talked about the need for a revolution; this
need still exists.

This chapter is a critique of existing spatial
analysis techniques and their potential for use in
GIS. The considerable differences between
methods appropriate for environmental and socio-
economic applications mean that, apart from some
general remarks, it is not possible to consider them
both here. Instead, the discussion concentrates on
socio-economic applications. Burrough (1991 in this
volume) and Bonham-Carter (1991 in this volume)
make some relevant comments about
environmental applications and useful reviews
include Davis (1986), Nielson and Bouma (1985)
and Oliver, Webster and Gerrard (1989a, 1989b).

A REVIEW OF THE EXISTING SPATIAL
ANALYSIS TOOLBOX

The newcomer to spatial analysis may well require a
standard textbook from which to work. This is
especially important because of the current lack of
spatial analysis procedures in GIS systems and also
in statistical packages. A good survey of a wide
range of statistical procedures is provided in Upton
and Fingleton (1985). Diggle (1983) and Ripley
(1981) also provide a useful digest. Simpler
introductions are given in Taylor (1977), Unwin
(1981) and Wilson (1974) considers modelling
applications. In addition, a plethora of quantitative
geography and statistical geography textbooks
outline most of the standard methods.
Unfortunately, there is as yet no globally useful text
designed to inform the GIS user specifically about
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the complete range of spatial analysis methods that
might be considered relevant and appropriate to
GIS.

It is useful, therefore, to provide a brief
summary of the range of available spatial analysis
tools by identifying classes of methods appropriate
for different geographical data types (Table 25.1).
Note that the four basic geographical data types
shown in Table 25.1 can often be mapped on to
each other. For example, point data can be
aggregated to areas, areas can be represented by a
point reference, lines can be aggregated to areas,
and data for areas converted into a surface and
surface values estimated for both points and areas
(Gatrell 1991 in this volume). Likewise, levels of
measurement can be changed by recoding
operations. It should be noted, however, that all
spatial data operations involving aggregation and
generalization are usually irreversible. This is
because they result in the loss of original
information and the possible addition of unwanted
noise and, sometimes, pattern to the data. It is
important that information is held in its most
disaggregated form and that it is analysed at that
level.

Table 25.1 A simple typology of some spatial
analysis methods

Type of

geographical data  Methods of analysis

Point Nearest neighbour

Quadrat methods

Line Network analysis and graph
theoretic methods
Fractal dimension
Edge detection

Area Shape measures
Spatial autocorrelation
Spatial regression
Regionalization
Spatial interaction
Location-allocation modelling

Surface Image processing

Bayesian mapping

A common starting point in the analysis
sequence is the map generated by GIS. This usually
results in the user conjuring up a whole series of
questions that involve spatial analysis. Do the map
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patterns mean anything? Are they ‘real’ or are they
likely to be a chance occurrence? What might be
‘causing’ a particular pattern? Can the patterns be
modelled, predicted, and forecasted? Can the map
patterns be manipulated using planning tools?
These questions reduce to two key types of spatial
analytical activity: (1) spatial pattern description
and (2) spatial pattern relationships. These can
involve univariate as well as multivariate analysis. It
is often statistical in nature but not exclusively so,
with mathematical modelling and other forms of ad
hoc geographical analysis procedures being of
interest.

Spatial pattern descriptors

In spatial pattern description, various numerical and
statistical descriptions can be obtained to
summarize the display. For point data various
nearest neighbour and geostatistical methods can be
used to summarize patterns; for example, centroid
and standard distance for point patterns relating to
selected attributes and mean distance to kth nearest
neighbours. For area data, the measures of spatial
autocorrelation are often employed (Cliff and Ord
1981). Various multivariate statistical methods can
be used to summarize complex multi-layered (i.e.
multivariable) map data sets. Line data types are
generally more difficult to analyse, although various
measures such as orientation and intersection
frequencies might be useful. Network data can be
described using various graph theoretic measures.
Finally, surface data are often described by being
fitted to various mathematical functions to yield
different degrees of pattern; for example, different
orders of polynomial trend surface. Sometimes the
map patterns relating to data cannot easily be
shown in cartographic form; for instance, flow data
relating to a complete origin or destination table,
although there are exceptions even here.

A few other areas which may cause problems
concern the non-ideal nature of spatial data
distributions, the lack of linearity of relationships,
and the usual problems of interpreting spatially
aggregate information (e.g. ecological inference
error and the Modifiable Areal Unit Problem
(MAUP); see Openshaw 1984). In some areas,
specially adapted methods exist which can cope
better with the special needs of spatial analysis. For
example, the incorporation of a contiguity

constraint into cluster analysis, so that regions
consist of spatially contiguous areas, is often a
useful improvement to a standard cluster analysis
procedure.

Spatial pattern relationships

Aninterest in spatial pattern description soon leads
to more sophisticated questions about spatial
pattern relationships; indeed, pattern description is
seldom an end in itself. For example, if a pattern
exists what might be causing it? If there is a
particular variable of interest which displays spatial
patterning, then what are the principal spatial
covariates? The standard approaches involve factor
analysis and regression methods to analyse data for
spatial associations. However, the use of standard
statistical procedures necessitates ignoring the
presence of spatial dependencies in the data. If
regression is of interest, then it is appropriate to use
an explicitly spatial regression model (e.g. see
Anselin 1988; Anselin and Griffith 1988; Kennedy
1988).

Problems with spatial pattern description and
relationships

It is important to note that both spatial pattern
description and relationship analysis methods can
be applied in three markedly different contexts: (1)
testing a priori hypotheses about patterns and
relationships present in spatial data; (2) efficient
spatial pattern and relationship description; and (3)
analysis for purposes of decision support and spatial
planning.

One problem with both description and
relationship measurement is the need to generalize
the results and, perhaps, compare findings in
different study regions. This can be handled within
an inferential framework. It is usually assumed that
the user has a predefined a priori hypothesis that
was not generated by examining the data on which it
1s to be tested. Often a general purpose null
hypothesis is used; namely, that the map data have
been generated by some kind of spatially random
process; for example, the kth nearest neighbour
distance is similar to what would be expected in
spatially random data. If more detail exists then the
hypothesis can be more explicit; for example, that
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cancer incidence does not decline with distance
from a nuclear installation or that one region has a
higher value on some test statistic than another
region. This process is fraught with difficulty. First,
it is necessary to have knowledge of the sampling
distributions of the test statistic under the null
hypothesis; with spatial data standard
approximations do not often apply. Second, any
prior knowledge of the data invalidates the
outcome; for instance, if the hypothesis was
generated by looking at a map of the data then it
could not be properly tested without access to a
second, unseen, data set. This post hoc hypothesis
testing problem is extremely important in a
scientific context, yet it runs counter to the long
prevailing style of exploratory data analysis used in
geography. It also has major implications for spatial
model building. One approach is first to run a
model, then examine the residuals to define a
missing variable, then re-build the model. That is
fine provided no tests of significance are used to
validate the model but then how is the user
supposed to know whether the model is a good one?

Other problems with the use of inferential
variants of spatial analysis methods concern: (1) the
use of published critical test statistic values will
almost certainly be inappropriate because of the
spatially autocorrelated nature of geographical
data; (2) the power of test statistics used in a spatial
analysis context is not usually known; (3) it is not
certain as to whether the sampling analogy is
meaningful because many geographical data
constitute the population and there is no notion of
sampling; and (4) problems of multiple testing
which often occur in exploratory studies or when
mapping probabilities (each zone constitutes a
separate hypothesis so critical significance levels
need to be corrected downwards).

Some of the difficulties with inferential
methods can be overcome. For instance, the use of
Monte Carlo significance tests is a neat way of
avoiding the need to make asymptotic assumptions
about the distribution of test statistics (Besag and
Clifford 1989). It is also a good way of dealing with
spatially autocorrelated data. Other problems
remain less well identified to hamper the unwary in
an inferential context. For instance, the use of
spatial autocorrelation statistics for ratio variables
may invalidate standardized mortality rates.
Another avenue which may be used to avoid these
problems is to switch to Bayesian methods and
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leave the frequentist domain altogether. In the long
term this may be ideal but at present there are
problems in computational tractability.
Nevertheless, some GIS-relevant Bayesian mapping
procedures exist; (see Clayton and Kaldor 1987,
and Alexander, Ricketts and Williams 1989). They
have the nice property of seeking to avoid some of
the problems in mapping data by taking into
account the spatially varying degrees of data
reliability, albeit at the expense of low power and a
high degree of arbitrariness.

Another way to apply spatial analysis methods
is to move away from an inferential approach and
regard description as the main purpose in spatial
analysis. This involves searching out potentially
interesting map patterns without necessarily being
in any position to test any hypotheses relating to
them. In general, the descriptive use of many
statistical methods on spatial data is satisfactory
provided no strong reliance is placed on significance
testing to validate or test the results. However, this
does have implications for comparative study and
result generalization. It may also appear to degrade
the utility of GIS and spatial analysis, but as is_
argued in greater detail later, this is quite
reasonable given the nature of geographical
information. It will be possible with time to develop
better statistical procedures for use with spatial
data, although this task is proving extremely
difficult and in any case it is not necessary for most
uses of GIS. There is an argument, therefore, to
abandon the traditional geographical applications of
statistical inference in favour of a more descriptive
approach in which significance tests are used mainly
as a results filtering mechanism.

The third view is to focus on the use of spatial
analysis as a planning and decision support tool.
The conventional concerns of science and statistical
inference are now subverted by the need to make
decisions based on the results of spatial analyses.
Densham (1991 in this volume) provides further
details of spatial decision support techniques.

One final aspect concerns the nature of the
available spatial analytical procedures in GIS. Most
of the methods described in Table 25.1 are not yet
available within GIS. This is simultaneously a
problem and an advantage. The lack of relevant
methods is a problem and it is probably only
possible to think of applying spatial analysis tools to
problem areas where there is a pre-existing body of
expertise in the technology and/or the problems
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themselves are of sufficient importance to demand
special attention. At the same time, the relative
absence of unsuitable methods is also an advantage.
Unfortunately, it is extremely easy to implement
methods that are inherently unsafe and it would be
a major error to include methods that exist in the
literature, but which are not readily applicable or
useful to the GIS era. It is important to try and
avoid the worst problems of misuse likely to be
generated soon by the availability of a
comprehensive menu of spatial analysis tools,
through which the user can, without regard to any
of the underlying principles, run the same data
through everything that exists. That would be fine if
the methods were all appropriate to the task in
hand.

SOME BASIC PRINCIPLES

The real problem is, therefore, not with the
definition of what spatial analysis means or with any
associated philosophical limitations, but with
identifying the nature of the technology needed to
provide basic spatial analytical functionality
relevant to GIS. For instance, how is it possible to
detect patterns in two-dimensional space, or
discover whether some arbitrary map coverages are
related in some way, or analyse time-dynamic
spatial information? Such questions are common to
many different GIS-inspired analyses. Yet it should
not be assumed that the existing spatial analysis
toolbox that comes from either quantitative
geography or spatial statistics is at all useful or
appropriate to GIS. It has been argued elsewhere
(Openshaw 1989a) that the spatial analytical
methods which GIS needs are still mainly absent
and await development.

Obvious key functions that are missing from
current GIS are basic exploratory geographical
analysis tools which can help the user to ‘find’ and
‘describe’ patterns and relationships that may exist
in spatial databases. This strong emphasis on data
exploration, rather than on confirmatory analysis
and hypothesis testing, reflects the lack of
applicable theory and prior hypotheses in most GIS
applications.

The need for exploratory geographical analysis
tools has also been stimulated by the vast explosion
in geographically referenced information which is

creating many new opportunities for spatial analysis
in areas where there is little previous research. In
many instances, the purpose behind the analysis can
only be exploratory and often results from the fact
that suddenly some new spatial data exist and
because they exist, they need to be analysed. For
example, experience has shown that once disease
databases are geographically referenced and thus
available for spatial analysis, there is only a short
time-lag before the data are analysed using the full
battery of available methods. The driving force is no
longer the academic sector, but a diverse range of
applied users. Many of these have little interest in
basic research and academic concerns and merely
want to use GIS technology to answer pressing
practical questions. There is a need, therefore, for
simple usable spatial analytical methods that are
relevant to GIS.

It is argued that the emerging mountain of real
and potentially creatable geographically referenced
data challenges the conventional manner by which
spatial statistical analysis and modelling are
currently performed in an academic context. The
challenge can be viewed as involving the need for an
automated and more exploratory modus operandi in
situations which are data rich but theory poor.
Some will argue that a mapping capability is all that
is required. Indeed maps provide an excellent
communications medium for presenting results in a
form that most people think they can understand.
However, maps provide a very poor form of
analysis technology; the human brain is far too
easily tricked and misled and the patterns that occur
are often far too complex for easy visual recognition
and interpretation (Monmonier 1977). There is a
clear need for a quantitative exploratory style of
spatial analysis that can complement the map-
oriented nature of GIS. These analytical tools must
be designed to meet such needs without becoming
so rigidly statistical that they become: (1) purely
tools for researchers; (2) so lacking in creativity that
they offer little prospect of new insights; and (3)
unable to answer any of the basic questions. Maybe
GIS only needs simple technology as the intrinsic
limitations of spatial analysis, combined with the
absence of process knowledge, argue strongly in
favour of a more relaxed, flexible, artistic and less
statistical approach than may have been expected.
Certainly the new technology has to be creative
within limits defined by some statistical analysis
process, but without being too constrained by an
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over-reliance on inappropriate methods. This
perception is fundamentally different from the
emphasis in spatial analytical research of the last
two decades, in which the goal seems to have been
greater levels of statistical and theoretical
sophistication rather than any strong concern for
application. If statisticians and geographical
methodologists wish to remain in touch with GIS
then they need to develop understandable methods
that can answer the questions that typical users are
likely to ask.

There is no magic set of spatial statistical tools
that can be incorporated into GIS in order to
provide an adequate spatial analysis toolbox
analogous to what exists for spatial data handling.
Instead there is the prospect of a long hard struggle
to develop suitable methods that can cope with the
very hard problems that characterize this area.
There are many practical difficulties that have to be
faced. In particular, geographical data are
inherently difficult to handle; current GIS seldom
contain all the data structures and access paths
needed for spatial analysis; spatial data suffer from
endemic errors of various kinds and these errors
propagate thereby contaminating ‘clean’ data sets
and reducing further the quality of these data.
There is probably not much that can be done to
eliminate the causes of error and uncertainty in
geographical information. What is more important
is the development of methods of analysis that can
handle data uncertainty rather than simply ignore it.

The research challenge is to build on these
principles and assemble a new set of spatial
analytical tools. This task is assisted by the recent
rapid increases in affordable computer processing
power. New computationally intensive numerical-
and simulation-based styles of spatial analysis can
be developed that may avoid some of the limitations
and difficulties of traditional approaches. A
computer-intensive route also brings with it a very
different perspective that seems more relevant to
the needs of GIS. It is possible to ‘buy’ solutions,
which are probably good enough for most users
even if they do not necessarily completely satisfy the
intellect, merely by throwing computing power at
the key problem areas. The improved availability of
supercomputers and multiple-processor systems is
fundamentally changing the amount of computer
power that is available, by two or three orders of
magnitude. It is now possible to think about new
numerical-based approaches without worrying too
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much about computer speed restrictions.
Development work on today’s supercomputers can
proceed in the secure knowledge that by the mid-
1990s (maybe much earlier), similar levels of
performance will characterize the popular
workstations on which GIS will be run.

These computer hardware trends also make it
feasible to start developing automated spatial
analytical methods. This is important as a means of
improving the efficiency of exploratory tools and for
coping with the thousands of potentially interesting
geographical data sets that now exist in the world
and which have never been subjected to any form of
spatial analysis. It is no longer feasible to think only
in terms of hand-crafted manual analysis by experts
with one or two years per data set! Nor is it sensible
to ignore most of the data. It is not inconceivable
that the information locked up in some of these
unanalysed data, in the form of spatial patterns and
relationships, and not yet identified deducible
theories, could be of considerable public,
commercial, and academic value. Unless spatial
analysis methods relevant to GIS can be developed,
many of these data will never be analysed. The real
challenge is, therefore, to discover how to trawl
through these geographical databases in search of
interesting results with a high level of efficiency by
devising new forms of spatial analytical methods,
rather than castigating this objective as constituting
the ultimate in unsound science.

UNDERSTANDING THE LIMITATIONS OF
SPATIAL ANALYSIS

In seeking to develop methods of spatial analysis
relevant to GIS, it is important to start by being
realistic about what spatial analysis can reasonably
be expected to deliver. The lessons from the first
quantitative revolution in geography suggest that it
failed, partly because too many users held wholly
unreasonable expectations about what might be
obtainable from geographical analysis. In reality,
even the most sophisticated spatial analysis
procedure will probably not progress the user very
far along the path of scientific understanding and in
some ways the technology appears to be limited in
what it can offer. Some users may find that
geographical pattern analysis and description is not
particularly useful in their search for process
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knowledge and causal understanding. Yet in many
instances, spatial analysis of the available
geographical data is the only available option. The
purpose of that analysis would typically be to
develop insights and knowledge from any patterns
and associations found in the data, which will either
be useful in their own right or else provide a basis
for further investigation at a later date using
different, probably non-spatial and more micro-
scale, methods. This function of ‘pointing others in
the right direction’ is an important goal for spatial
analysis.

Several problems conspire to restrict what
spatial analysis can achieve. They include: (1) the
lack of prior theory or hypotheses forcing the user
to start by searching for the existence of patterns or
relationships without knowing what to look for, or
even whether there is anything to find; (2) the
difficulties of operating in an exploratory context in
which knowledge of the data greatly complicates the
testing of post hoc hypotheses and models; (3) the
available geographical data are usually only
surrogates for other information which is missing
and often unobtainable (e.g. the use of distance as a
proxy for all manner of processes); (4) GIS may be
data rich but in most applications few of the key
process variables are present; (5) the ecological
nature of most analysis is a limiting factor while data
aggregation can change the nature of micro-level
relationships and sometimes also create spurious
new ones; (6) spatial data tend to be characterized
by complexity; (7) there are endemic questions
about data accuracy and quality; and (8) there are
severe difficulties in coping with the time
dimension. As a result, spatial analysis in a GIS
context is unlikely to result in a greatly improved
understanding of causality. This is not so much a
deficiency of the methods rather than a recognition
of the complexity and limitations under which GIS
operate. It is also questionable whether this goal of
process understanding based on knowledge of
causality is in fact reasonable given the well-known
problems of making causal inferences in the non-
experimental sciences. At best, all that will be
achieved will be some qualitative and descriptive
story about how processes may work. A few GIS
models may claim to offer process-relevant insights,
but at the end of the day they will probably still be
incapable of adequately representing the real causal
mechanisms.

Spatial analysis in the short term can only be a

fairly primitive descriptive science, but maybe for
many purposes that is sufficient. The ultimate
difficulty is the inherently limited utility of
geographical information in studies which attempt
to understand process. An example from spatial
epidemiology may help to clarify this key statement.
Age/sex standardization of incidence rates is a
common practice but neither age nor sex covariates
are directly causal variables, they are proxies for
other unmeasured and unknown process variables;
for instance, age cannot cause cancer but other
variables related to age might. In geographical
analysis also, virtually all the available data are
surrogates and proxies for other variables which are
either missing from the database or incapable of
measurement or not yet identified. It would be
sheer folly to go beyond what these sorts of data can
sustain. This is not to underestimate the immense
potential utility of geographical information, or of
the important insights about process that spatial
analysis may provide, but merely recognition that
there are limits to what can be achieved in a
geographical context. Fortunately, many GIS users
have only a basic shopping list and often only want
to make simple statements about the presence or
absence of patterns and relationships. For instance,
it is still usually sufficient to identify spatial pattern
as a departure from a spatially random process
expectation, without having to define precisely what
spatial process generating assumption would be
appropriate. Despite this apparently simple
requirement, current spatial analysis methods are
nowhere near meeting these needs and are a long
way from attaining their full potential. GIS is
revolutionary technology which requires flexible
fresh thinking unfettered by the past. In short, it
requires a new way of thinking. Table 25.2 offers
some guidance for spatial analysts.

DEVELOPING APPROPRIATE SPATIAL
ANALYSIS FOR GIS

The problem is where to start. It is apparent that
most developers of GIS have in the past seen little
need to put much effort into spatial analysis. Also,
there is no clear view of what spatial analytical
functions are needed. There is very little merit in
merely trying to include either a complete statistical
package that cannot cope with the special nature of
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Table 25.2 Some basic guidelines for spatial
analysis in GIS

1. Avoid highly formalized scientific designs.

2. Adopt an exploratory data analysis mentality.
3. Avoid being too statistically blinkered with an
over-emphasis on inappropriate inference.

4. Stay within the limitations of geographical
analysis.

5. Avoid any technique that either implicitly
ignores or explicitly removes the effects of
space.

6. Think carefully before using methods left over
from the 1960s era of quantitative geography.

7. Avoid the use of asymptotic assumptions, use
Monte Carlo simulation instead.

8. Remain aware of the possible effects that data
problems can have on the results.

spatial data or even to code-up the complete spatial
statistical technology according to Diggle (1983),
Ripley (1981) or Upton and Fingleton (1985) for a
GIS. This would be pointless because the chosen
methods have to be appropriate for typical GIS
environments, users, and analysis needs. For
example, nearest neighbour methods which assume
no positional uncertainty in point coverages are
inapplicable, as are spatial regression models which
can only function with no more than a few hundred
zones and provide no automated predictor search
mechanism. Interfacing complex statistical
packages, such as GLIM, would be another largely
irrelevant diversion of effort, as the methods cannot
readily cope with the spatially dependent nature of
the data they are meant to process.

One way forward is to define a small set of
generic spatial analysis functions, which can be built
in as standard GIS operations with their complexity
hidden by the use of appropriate interfaces.
Another would be to develop a more advanced set
of analysis tools, which would seek to provide new
analytical functions which are only possible within a
GIS environment. One problem involves defining
what spatial analysis functions and operations are
sufficiently general and generic to justify their
inclusion. A related issue concerns the nature of the
spatial data handling operations that the spatial
analysis methods may require to function and the
need to ensure that GIS builders put the necessary
hooks into their systems.

In addition, there is the practical necessity of
ensuring that the methods can actually work in a
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GIS environment. A basic set of design objectives
for developers of new spatial analysis methods
would have to include: an ability to handie large
numbers of zones (say 10 000); the need to cope
with the nature of geographical data including the
presence of uncertainty and errors; a high degree of
algorithmic portability; coverage of generic analysis
needs; the prospect of an extension into the time
domain; a high degree of automation; freedom from
critical assumptions and an essentially exploratory
modus operandi.

A SHORT LIST OF GENERIC SPATIAL
ANALYSIS FUNCTIONS

To some extent the importance of spatial analysis to
GIS is being recognized, although it is doubtful
whether sufficient research resources are being
devoted to building practical methods. The US
National Center for Geographic Information and
Analysis (NCGIA 1989) is clearly aware of the
problem and the spatial analysis theme is implicit in
several of its initiatives for the first three years. In
the United Kingdom, the ESRC’s Regional
Research Laboratory (RRL) initiative has also
identified spatial analysis as one of three major
research objectives for the eight RRLs to
investigate. Attempts have also been made to
develop a research agenda (Openshaw 1990a) and
six key areas have been identified (see Table 25.3).
It remains to be seen whether any of these
procedures migrates into the GIS systems of the
1990s.

Table 25.3 Six key spatial analytical research
topics

1. Response modelling for large data sets with
mixed scales and measurement levels.

2. Practical methods for cross area estimation.

3. Zone design and spatial configuration

engineering.

Exploratory geographical analysis technology.

Application of Bayesian methods.

Application of artificial neural nets to spatial

pattern detection.

Al
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Underlying all these topics is a concern for
exploratory geographical data analysis, restricted to
questions that the available geographical
information might be capable of answering. This
simplifies the technical task as it involves no more
than pattern and relationship description. In an
applied study, these activities would constitute only
the first stage of a more extensive work programme,
with the GIS role being limited to providing an
indication as to where further research should be
performed. However, this is still an extremely
important role. Moreover, hypotheses obtained
from the analysis of data for one region can be
tested (with considerable power) in another.
Pattern description and inductive styles of analysis
may seem difficult but they can also be extremely
creative and may result in new knowledge. Also,
the results they produce can often become the basis
for action without necessarily risking delaying a
response until there is proof of causation (typically
involving a 50- to 100-year delay); provided there
can be some assurance that the patterns are real and
not spurious. This raises another important
technical point. The conventional 5 per cent
statistical significance level may appear to be both
too lax (if the results are likely to cause concern)
and too stringent if descriptive power is being lost.
It is very easy to confuse descriptive and suggestive
results with validatory and confirmatory work. The
latter is wholly concerned with Type I errors
(finding pattern where none exists) while totally
ignoring Type II errors (failing to find pattern when
it exists). Quite often the latter may be more critical
than the former in exploratory and descriptive GIS
based spatial analyses.

The next stage in the argument in favour of
exploratory geographical analysis is to define a set
of basic generic functions; see Openshaw (1990b).
A list is given in Table 25.4 and the key features are
expanded here. This is viewed as important because
the most difficult task is identifying what functions
are required; the subsequent operationalization is
often far more easily achieved. It is hoped that by
- identifying a list of generic methods, which reflect
the previous discussion of the need for GIS-relevant
spatial analysis technology, that their creation will
be encouraged where they do not yet exist, and that
they will be more widely used where they do exist.

The idea of a pattern spotter is simply an
automated means of identifying evidence of
geographical pattern in point data sets without any a

Table 25.4 Basic generic spatial analysis
procedures.

Pattern spotters and testers.
Relationship seekers and provers.
Data simplifiers.

Edge detectors.

Automatic spatial response modellers.
Fuzzy pattern analysis.

Visualization enhancers.

Spatial video analysis.

A e o e

priori hypothesis to test. This problem may occur in
a genuine exploratory situation or as a means of
avoiding problems of post hoc model construction
when prior knowledge of a specific geographical
database renders suspect any hypothesis testing
approach. One realization of this method is the
geographical analysis machine discussed in the next
section.

A relationship seeker is an attempt to develop
a statistical procedure that mirrors the map overlay
process. Relationships between a point data
coverage and a set of M map overlays can be
modelled using Poisson regression. An alternative,
more geographical procedure involves a search
among 2™ ~ ! permutations of map coverages for
evidence of spatial pattern being created by the
interaction of the overlays with point data of
interest. A prototype procedure, termed a
Geographical Correlates Exploration Machine
(GCEM) has been built (Openshaw, Cross and
Charlton 1990). An interesting feature is its use of
location as an additional level of surrogate variable.
It will allow relationships which occur ‘here’ but
‘not there’ to be identified.

Data simplifiers are merely GIS-relevant
versions of existing classification methods. They
have existed for a few decades but are still absent
from most GIS. Regionalization procedures (i.e.
classification with contiguity constraints) provide an
obvious means of simplifying very large and
complex spatial databases to identify patterns.
These procedures can deal with extremely large
data sets and also handle flow data. Automated
zone design procedures provide a solution to a
whole range of spatial engineering problems (e.g.
redistricting and customized zone design). One
reaction to modifiable areal unit effects (Openshaw
1984) is to engineer spatial data aggregations to
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possess required characteristics. Automatic zoning
procedures can effectively achieve this objective
providing approximately optimal solutions to
various constrained and unconstrained problem
formulations. GIS is removing all the historic
restrictions on the types of zoning systems available
for reporting spatial data and it is important that
this new found ‘freedom’ is properly controlled and
used.

Edge detection is a further area of spatial
analysis relevant to GIS that is very undeveloped.
Zones are usually stored in a vector-based GIS as a
set of line segments with topological details. Why
not develop spatial analytical tools for analysing the
data in a GIS at this level instead of at the zonal
scale? Pattern detection now becomes a problem in
edge detection.

Spatial response modelling is also of
considerable importance. Increasingly, GIS are
being used to create multi-scale databases ranging
from the micro to the macro. There is a need for
automated response models to be developed in
which the values of a dependent variable can be
predicted by reference to whatever spatial predictor
information might be available, and under
circumstances where there is minimal prior
knowledge of the functional forms that might be
most appropriate. One response is a fully
automated modelling system (Openshaw 1988).
Another is to develop variants of the AID
(Automated Interaction Detector: a survey method
based on binary segmentation) technique called
database modelling (see Openshaw 1989b). No
doubt there are other possibilities, but it is
important to remember the design objectives that
GIS set; for instance, many rather than few possible
predictors, no prior knowledge of model
specification, non-linearity should be assumed, data
errors would not be unusual, mixed measurement
scales are not uncommon, and large data sets are
standard rather than exceptions.

Fuzzy analysis procedures are clearly relevant
to many areas of GIS because they provide a means
of dealing with all types of data uncertainty. The
question is basically how to incorporate fuzzy
analysis into GIS. Currently there are few
operational examples, although a fuzzy
geodemographic targeting system has been
proposed (Openshaw 1989b). The linkages with
object-oriented programming should help stimulate
academic interest in this area of GIS, but it could be
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the next century before any practical methods
emerge.

Visualization enhancers represent another
approach to supplementing the communication
power of the basic static map display (see
Buttenfield and Mackeness 1991 in this volume).
The increasing availability of geographical data with
time coordinates revives interest in the use of
computer movies as a basic but potentially
extremely effective analysis procedure. A time-
driven computer movie presentation would enliven
an otherwise static display (Tobler 1970; Moellering
1973). The cost of basic computer movie technology
based on video recording is now fairly low, although
the use of sophisticated animation technology
requires access to special video computer hardware.
In a GIS application, maybe only simple procedures
are needed (for instance, a succession of maps
showing data in two or three dimensions). The
utility of the visual images might be further
enhanced by performing spatial analysis at each
time slice. For example, the effects of space~time
analysis might be best seen by displaying a movie of
N different, but sequential in time, space—time
analyses. An additional dimension could be
provided by using sound to supply supportive
information about the map patterns being viewed.
However, this form of spatial analysis delegates the
task of spotting patterns and being creative to the
human observer. It also puts considerable emphasis
on stimulating little understood human cognition
systems by supplying selected visual and auditory
information.

A final area for investigation concerns the
possibility of analysing spatial data at the pixel
level. The objective here is to redefine spatial
analysis operations at the pixel scale, a form of
representation which is common to all spatial data
so that a common micro-analytical technology for
spatial analysis might be developed. For this
application, image processing technology is useful
but not adequate and a new set of tools would have
to be constructed. Besag (1986) gives one example
of how it might be achieved by statistical means;
another route could involve cellular automata (a
form of computer modelling that creates simple
holistic structures out of simple rules applied to
microscopic level data). As processing power
becomes less of a constraint, entirely different
forms of spatial analysis might well emerge in GIS
and this may be one of them.
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SOME SIMPLE PROCEDURES FOR
DETECTING PATTERNS AND
RELATIONSHIPS

Finally, a brief case study based on an extension of
the author’s Geographical Analysis Machine
(GAM), for the analysis of point pattern data,
might be helpful in illustrating the role of spatial
analysis in GIS. The original GAM concept
(Openshaw, Charlton and Wymer 1987; Openshaw
et al. 1988) has been generalized to encompass a
wide range of spatial pattern search methods.
Openshaw (1989c, 1990c) describes a GAM (g,m.s)
procedure where the g parameter relates to the
nature of the search geometry (i.e. circles, squares,
equal population at risk areas, kth nearest
neighbours), m refers to the choice of significance
assessment procedure (i.e. descriptive, hypothesis
testing, and significance estimation), and s is the
type of search strategy employed (i.e. locationally
comprehensive, case based, a priori site restricted,
linear feature, etc.). Variants of this method can be
run on a microcomputer and experience in running
a GAM identifies many of the key technical issues
that occur elsewhere in exploratory spatial analysis.

The original GAM involved the use of a
circular pattern detector and a locationally
comprehensive search based around intersection
points on a lattice. The lattice mesh was set at 0.2
circle radii to ensure that the circles overlapped.
This was considered important to allow for
positional uncertainty in the point data while a grid
search pattern was used to ensure that no locations
were excluded. In the original GAM, a range of
circle sizes was examined. A Poisson probability
was used to screen the results so that only those
circles with a relatively small probability of being
due to chance were mapped. The map of circles was
then used to identify subregions where there
appeared to be evidence of departure from a
spatially random distribution of points.

This approach can be criticized on the grounds
that the significance threshold used to screen the
circles needs to be corrected for multiple testing,
the overlapping circles re-use some of the data, and
no overall measure of Type I map error is
computed. All these problems can be overcome by
running a GAM on a supercomputer so that a
Monte Carlo significance test procedure can be
used. However, to some extent these criticisms
constitute an irrelevant distraction because they

imply that the spatial analysis is concerned not only
with pattern detection but also with validation.
They also raise severe technical problems. In
particular, the large number of implied hypotheses
being tested (typically a few million) results in low
power and only the most extreme results will tend to
survive (Openshaw er al. 1989). Additionally, the
results also depend on study region boundary and
size; the larger the region of interest the greater are
the dilution effects. Some of the lost power can be
regained by switching from measures of whole map
pattern (i.e. total counts of significance circles) to
what is termed vicinity analysis. The number of
circles can be reduced by defining a series of blobs
(or superclusters), each consisting of a set of
overlapping circles. The significance testing is based
on the frequency with which blobs formed in data
generated under a null hypothesis, have more
extreme characteristics than the observed data biobs
that they overlay (see Openshaw 1990c). There is,
however, an argument that the original descriptive
GAM is best and that maybe spatial analysis should
stop after defining areas where it may be worth
performing additional analysis using different data
and more precise methods. Certainly fears that the
original GAM was prone to large degrees of Type I
error proved to be unfounded.

The question now is what variant of the GAM
(g,m,s) family can be immediately used in GIS. The
need to use a supercomputer is primarily a result of
using a locationally comprehensive search strategy.
If a less comprehensive analysis is acceptable then
the procedure outlined in Appendix A can be run
on a microcomputer. This is based on Besag and
Newell (1990) who questioned the need for a
locationally comprehensive search and
recommended a kth nearest neighbour circle
method (see the alternatives in Appendix A) as a
means of coping with rural-urban differences in
population density. It is also computationally far
easier to focus only on the observed cases.
However, if positional uncertainty in the data is to
be simulated then results from the Besag and
Newell method and the original GAM would tend
to converge. Finally, it is possible to adapt the
Appendix A procedure to cope with a search along
a buffered linear feature, for instance, an overhead
wire. A similar alternative is the Cuzick and
Edwards (1990) test.

A different type of spatial analysis problem
occurs when it is necessary to test a hypothesis that
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there is a raised incidence of, say, a disease near a
set of a priori locations. Appendix B outlines a
simple procedure for site-based hypothesis testing.
To be scientifically valid, the sites have to be
identified prior to any knowledge of the data and if
there are multiple sites then an additional
correction for multiple testing should be applied.
The procedure in Appendix B is a variant of the
Poisson maximum method (Stone 1988) which
makes no assumption about which distance band is
the critical one; it merely examines a wide range
and corrects the result for multiple testing using a
Monte Carlo method.

A third basic procedure is concerned with
measuring the association between a point data
coverage and M other coverages. One route is the
best coverage permutation search used in GCEM.
Another is a Poisson regression model with a focus
on analysing the residuals from a well-fitting model
for evidence of interesting spatial patterning.
Another possibility requires that the dependent
coverage is not a point coverage. A random sample
of points is generated and an attempt made to
identify a relationship using categorical analysis
methods (namely, log linear modelling) or a
database model of some kind. These types of
analyses could be readily performed using standard
packages.

CONCLUSIONS

The task of developing appropriate methods of
spatial analysis for GIS is extremely important at a
time when there is large growth both in the
availability of geographical information and in the
numbers of users who are potentially interested in
spatial analysis. The previous neglect of spatial
analysis looks set to become a major impediment to
the full exploitation of GIS. There is a danger that
the growing imbalance between the availability of
geographical data and the limited range of existing
analytical technology may slow the growth of GIS
and result in widespread failure to make full use of
the available information. This discussion has
attempted to provide a better understanding of the
nature of those spatial analysis methods that seem
to be most relevant to GIS. The key features that
are considered important are an exploratory
function and an emphasis on insight and

400

creativeness. There are dangers in trying to be too
statistically pure in situations where the appropriate
methods have not been developed and which, in any
case, can only really sustain low level description.
Perhaps in its GIS guise, spatial analysis can only
remain an art and will never aspire to being a
science.

APPENDIX A: A SIMPLIFIED GAM FOR A
MICROCOMPUTER

Basic Algorithm

Step 1. Create two point data coverages, one of
cancer cases or some other rare data to which a
Poisson assumption is applicable, the other a
measure of the population at risk. The data could
refer to points or to small zones which are point
referenced. The two point data coverages should be
merged so that there is one data set containing both
the incidence data and the population at risk counts.

Step 2. For each point with at least one observed
case (i), order all other points by distance from it.
Apply a selection rule to determine the count of
cases and population at risk within a critical distance
of (i); see below for alternatives.

Step 3. Compute a Poisson probability of
obtaining the observed number of cases given the
population at risk under the null hypothesis.

Step 4. 1If ‘significant’ at the 5 per cent level then
draw the ‘circle’.

Step 5. Repeat Steps 2 to 4 for all observed cases

Alternative Selection Procedures

Some alternatives could be: (a) use a fixed radius
circle; (b) determine for each case the minimum
circle radius sufficient to encompass at least K other
cases; and (c) the minimum circle radius to yield a
target population at risk or an equal expectation of
cases.

Other variations

The search geometry could be changed; the ‘circles’
could be replaced by ‘squares’ or ‘segments of
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circles’ and so on. The effects of possible covariates
could be removed by adjusting the Poisson
probability calculation. The effects of positional
uncertainty can be handled by repeating the
procedure many times (say 99 or 999), each time
wobbling (according to some error model) the data
coordinates. An approximate measure of robustness
can be obtained by computing for each case the
amount by which the population at risk could be
increased before the result became insignificant.
Finally, the effects of multiple testing could be
handled by Monte Carlo methods, but these would
suffer from study region dependency. Nevertheless,
it is important to be aware that if there are M
observed cases and with a significance threshold of 5
per cent, then M*0.05 significant results would be
expected purely by chance. In this spatial context
the test is no more than a screening process and,
even if a smaller than expected number of
significant results occurred in a ‘strange’ area, then
there may well be something interesting occurring.
Whether this ‘something interesting’ is an artefact
of the data or is real would be a matter for
subsequent investigation.

APPENDIX B: A SITE BASED
HYPOTHESIS TESTER

Basic Algorithm

Step 1. Assemble a set of sites to be evaluated and
create data as in Appendix A.

Step 2. Select a maximum radial search distance

(d).

Step 3. Order the data from an evaluation site by
distance. For each different distance band out to
distance (d) compute a Poisson probability that the
observed cumulative number of cases could have
occurred by chance under the null hypothesis.

Step 4. Identify the distance band with the most
extreme result.

Step 5. Repeat Steps 3 and 4 for 99 or 999 or 9999
spatial data distributions generated under the null
hypothesis and compute the rank of the observed
data result. Convert to a measure of probability as a
test of the hypothesis.

Observations

It is important that the list of sites to be evaluated is
identified prior to obtaining any knowledge of the
data. The list should not subsequently be added to
in the light of the results. On the other hand, if the
purpose is description and not significance testing
then a variety of search methods might be employed
to ‘look’ for maximally significant results. This is
valid only if the probability of obtaining similarly
extreme results in spatially random data was
sufficiently small to make any interpretation
interesting.
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