JGRASP

Tutorials* for the JGRASP™ 1.8
Integrated Development Environment

James H. Cross Il and Larry A. Barowski
Copyright © 2005 Auburn University
All Rights Reserved

August 9, 2005
DRAFT

*These tutorials are from the JGRASP Handbook.
Copyright © 2005 Auburn University

All Rights Reserved

Table of Contents

Overview of JGRASP and the TULOFIAlSc.uoiieiiiieieese e 5
L1 INSEAHING JGRASP ...ttt ettt nrn 8
2 GEELING STAMEU ...ttt re e b e b nreers 10
2.1 SEArtiNG JGRASP ..ottt aenne e 11
2.2 Quick Start - Opening a Program, Compiling, and RUNNiNg..........cccccceveeveneenenn. 12
2.3 Creating @ NEW FIleooieecece e 14
2.4 SAVING @ FIIE ..ot ae e 17
2.5 Generating a Control Structure DIiagramcccocvevevieeresieseese e see e 18
2.6 FOIAING @ CSD.....oiiiiii ettt et st neenne e 20
2.7 LINE NUIMDEIS. ...ttt bbb bbbt 21
2.8 Compiling a Program — A Few More DetailS...........ccooveveneiinninie e, 22
2.9 Running a Program - Additional OptioNnS..........cccccveeiieieie e 25
2.10 USING the DEDUGGETveiiieiieiiie ittt ne e 27
2.11 Opening a File — Additional OptioNS.........cccceiveivereiieseee e 29
2.12 ClOSING @ FHIE ..ot 31

2. L3 EXItING JGRASP ...ttt sttt n s 32
2.1 EXEICTISES ...vevteteeiteeteetee st ettt sttt se ettt s et e bt e st e ebe et e e st e ebe et e e neenbeenbeeneesreenae e 32
2.15 Review and Preview of What’s ARadccoeiiiiiiiiiieieee e 33

3 Getting Started With ODJECES........coiiiiiiieiie e s 34
3.1 SEArtiNG JGRASP ..ottt a e nneens 35
3.2 Navigating to Our First EXample Project..........cccoovieiieienieniencee e 36
3.3 Opening a Project and UML WiNOWccccoiiveiieiiiieseceseese e 37
3.4 Compiling and Running the Program from UML Window............c.cccccevvevveiiennenn, 38
3.5 EXploring the UML WINGOWcoiiiiiiiieiesic e 39
3.6 Viewing the Source Code in the CSD WINAOW..........ccovevveieiieieeie e, 40
3.7 Exploring the Features of the UML and CSD WINAOWScccccvevvreerverieseennnnn, 41
3.7.1 Viewing the source code for a Class.........ccoevvveveiiieiieiciie s 41
3.7.2 Displaying class informationccccooeiiiiiineiee e 41
3.7.3 Displaying Dependency Information............ccccoeeveveiieinciccicce e, 41

3.8 Generating Documentation for the Project ..., 42

3.9 Using the Object WOrKDENCh.........ccoiiiiici e 43
3.10 Opening @ VIEWET WINUOWccciiiriiiieiiesieie ettt 46
3.11 INVoKIiNG @ MELNOQ..........coeiiiieii e 47
3.12 Invoking Methods with Object Parameters...........ccccoverenieniininic e, 48
3.13 Invoking Methods on Object Fields..........cccoviveiiiieiiececc e 48
3.14 Invoking Inherited Methods..........ccooiiiiiiiie e 49
3.15 Running the Debugger on Invoked Methods..........ccccovevvieniiincic e, 49
3.16 Creating Objects from the CSD WINAOWcccooviiiineniienieniee e 49
3.17 Creating an Instance from the Java Class Libraries...........cccoccevvererinrncreseennnnn, 51
3.18 EXiting the WOIrKDENCNooiiiiiie e 51
3.19 ClOSING @ PIOJECT....cuveiieeieeie ettt re e e ene e 51
3. 20 EXItING JGRASP ...ttt 52
BL2L EXBICISES ..vvetttesieetieiee ettt stttk b bbbt bttt ettt bbbttt 53
e (0] [=To! RSP RR 54
4.1 Creating @ PrOJECT.......cuciiiieiieeie e see ettt e te e te e ste et e e e te e reeneesneenneens 55
4.2 Adding files t0 the ProOJECTccuoiiiiieiie e 57
4.3 Removing files from the Project.........cccovvieie i 58
4.4 Generating Documentation for the Project (Java only)cccoccevveiiinieiienienenen, 59
4.5 Jar File Creation and EXEraCtioncccooceiiiiiininienieienesese s 61
O O [0 [I W o 0] [USROS 61
4.7 EXEICISES ...vtueeueesteteste st sttt sttt e ettt sb e be bbbt b e st et e b et e b e bbbt bt ne e et et 61
5 UML ClaSS DIAQIAMSc.ceeiiiuiiiiieiiieie et siee sttt ste et sseesbeseessessteenaesneesbeensesneeneas 62
5.1 OpeniNg the PrOJECL........cciieiecie it e e nne e 63
5.2 GeNerating the UMLccooiiiiiie e 64
5.3 Compiling and Running from the UML WiNdOWw...........cccceeviiiiieie e, 65
5.4 Determining the Contents of the UML Class Diagramccccceevvevivevveriesnennnnn, 66
5.5 Laying Out the UML DIaQramccceoueiieieniininiesesesieeeie et 69
5.6 Displaying the Members of @ Classcccccveiiiiiiic i, 70
5.7 Displaying Dependencies Between TWO CIaSSESccceverereririneniiisieeeiee,s 71
5.8 Navigating to Source Code viathe Info Tabccccoevveveiieici e, 72
5.9 Finding a Class in the UML Diagram..........ccccooereninininieienesesie e 72
5.10 Opening Source Code from UML.........cccoeiieiiiiiic e 72

5.11 Saving the UML LaYOULccccoiiiiiiie i 73

5.12 Printing the UML Diagramccccoiueiiieieiiesiese e seese e e 73
6 The ODbJect WOIKDENCNcuiieie s 74
6.1 Invoking Static Methods from the CSD WiNdOW...........ccceeveiieireieiieceeie e, 75
6.2 Invoking Static Methods from the UML WINAOW..........cccooviiinininiinneeeseeie, 77
6.3 Creating an Object for the WOrkbench ..., 79
6.4 INVOKING @ METNOUccuiiiiiiiie e e 81
6.5 Invoking Methods with Parameters Which Are ObJectScccevvevviiervciesiennnn, 82
6.6 Invoking Methods on Object Fields..........cccooiiiiiiiiie e, 82
6.7 Selecting Categories of Methods to INVOKE..........ccccevveveeieiieceee e, 83
6.8 OPENING ODJECT VIBWEIS........eiiiiiiieieeiie ettt st nne e 85
6.9 Running the Debugger on Invoked Methods...........cccvvveveiieiieinecc e, 86
6.10 EXiting the WOIrKDENCNooviiiii e 86
7 The Integrated DEDUGGETeoveiieieeie e ste e eneenrs 87
7.1 Preparing to RUN the DeDUQGET........oiiiiieieiie e 88
7.2 Setting @ BreakpoiNt...........oouiiiiiieii e 88
7.3 Running a Program in Debug MOcceiieiiiiiiin e 89
7.4 Stepping Through a Program — the Debug BUttons.............ccocevveieiieveccenieen, 91
7.5 Stepping Through a Program — without Stepping IN ..., 92
7.6 Stepping Through a Program — and Stepping IN.......c.ccceveeeiieineie e, 94
7.7 OPening ODJECT VIBWETS......c..iiiiiiieieiiesieeie sttt sttt sae e neenae e 95
7.8 DebUQQING @ PrOgramccuiiiiiiee ettt 97
8 The Control Structure Diagram (CSD)ccceiiiiiiiiiieieeee e e 98
8.1 An Example to IHlustrate the CSDccoceviiieiieiece e 99
8.2 CSD Program ComponentS/UNITScccueieriieieiienieeie e e sneas 101
8.3 CSD CONLrol CONSIIUCES ..ottt 102
8.4 CSD TeMPIALES ...ttt e sre e e eneas 106
8.5 Hints on Working With the CSD ..o, 107
8.6 Reading Source Code With the CSDccccoveiiiiiiice e 108
8.7 RETEIBINCES. ...ttt e st e e e s reenteeneesneenneeneenneas 113
9 Viewers for Objects and PrimitiVEScccccvveiiiiie i 114
9.1 OPENING VIBWENS ...ttt sttt sttt sttt bbbt e e 115
9.2 SeleCting AMONG VIBWSc.ooiieieiiesie ettt te et e e ste e sneesaeennenneas 115

9.3 Setting the VIEW OPLIONSccciiiiiieiieie et eneas

9.4 Exercises

Overview (v1.8)
8/9/2005

Overview of JGRASP and the Tutorials

JGRASP is a lightweight integrated development environment IDE), created specifically
to provide visualizations for improving the comprehensibility of software. jGRASP is
implemented in Java, and thus, runs on all platforms with a Java Virtual Machine. As
with the previous versions, JGRASP supports Java, C, C++, Ada, and VHDL, and it
comes configured to work with several popular compilers to provide “point and click”
compile and run. jJGRASP, which is based on its predecessors, pcGRASP and UNIX
GRASP (written in C/C++), is the latest IDE from the GRASP (Graphical
Representations of Algorithms, Structures, and Processes) research group at Auburn
University.

JGRASP currently provides for the automatic generation of three important software
visualizations: (1) Control Structure Diagrams (Java, C, C++, Ada, and VHDL) for
source code visualization, (2) UML Class Diagrams (Java) for architectural visualization,
and (3) Data Structure Diagrams (Java). jJGRASP also provides an innovative Object
Workbench and Debugger which are tightly integrated with these visualizations. Each is
briefly described below.

The Control Structure Diagram (CSD) is an algorithmic level diagram generated for
Ada, C, C++, Java and VHDL. The CSD is intended to improve the comprehensibility of
source code by clearly depicting control constructs, control paths, and the overall
structure of each program unit. The CSD, designed to fit into the space that is normally
taken by indentation in source code, is an alternative to flow charts and other graphical
representations of algorithms. The goal was to create an intuitive and compact graphical
notation that is easy to use. The CSD is a natural extension to architectural diagrams
such as UML class diagrams.

The CSD window in JGRASP provides complete support for the CSD generation as well
as editing, compiling, running, and debugging programs. After editing the source code,
regenerating a CSD is fast, efficient, and non-disruptive (approximately 5000 lines/sec).
The source code can be folded based on CSD structure (e.g., methods, loops, if
statements, etc.), then unfolded level-by-level. Standard features for program editors
such as syntax based coloring, cut, copy, paste, and find-and-replace are also provided.

The UML Class Diagram is currently generated for Java source code from all Java class
files and jar files in the current project. Dependencies among the classes are depicted
with arrows (edges) in the diagram. By selecting a class, its members can be displayed,
and by selecting an arrow between two classes, the actual dependencies can be displayed.
This diagram is a powerful tool for understanding a major element of object-oriented
software - the dependencies among classes.

The Data Structure Diagram (DSD) is a dynamic visualization of an instance of a class
such as ArrayList, LinkedList, HeapMap, and TreeMap. The DSD is displayed in the
presentation view of a viewer launched on the instance from the Workbench or Debugger
(described below). As the user steps through the program in debug mode or invokes
methods on the Workbench, DSDs are undated dynamically. The presentation views are
provided for instances of the most commonly used classes in the Java Collections

Overview (v1.8)
8/9/2005

Framework. A subsequent version of 1.8 will provide a Viewer API to allow users to
create dynamic views, including DSDs, of their own classes.

The Object Workbench, in conjunction with the UML class diagram and CSD window,
allows the user to create instances of classes and invoke their methods. After an object is
placed on the Workbench, the user can open a viewer to observe changes resulting from
the methods that are invoked. The Workbench paradigm has proven to be extremely
useful for teaching and learning object-oriented concepts, especially for beginning
students.

The Integrated Debugger works in conjunction with the CSD window, UML window,
and the Object Workbench. The Debugger provides a seamless way for users to examine
their programs step by step. The execution threads, call stack, and variables are easily
viewable during each step. The JGRASP debugger has been used extensively during
lectures as a highly interactive medium for explaining programs.

The JGRASP Tutorials provide best results when read while using JGRASP; however,
they are sufficiently detailed to be read in a stand-alone fashion by a user who has
experience with one or more other IDEs. The tutorials are quite suitable as supplemental
assignments during the course. When working with JGRASP and the tutorials, students
can use their own source code, or they can use the examples shown in the tutorials
(.\JGRASP\examples\Tutorials\). Users may want to copy the examples folder to their
own directories prior to modifying them. The Tutorials are listed below along with
suggestions for their use.

1. Installing JGRASP — This tutorial can be skipped if JGRASP and the Java JDK have
already been installed successfully. It is recommended for those students planning to
install JGRASP and the Java JDK on their personal machines.

2. Getting Started — This tutorial is a good starting place for those new to jJGRASP. It
introduces the process of creating and editing Java source files, then compiling and
running programs. It also includes generating the CSD for the program.

3. Getting Started with Objects — This tutorial is a good starting place for those
interested in an Objects First approach to learning Java, but it assumes the reader will
refer to Section 2 as needed. Projects, UML class diagrams, the Object Workbench,
and Viewers are introduced.

4. Projects — This tutorial discusses the concept of a project file (.gpj) in JGRASP which
stores all information for a specific project. This includes the names (and paths) of
each file in the project, the project settings, and the layout of the UML diagram.
Some users may want to work in projects from the beginning while others want to
deal with projects only when programs have multiple classes or files.

5. The UML Class Diagram — This tutorial assumes the user understands the concept of
a project and is able to create a one (Tutorial 4).

6. The Object Workbench — This tutorial assumes the user is able to create a project
(Tutorial 4) and work with UML class diagrams (Tutorial 5). The workbench
provides an exciting way to approach object-oriented concepts and programming by

Overview (v1.8)
8/9/2005

allowing the user to create objects and invoke the methods directly rather than
indirectly via a mai n() method.

7. The Integrated Debugger — This tutorial can be done anytime. Students should be
encouraged to begin using the debugger early on so that they can step through their
programs, even if only to observe variables as they change.

8. The Control Structure Diagram — This tutorial is perhaps best read as control
structures such as the if, if-else, switch, while, for, and do statements are studied.
However, for those already familiar with the common control structures of
programming languages, the tutorial can be read anytime. The latter part contains
some helpful hints on getting the most out of the CSD.

9. The Viewers for Objects and Primitives [Planned] — This tutorial provides a more in-
depth introduction to using Viewers in conjunction with the Workbench and
Debugger. Included are examples of dynamic presentation views for instances of
ArrayList, LinkedList, HeapMap, and TreeMap.

For additional information and to download jJGRASP, please visit our web site at the
following URL. http://www.jgrasp.org

New in JGRASP 1.8

Perhaps the most notable change in version 1.8 involves the “look and feel” of the user
interface. In addition, CSD generation can now be undone, and new viewers are now
available for the commonly used classes in the Java Collections Framework.

Single vs. Multiple Menus and Toolbars — The default View of the desktop is now
single menu and single toolbar. Previous versions of JGRASP provided a top level menu
for the desktop and a top level menu for each open CSD or UML window. In single
menu/toolbar mode, the CSD or UML window that has focus determines the content and
functionality of the menu and toolbar. Users who prefer the pre-1.8 look-and-feel of
multiple menus and multiple toolbars can select these options via the View menu.

CSD Undo - Beginning with version 1.8, CSD generation is treated like an edit, which
means it can be undone like any other edit (Edit — Undo, or Ctrl-Z). Note that undoing a
Generate CSD is different from a Remove CSD operation. The Undo returns the file to
the prior state, whereas the Romove CSD removes the diagram but leaves changes in
indentation and/or line feeds resulting from the previous Generate CSD.

Object Viewers for Workbench and Debugger — New viewers for array, ArrayList,
LinkedList, HeapMap, and TreeMap have been added to JGRASP. Each of these viewers
provides multiple views of an object. For example, the new array viewer includes basic
view, array elements view, and presentation view (or “textbook view”), as well as a
special two-dimensional array elements view. An incremental version of 1.8 will include
a Viewer API to encourage users to write viewers and views for their own classes.

Overview (v1.8)
8/9/2005

1 Installing jGRASP

The current version of JGRASP is available from http://www.jgrasp.org in four separate
files: two are self-extracting for Microsoft Windows, one is for Mac OS X, and the
fourth is a generic ZIP file. Although the generic ZIP file can be used to install JGRASP
on any system, it is primarily intended for Linux and UNIX systems. If you are on a
Windows machine, either “JGRASP exe” or “JGRASP JRE exe” is recommended.

JGRASP exe (2.3 MB) — Windows self-extracting exe file. The full Java 2
Platform Standard Edition (J2SE) Development Kit (hereafter referred to as JDK)
must be installed to run JGRASP and compile and run Java programs.

JGRASP JRE exe (17.7 MB) — Windows self-extracting exe file with Java
Runtime Environment (JRE). This version includes a copy of the JRE so that
no Java installation is required to run JGRASP itself; however, the JRE does not
include the Java compiler. If you will be compiling and running Java
programs, you must also install the full JDK. The jGRASP JRE version of
JGRASP is convenient if you will be compiling programs in languages other than
Java.

JGRASP pkg.tar.gz (2.6 MB) — Mac OS X tarred and gzipped package file
(requires admin access to install). J2SDK is pre-installed on Mac OS X
machines.

JGRASP (2.7 MB) — Zip file. After unzipping the file, refer to README file for
installation instructions. The full JDK must be installed in order to run JGRASP
and to compile and run Java programs.

Installing on Windows 95/98/2000/XP — After downloading either “JGRASP exe” or
“JGRASP JRE exe” (described above), simply double click on the .exe file, and the script
will take you through the steps for installing JGRASP. If you are uncertain about a step,
you should accept the default by clicking Next and/or pressing ENTER key. When you
have completed the installation, you should find the JGRASP icon on your desktop.
JGRASP should also be listed on the Window’s Start — Programs menu.

Installing on Mac OS X — To install JGRASP on a Mac OS X machine, a root password
is required. When you download JGRASP, the install file (.pkg.tar.gz) should unzip and
untar automatically. If this did not happen, you can use Stuffit Expander [or from a
terminal, use "gunzip jgrasp*.tar.gz" then "tar xf jgrasp*.tar"]. You should now be able
to double click on the .pkg file to continue the installation. The first time you run
JGRASP, the CSD font will be installed on your system, and a soft link to the JGRASP
startup script (for command line execution) will be created in /usr/bin or your
$HOME/bin directory.

Installing on x86 Linux, SPARC Solaris, and NetBSD/i386 — Unzip the distribution
(.zip) file in the directory where you wish to install JGRASP. This will create a jgrasp
directory containing all the files. You may want to add the "bin™ subdirectory of this
directory to your execution path or create a soft link to .../jgrasp/bin/jgrasp from a
directory on the executable path.

Overview (v1.8)
8/9/2005

Compilers - Although jGRASP includes settings for a number of popular compilers, it
does not include any compilers. Therefore, if the compiler you need is not already
installed on your machine, it must be installed separately. Since these are generally
rather large files, the download time may be quite long. If a compiler is available to you
on a CD (e.g, with a textbook), you may save yourself time by installing it from the CD
rather than attempting to download it.

Compiler Settings - JGRASP includes settings for the following languages/compilers.
The default compiler settings are underlined. Note that links for those that can be freely
downloaded are included for your convenience.

Ada (GNAT)
ftp://cs.nyu.edu/pub/gnat/3.15p/winnt/gnat-3.15p-nt.exe

C, C++ (GNU/Cyanus, Borland, Microsoft)
http://sources.redhat.com/cygwin/

http://www.borland.com/downloads/download chuilder.html
FORTRAN (GNU/Cygnus)

Included with Cygwin, see (2) above. Note that FORTRAN is currently
treated as Plain Text so there is no CSD generation.

Java (J2SE JDK, Jikes)
http://java.sun.com/j2se/1.5.0/download.jsp
Assembler (MASM)
Note that assembler is treated as Plain Text so there is no CSD generation.

After you have installed the compiler(s) of your choice, you will be ready to begin
working with jGRASP. If you are not using the default compiler for a particular
language (e.g., JDK for Java), you may need to change the Compiler Settings by clicking
on Settings — Compiler Settings — Workspace (or Global). Select the appropriate
language, and then select the environment setting that most nearly matches the compiler
you have installed. Finally, click Use on the right side of the Settings dialog. For details
see Compiler Environment Settings in JGRASP Help.

Starting JGRASP - You can start JGRASP by double clicking on the icon on your
Windows desktop. See the next section for details.

iGRASP

Getting Started (v1.8)
8/9/2005

2 Getting Started

Java will be used in the examples in this section; however, the information applies to all
supported languages for which you have installed a compiler (e.g., Ada, C, C++, Java)
unless noted otherwise. In any of the language specific steps below, simply select the
appropriate language and source code. For example, in the “Creating a New File” below,
you may select C++ as the language instead of Java, and then enter a C++ example. If
you have installed JGRASP on your own PC, you should see the JGRASP icon on the
Windows desktop.

Objectives — When you have completed this tutorial, you should be comfortable with
editing, compiling, and running Java programs in JGRASP. In addition, you should be
familiar with the pedagogical features provided by the Control Structure Diagram (CSD)
window, including generating the CSD, folding your source code, numbering the lines,
and stepping through the program in the integrated debugger.

The details of these objectives are captured in the hyperlinked topics listed below.

2.1 Starting JGRASP

2.2 Quick Start - Opening a Program, Compiling, and Running
2.3 Creating a New File

2.4 Saving a File

2.5 Generating a Control Structure Diagram

2.6 Folding a CSD

2.7 Line Numbers

2.8 Compiling a Program — A Few More Details
2.9 Running a Program - Additional Options
2.10 Using the Debugger

2.11 Opening a File — Additional Options

2.12 Closing a File

2.13 Exiting JGRASP

2.14 Exercises

2.15 Review and Preview of What’s Ahead

10

Getting Started (v1.8)
8/9/2005

2.1 Starting JGRASP

If you are working in a Microsoft Windows environment, you can start JGRASP

by double clicking its icon on your Windows desktop. If you are working in a

icrasp computer lab and you don’t see the jGRASP icon on the desktop, try the
following: click Start — Programs — JGRASP

Depending on the speed of your computer, JGRASP may take between 10 and 30 seconds
to start up. The JGRASP virtual Desktop, shown below, is composed of a Control Panel
with a menu and toolbar across the top plus three resizable panes. The left pane has tabs
for Browse, Debug, Find, and Workbench (Project tab is combined with the Browse tab
beginning in version 1.7). The Browse tab, which is the default when JGRASP is started,
lists the files in the current directory. The large right pane is for UML and CSD
Windows. The lower pane has tabs for JGRASP messages, Compile messages, and Run
Input/Output. The panes can be resized by moving the horizontal or vertical partitions
that separate them. Select the partition with the mouse (left-click and hold down) then
drag the partition to make a pane larger or smaller. You can also click the arrowheads on
the partition to open and close the pane.

File Edit View Project Settings Tools Window Help
- 1
‘ce Fileg + | |Sort ... |+ ||k
- 1 | - : CSD and UML
=3 Browse Windows
ﬂexamplesﬂuturiaﬂ |l / Tab Pane
[Hello 4
CPersonalLibrary || - -
CJViewerExamples To Resize Pane,
OddEven.java ~— | Sel?(?t and Dr_ag Message
Partition or Click Tab Pane
e T / ArrOWheadS to
Browse | Debug - open or close
| Find | WorkBench | -
e T I
Compile Messages erRASP Messages |/Run 10 |
Stop
Clear
Copy | |rq] L]
HIER

Figure 2-1. The JGRASP Virtual Desktop

11

Getting Started (v1.8)
8/9/2005

2.2 Quick Start - Opening a Program, Compiling, and Running

Example programs are available in the JGRASP folder in the directory where it was
installed (e.g., c:\program files\jgrasp\examples\Tutorials). If JGRASP was installed by a
system administrator, you may not have write privileges for these files. If this is the case,
you should copy the tutorial folder to one of your personal folders (e.g., in your My
Documents folder).

Note: If you already have example programs with which you are familiar, you
may prefer to use them rather than the ones included with JGRASP as you work
through this first tutorial.

Clicking the Open File button & on the toolbar pops up the Open File dialog. However,
the easiest way to open existing files is to use the Browse tab (below). The files shown
initially in the Browse tab will most likely be in your home directory. You can navigate
to the appropriate directory by double-clicking on a folder in the list of files or by
clicking on the up-arrow as indicated in the figure below. The “R” refreshes the Browse
pane. In the example, the Browse tab is displaying the contents of the Tutorials folder.

S[=/e9

File Edit Yiew Project Settings Tools Window Help

To move up in the directory

g .
Ml Sd~ ||S0.. (v |y — | click on the UP arrow

«|=+|F[rR

mplesiTutorials| +

[T Hello ; To open a folder

[PersonalLibran | : double-click on the folder name
ClviewerExample

OddEven.java -

i ||>\ To open a file

e T T T T T T AT double C||Ck on the flle name
Browse | Find | °

Dehug
Workhench : .
I h ARBRR AR R AR AR R R R R R ARR R AR R AR R R R R R R ARR R AR R R AR R R R R R R R AR R AR AR AR R RRARRRER AR AR R R R AR R R R R R R R RR R

Compile Messages |/ IGRASP Messanges |/ Run 110
Stop j
Clear i

Figure 2-2. The JGRASP Virtual Desktop

12

Getting Started (v1.8)
8/9/2005

Double-clicking on the Hello folder, then the Hello.java file, as shown in Step 1 below,
opens the program in a CSD window. The CSD window is a full-featured editor for
entering and updating your programs. Notice that opening the CSD window places
additional buttons on the toolbar. Once you have opened a program or entered a new
program (File — New File — Java) and saved it, you are ready to compile the program and
run it. To compile the program, click on the Build menu then select Compile.
Alternatively, you can click on the Compile button indicated by Step 2 below. After a
successful compilation — no error messages in the Compile Messages tab (the lower
pane), you are ready to run the program by clicking on the Run button as shown in Step 3
below, or you can click the Build menu and select Run. The standard input and output
for your program will be in the Run 1/O tab of the Message pane.

Step 1. Open file Step 2. Compile program Step 3. Run program
Double-click file name e &

[File: Hellc..java C:\Documents and Settings\crossjhiMy Documentz4jGRAS. ..

File Edit View Build Project Settings Tools Window Help
aEEpE BED kal i 600N

1 .
All Soul| « | |Sort ... | [§ public class Hello

v

e
L] + | R || Bo.. |: public static void main(String[] args)
lesTutorialgHello| v |- L
P | : System.out.println ("Hello worldiiyn") =

Hello.java 1 1
.

N o TR EESORITROR :

Browse L Find

n I o
Debug :
Workbench HEIID.ia'i.r‘a

e T T I T e R T T R R T T T T I T T T A I T T T A T T T A S R T A R R S A R e A R e e R R R T R R R R T R T AR T AR R R R NN S R R T R

r Compile Messages |/ IGRASP Messanges |/ Run 110 |

[¢]

i) ‘ Hello world! =
Clear Bl

q] Il | L)
BIEa Line:? Col:2 Code:d Top:1 lows IBL

Figure 2-3. After loading file into CSD Window

13

Getting Started (v1.8)
8/9/2005

2.3 Creating a New File

To create a new Java file within the Desktop, click on File — New File — Java. Note that
the list of languages displayed by File — New File will vary with your use of JGRASP. If
the language you want is not listed, click Other to see the additional available languages.
The languages for the last 25 files opened will be displayed in the initial list; the
remaining available languages will be under Other.

After you click on File — New File — Java, a CSD window is opened in the right pane of
the Desktop as shown in Figure 2-4 below. Notice the title for the frame, JGRASP CSD
(Java), which indicates the CSD window is Java specific. If Java is not the language you
intend to use, you should close the window and then open a CSD window for the correct
language. Notice the button for each open file appears below the CSD windows in an
area called the windowbar (similar to a taskbar in the Windows OS environment). Later
when you have multiple files open, the windowbar will be quite useful for popping a
particular window to the top. Later when you have numerous windows open, you may
want to reorder the buttons by dragging them around on the windowbar.

4
ol e In the upper right corner of the CSD window are three buttons that control its

[File: [Grasp 2] - jGRASP CSD (Java) M=
File Edit View Build Project Settings Tools Window Help

= REEE RN RN T E

e Files| v | |Sort ... | v || public class Hello =
[-]

|+ |t|R||Bo.. || * pun1id [B] (Grasp 2]-iGRASP CSD (Java)

pleslTuturiaIsU—lellu| v ! ,

Hello.java) ’ Buttons for Hello.java and
e Grasp2 (an unnamed file)

] on Windowbar
1 A T —
Browse L Find] M 1 Ibl_
Debug : —
Workbench Hello.java [Grasp 2]

H R BEE G e e e e bR e b e e b e R G G e b b b e b e G R e L e b e L e

Compile Messages erRASP Messages |/Hun 110 |

Stop j
Clear i

4] [y

HIENA Linez1 Col1 Code:d Top:1l lows BLE

Figure 2-4. Opening a CSD Window for Java

14

Getting Started (v1.8)
8/9/2005

display. The first button minimizes the CSD window; the second button maximizes the
CSD window or, if it is already maximized, the button restores the CSD window to its
previous size. The third button closes the CSD window. You may also make the
Desktop itself full screen by clicking the appropriate button in the upper corner of it.

Figure 2-5 shows the CSD window maximized within the virtual Desktop. The “L”
shaped cursor in the upper left corner of the empty window indicates where text will be
entered.

TIP: If you want all of your CSD windows to be maximized automatically when you
open them, click Settings — Desktop, and then click Open Desktop Windows
Maximized (note that a check mark indicates this option is turned ON).

[3 File: [Grasp 2] - jGRASP CSD {Java) M =E3
File Edit View Build Project Settings Tools Window Help -

= REEEERENEBNME N T E

e Files| v | |Sort ... |+ (g
«|=|2[rR]|| Bo.. |
pleslTuturiaIsU—lellu|v

Hellojava
e T —
Browse Find | - —
! I]
Debug B
I Workbench Hello java [Grasp 2]

Stop j
Clear i
4] o]
BIEa Line:1 Col1 Code:d Top:1 E\.rs LK

Figure 2-5. CSD Window maximized in Desktop

15

Getting Started (v1.8)
8/9/2005

Type in the following Java program in the CSD window, exactly as it appears.
Remember, Java is case sensitive. Alternatively, you may copy/paste the Hello program
into this window, then change the class name to Hello2 and add the “Welcome...” line.

public class Hell o2

{
public static void main(String[] args)
{
Systemout.println ("Hello world!");
Systemout.println ("Wl come to j GRASP! ") ;
}
}

After you have entered the program, your CSD window should look similar to the
program shown in Figure 2-6.

[E File: [Grasp 2] * - jGRASP CSD {Java) M=
File Edit View Build Project Settings Tools Window Help -
g @ BEha sl el =
Al Sowl * | [Sort ... | = : public class HelloZ
o
] + | R|| Bo.. [: public static void main{3tring[] args)
. §E {
.Ducuments L E| - Systen.out.println ("Hello world!"); =
Hello.java System. out.println ("Welcome to JERASPI);
- 1
L
—— - — -
Browse L Find 7 M | |P|_
Dehug :
Workbench [&] Hellojava | [%] [Grasp 2] *
Wl T T e 8L R8P PR
Compile Messages erRASP Messages |/Hun 10 |

Stop
Clear i
4] Lo
HiE|8 Line:8 Col2 Coded Top1 |fowsplk

Figure 2-6. CSD Window with program entered

16

Getting Started (v1.8)
8/9/2005

2.4 Saving a File
You can save the program as "Hello2.java" by doing any of the following:
(1) Click the Save button B on the toolbar, or
(2) Click File — Save on menu (see Figure 2-7), or
(3) Pressing Ctrl-S (i.e., while pressing the Ctrl key, press the “s” key).

If the file has not been saved previously, the Save dialog box pops up with the name of
the file set to the name of the class file. Note, in Java, the file name must match the class
name (i.e., class Hello2 must be saved as Hello2.java). Be sure you are in the correct
directory. If you need to create a new directory, click the folder button on the top row of
the Save dialog. When you are in the proper directory and have the correct file name
indicated, click the Save button on the dialog. After your program has been saved, it
should be listed in the Browse tab (see Figure 2.8 on the next page). If you do not see the
program Browse tab, you may need to navigate to the directory where the file was saved.

TIP: Click @ on the toolbar to change the Browse tab to the directory of the current file.

3 File: Hello2.java * C:\Documents and Settingscrossjh\My Documents\jGR... [Z”E|rz|

File| Edit View Build Project Settings Tools Window Help -

o e a2y ki 6 00 E
5‘_l|£l’ll;.ﬂll ic cla=ss HelloZ

v

Close Cil-2 yhlic static woid main(3tring[] args)

Close All]
Gystem.out.println ("Hello wmorld!iiyn"):
Save Ctrl-= SyEtem.Dut.println ("Welcome to JERASPIN)

Save As

Backup As Ctrl-D
Save All

Print Settings b
Print b
Recent Files b I |]
Workspace va Hello2.jav...

el G ||| e
es |/ Run 10 |

[¢]

Generate Documentation

Show Documentation -
Complexity Profile Graph b
Escape Virtual Desktop

[]

Raise ! Lower Fi41
Exit JGRASP Line:6 Col12 Code:115 Top:1 E\.rs LK

Figure 2-7. Saving a file from the CSD Window

17

Getting Started (v1.8)
8/9/2005

2.5 Generating a Control Structure Diagram

You can generate a Control Structure Diagram in the CSD window whenever you have a
syntactically correct program. Note that CSD generation does not do type checking so,
even though the CSD may generate okay, the program may not compile. Generate the
CSD for the program by doing any of the following:

(1) Click the Generate CSD button , or
(2) Click View — Generate CSD on the menu, or
(3) Press the F2 key.

If your program is syntactically correct, the CSD will be generated as shown in the figure

below. After you are able to successfully generate a CSD, go on to the next section
below.

[d File: Hello2. java C:\Documents and Settings\crossjhiMy Documents\jGRA. .. |Z E|[Z|
File Edit View Build Project Settings Tools Window Help -

oEEe DD Way & i éeom=

All Sow| v | [Sort ... |+ [p =Jpublic class Helloz
3 {
L + | R || Bo.. public static wvoid nain(3tring[] args)
g [i {
.mucuments il ‘| i S¥sten.ont.println ("Hello world!"): =
Hello.java Sy¥stem. out.println ("Welcome to JGRASPI)
Hello2 java :] }
1 U
e T —]
Browse L Find a m | Iy |_
Debug B
Workhench : Hello.java HelloZ.java

Stop
Clear i
4] o]
BIEa Line:8 Col5 Code:d Top:1 E\.rs LK

Figure 2-8. After CSD is generated

18

Getting Started (v1.8)
8/9/2005

If a syntax error is detected during the CSD generation, JGRASP will highlight the
vicinity of the error and describe it in the message window.

If you do not find an error in the highlighted line, be sure to look for the error in the line
just above it. For example in Figure 2-9, the semi-colon was omitted at the end of the
first println statement. As you gain experience, these errors will become easier to spot.

If you are unable find and correct the error, you should try compiling the program since
the compiler usually provides a more detailed error message (see Compiling_a_Program
below).

You can remove the CSD by doing any of the following:

(1) Click the Remove CSD button , or
(2) Click View — Remove CSD on the menu, or
(3) Press Shift-F2.

[File: Hello2.java * C:\Documents and Settings\crossjh\My Documents\jGR. .. |:||§|[Z|

File Edit View Build Project Settings Tools Window Help B

aH®2éE B0 maVY +ié 66N

=jpublic class HelloZ
{

All Sowl| w | (Sort ... |« F:f:
«|+|1|R| Bo.. |
CiDocuments and E|v
Hello.java :
Hello2.java

public static void main(String[] args)
{
System out.println ("Hello world!")
EgEean, out. println [("Welcoms to JEERASFIT)

T e 3

||

Browse L Find *| M | Iy
Debug :
Workbench : Hello.java Hello2 jav...
o A A L AR L AR R R A A A R A L R R R A A A R A A R e A A A L R e A R R R B A T R A N B R B A T Nl A R B R B A T N A B R R B A T N AN B R R B A R Rl AR B R R A T R
fCumpiIE Messanges erHASP Messanges |/Hun 1 |
Stop Hello2.java:6:10:6:15: parse error at or before "System'. B
Clear i
|4] [| [»]
HEi8 Line:6 Cok10 Code:83 Topil lovspBlK

Figure 2-9. Syntax error detected

19

Getting Started (v1.8)
8/9/2005

Remember, the purpose of using the CSD is to improve the readability of your program.
While this is may not be obvious on a simple program like the example, it should become
apparent as the size and complexity of your programs increase.

TIP: As you enter a program, try to enter it in “chunks” that are syntactically correct.
For example, the following is sufficient to generate the CSD.

public class Hello

{
}

As soon as you think you have entered a syntactically correct chunk, you should generate
the CSD. Not only does this update the diagram, it catches your syntax errors early.

2.6 Folding a CSD

Folding is a CSD feature that becomes increasingly useful as programs get larger. After
you have generated the CSD, you can fold your program based on its structure.

For example, if you double-click on the class symbol =j in the program, the entire
program is folded (Figure 2-10). Double-clicking on the class symbol again will unfold
the program completely. If you double-click on the “plus” symbol, the first layer of the
program is unfolded. Large programs can be unfolded layer by layer as needed.

Although the example program has no loops or conditional statements, these may be
folded by double-clicking the corresponding CSD control constructs. For other folding
options, see the View — Fold menu.

3 File: Hello2.java * C:\Documents and Settingscrossjh\My Documents\jGR... [Z”E|rz|

File Edit View Build Project Settings Tools Window Help -

aEEé BDD eV +X660HH

All Soul = | 1Sort ... | : = public class Hellol | -~
:

«|= |+ |r|| Bo.. L

C:iDocuments and § v |
Hello.java :
Hello2 java

M T B

Browse LFind Eg 4| m | Iy

Debug
| Workbench || [£]Henojava | [&]Hello2 jav...

BIEa Line:d Colid Code:d Top:1 lows ELH

Figure 2-10. Folded CSD

20

Getting Started (v1.8)
8/9/2005

2.7 Line Numbers

Line numbers can be very useful when referring to specific lines or regions of a program.
Although not part of the actual program, they are displayed to the left of the source code
as indicated in Figure 2-11.

Ej Line numbers can be turned on and off by clicking the Toggle Line Numbers button
on the CSD window toolbar or via the View menu.

With Line numbers turned on, if you insert a line in the code, all line numbers below the
new line are incremented.

* You may “freeze” the line numbers to avoid the incrementing by clicking on the
Freeze Line Numbers button. To unfreeze the line numbers, click the button again. This
feature is also available on the View menu.

3 File: Hello2.java * C:\Documents and Settingscrossjh\My Documents\jGR... '._

File Edit Yiew Build Project Settings Tools Window Help - ﬁ =
afdaé B F a0 20600 =
Al Sowl * | |Sort ... | :, 1 apuhlic: class HelloZ |
1z {
4= 1 | R|| Bo.. |} 3 public static wvoid main(3tring[] args)
' < o 4 =
C:Documents and ‘| v s Svstem.out.println ("Hello world!");
Hello.java A System. out.println ("Welcome to JGEASPIT) @ | |
Hello2 java I '
g L}
a
T —
Browse L Find 4| m | |"|_
Dehug i
Workbench || [£]Henojava | [&]Hello2 jav...
T e e A e A e A A e e A e e e e A At AP et e et e ettt ettt e s
BIEa Line:d Col1 Code:207 Top:1 lows ELH

Figure 2-11. Line numbers in the CSD Window

21

Getting Started (v1.8)
8/9/2005

2.8 Compiling a Program — A Few More Details

When you have a program in the CSD window, either by loading a source file or by
typing it in and saving it, you are ready to compile the program. When you compile your
program, the file is automatically saved if Auto Save is ON, which it is by default. Auto
Save can be turned on/off by clicking Settings — Auto Save. If you are compiling a
language other than Java, you will need to “compile and link” the program.

+ Compile a Java program in JGRASP by clicking the Compile button or by clicking
on the Compiler menu: Build — Compile (Figure 2-12).

'h- Compile and Link the program (if you are compiling a language other than Java) by
clicking on the Compile and Link button or by clicking on the Build menu: Build —
Compile and Link. Note, this option will not be visible on the toolbar and menu in a
CSD window for a Java program.

In the figure below, also note that Debug Mode is checked ON. This should always be
left on so that the .class file created by the compiler will contain information about
variables in your program that can be displayed by the debugger and Object Workbench.

3 File: Hello2.java * C:\Documents and Settingscrossjh\My Documents\jGR... |Z E|[E|

File Edit View |Build| Project Settings Tools Window Help -

H G | Compile Ctrl-B ‘ ‘ i’ . E

¥ Debug Mode —
Al Sow| ¥ ||Sort | o . Rt
- L) | R Run as Applet ring[] args)
CiiDocuments ant pepug 1o worldl");
Hello.java Debug as Applet come to jGRASPI");
Hello2 java

[Run Arguments

[Run in MSDOS Window

¥ Run Topmost

¥ Focus to Run 10 Window When Runhing

Workspace's Main File [Not Set] »
Java Workhench]

M T B

Browse L Find] M | | P|_
Debug :
Workbench Hello.java Hello2 jav...
Tt A N R T A R R A T R A R B A R R R A T e R A R T i R R R A T e R A R T B I e R R T A T e R B R T A R e R R B B T e R R A R T B e R R B T e R R A R T B R R R B I R R AR T B N R R B BT R R AR T R R R R B AR R R AR D
BIEa Line:3 Col1 Code:207 Top:1 lows ELH

Figure 2-12. Compiling a program

22

Getting Started (v1.8)
8/9/2005

The results of the compilation will appear in the Compile Messages tab in the lower
window of the Desktop. If your program compiled successfully, you should see the
message “operation complete” with no errors reported, as illustrated in Figure 2-13. Now
you are ready to "Run™ the program (see 2.9 Running A Program — Additional Options).

[A File: Hello2.java C:\Documents and Settings\crossjh\My Documents\jGRA. .. |Z E'E'
File Edit View Build Project Settings Tools Window Help -

aE®aE BRED BaAY +ixé6 66 M=

=Jpublic class HelloZ

All Sowl| « | |Sort ... | |

{

+|+|+|R]|| Bo. [public static void main{String[] args)

o I 1 5
.Ducuments L ‘| v Svstem.out.println ("Hello wmorldl");

Hello java Systew.out.println [("Welcome to jGRASPI"): |
Hello2 java :] ¥

i L}
e T T |
Browse L Find P | m | | P|_
Debug :
Workhench : Hello.java Hello2. java

e T T I T e R T T R R T T T T I T T T A I T T T A T T T A S R T A R R S A R e A R e e R R R T R R R R T R T AR T AR R R R NN S R R T R

Compile Messages erRASP Messanges |/Run 10 |

S ———-JGRASPF exec: jJavac -g C:'‘\Documents and Settings\cro=sj t
Clear [=
-—---]JGRASP: operation complete.
Copy b
Kl [| [»]
BIEa Line:8 Col:5 Code:d Top:1 lows BLK

Figure 2-13. A successful compilation

Error Messages

An error message indicating “file not found,” generally means JGRASP could not find the
compiler. For example, if you are attempting to compile a Java program and the message
indicates that “javac” was not found, this means the Java compiler (javac) may not have
been installed properly. Go back to Section 1, Installing JGRASP, and be sure you have
followed all the instructions. Once the Java JDK is properly installed and set up, any
errors reported by the compiler should be about your program.

Figure 2-14 shows a program with a missing “)” in the first println statement. The error
description is highlighted in the Compiler Message tab, and jJGRASP automatically
scrolls the CSD window to the line where the error most likely occurred and highlights it.

23

Getting Started (v1.8)
8/9/2005

If multiple errors are indicated, you should correct all that are obvious and then compile
the program again. Sometimes correcting one error can clear up several error messages.

Only after you have “fixed” all reported errors will your program actually compile, which
means a .class file will be created for your .java file. After this .class file has been
created, you can “Run” the program as described in the next section.

All Sowl| « | (Sort ...
« |+ |1 |r| Bo.
CiiDocuments and £ +
Hello.java

Hello2 java

e T 3

Browse L Find a m | Iy

Debug
| Workhench Hello.java Hello2. java

T A e e A A e e e A e e e et A

Compile Messages erRASP Messanges |/Run 10 |

Hello?.java:h: '}' expectec

System.out . println ("Hello world!"; -

o

4] I | [»]
Line:d Col1 Code:207 Top:1 bvs LK

Figure 2-14. Compile time error reported

24

Getting Started (v1.8)
8/9/2005

2.9 Running a Program - Additional Options

At this point you should have successfully compiled your program. Two things indicate
this. First, there should be no errors reported in the Compile Messages window. Second,
you should have a Hello2.class file listed in the Browse pane, assuming the pane is set to
list “All Files.”

To run the program, click Build — Run on the toolbar (Figure 2-15). The options on the
Build menu allow you to run your program: as an application (Run), as an Applet (Run
as Applet), as an application in debug mode (Debug), as an Applet in debug mode
(Debug as Applet). Other options allow you to pass Run arguments, Run in an MS-DOS
window rather than the JGRASP Run I/0O message pane, and Run Topmost to keep
frames and dialogs of the program on top JGRASP components.

X You can also run the program by clicking the Run button on the tool bar.

[File: Hello2.java C:\Documents and Settings\crossjh\My Documents\jGRA. .. |Z||E|fz|

File Edit View |Build| Project Settings Tools Window Help -
@B @) comie Rl 28 i1 S
e ¥ Debug Mode —
All Souwl » || Sort . Run CHI-R —
- L | R Run as Applet ring[] args)
:WDu[:un!ents an Debug lo worldi® i} L
Hello.java Debug as Applet come to jGRASPIY) ;
Hello2 java

[Run Arguments

2 Run in MSDOS Window

¥ Run Topmost

¥ Focus to Bun O Window When Running

E o R A R R AR —
Browse Fi Workspace's Main File [Not Set] b L |:
Debug Java Workbench 3
Workhench o[LEER] TTEORFET T T | TTETCRE T
T e T R R A R A T R T R B A T T R R A T T R T T T R R A T R T e T T T R R T A T R T S I T R R T A T R A R T I R R R A T R A R T I R R A T A R A R T N R R B A T A R R B A T R R R B AR A R R R AT

Compile Messages erRASP Messages |/Run 10 |

Stop { =
-—--jGHASP: operation complete. =
Clear 3
(4] I]
BiE|8 Line:s Cok45 Code:s9 Topl owsplk

Figure 2-15. Running a program

25

Getting Started (v1.8)
8/9/2005

Output

If a program has any standard input and/or output, the Run 1/O tab in the lower pane pops
to the top of the Desktop. In Figure 2-16, the output from running the Hello2 program is
shown in Run 1/0 tab.

[File: Hello2.java C:\Documents and Settings\crossjh\My Documents\jGRA. .. |:||E|fz|
File Edit View Build Project Settings Tools Window Help -

=l B k& 44660
all Souwl| * | |Sort ... |+ : =jpublic class HelloZ
3 {
= + | R|| Bo. |: public static woid main(String[] args) 3
] : {
Sl L L E| h System. out.println ("Hello world!") ;|_ | 4
Hello.java S¥stem. out.println ("Welcome to jGRASPIM);
(@] Hello2.java } }
il T e e e i _
Browse | Find | 4 T | S
Debuy
Workbench || [&]Henojava | [E] Hello2java
TS T
rCumpiIe Messanges erRASP Messages |/Run 10 |

2l ---—JGRASP exec: java Hello?
Clear Hello world!
VWelcome to JGERASP!
Help . .
--—--jJGRASPF: operation complete.
| 4] ll |
BiE|8 Line:s Cold46 Code:d Top:1

Figure 2-16. Output from running the program

26

Getting Started (v1.8)
8/9/2005

2.10 Using the Debugger

JGRASP provides an easy-to-use visual Debugger that allows you to set one or more
breakpoints in your program, run the debugger, then after the program reaches a
breakpoint, step through your program statement by statement. To set a breakpoint, left-
click on the statement where you want your program to stop, then right-click and select
Toggle Breakpoint (Figure 2-17). Alternatively, after left-clicking on the line where you
want the breakpoint, click View — Breakpoints — Toggle Breakpoint. You should see
the red octagonal breakpoint symbol @ appear to the left of the line. The statement you
select must be an executable statement (i.e., one that causes the program to do
something). You can also set a breakpoint by hovering the mouse over the leftmost
columns of the line where you want to set the breakpoint. When you see the red
breakpoint symbol, left-click the mouse to set the breakpoint. In the Hello2 program
below, a breakpoint has been set on the first of the two System.out.println statements,
which are the only statements in this program that allow a breakpoint.

To start the debugger on an application, click the debug button @ on the toolbar.
Alternatively, you can click Build — Debug. When the debugger starts, the Debug tab
should pop up in place of the Browse tab, and your program should stop at the breakpoint

[File: Hello2.java C:\Documents and Settings\crossjh\My Documents\jGRA. .. E”E'E'

File Edit View Build Project Settings Tools Window Help -

gE®Ee BEDN T WAV X080 M=

Al Sowl * | [Sort ... | = : apuhlic: class Hello:Z Ml
3 {
= + | R|| Bo. |: public static woid main(String[] args) 3
.Ducuments and ‘| h Bys E11o worldl") | 4
Hello.java &vs Copy elcome to JERASPE!")
Hello2 java : } Cut
: . Paste
T Ty . —
Browse L Finl (4] Edit ' [,|_
Debug : Toggle Bookmark
Workbench || [ElHetojava || wext Bookmark
T h ARBRRRARR R AR R R R R R R R R RERR R AR AR R R R R R R R Euukmarks h '''
Compile Messages JGRASP Messages
. . |/] :| Toggle Breakpoint —
Stop Breakpoints] |
—-——=-JERASF exec: Javar —g <. wocuaents and Settings\cro=sj
Clear [1
-—-—-jJGRASP: operation complete. |
Copy u
[4] I vl
BiE|8 Line:s Cok10 Code:83 Top1 fwsplk

Figure 2-17. Setting a breakpoint

27

Getting Started (v1.8)
8/9/2005

as shown in Figure 2-18 below.
The debugger control buttons are

located at the top of the Debug tab. | & & J & W > € D ¢ E
Only one of the buttons is needed in

this section. Each time you click the

“step” button &, your program should advance to the next statement. After stepping all
the way through your program, the Debug tab pane will go blank to signal the debug
session has ended. When a program contains variables, you will be able to view the
values of the variables in the Debug tab as you step through the program.

In the example below, the program has stopped at the first output statement. When the
step button is clicked, this statement will be executed and “Hello world!” will be output
to the Run 1/0 tab pane. Clicking the step button again will output “Welcome to
JGRASP!” on the next line. The third click on the step button will end the program, and
the Debug tab pane should go blank as indicated above. When working with the
debugger, remember that the highlighted statement with the blue arrow pointing to it will
be the next statement to be executed. For a complete description of the other debugger
control buttons, see the tutorial on the Integrated Debugger.

[File: Hello2.java C:\Documents and Settings\crossjh\My Documents\jGRA. .. E”E'E'

File Edit View Build Project Settings Tools Window Help _
SE@G BOD W2y +xe@oN=
i 1 i Yy
i & | =jpublic class HelloZ | =
Iveslf =
| Threads ?pllhlil: static woid mainiString[] args)
A T 3 { =
Call Stack = | JYSLEW. OUL.println | He orldl") ;
T -?Eyst‘em. Dut.println illmlcm tu ijP! n :I ;
Variables | Eval | |- })
=1 L}
o D)
| Browse | Find 0 M | DI
Dehug :
Workbench Hello.java Hello2 java

L L L T L

r Compile Messages |/ IGRASP Messanes |/ Run 110 |

End ----jGRASP exec: java -Xnoagent -Djava.compiler=HOHE -Xdek =
-——-jJGRASP: connected to debugger. -
Clear e | =
Help Bl

q] Il | N3
BIE|B| Status: debugging USer program Line:s Cok10 Code:33 Top:1 |ows |l

Figure 2-18. Stepping with the Debugger

28

Getting Started (v1.8)
8/9/2005

2.11 Opening a File — Additional Options

A file can be opened in a CSD window in a variety of ways. Each of these is described
below.

(1) Browse Tab - If the file is listed in JGRASP Browse tab, you can simply double click
on the file name, and the file will be opened in a new CSD window. We did this
back in section 2.1 Quick Start. You can also drag a file from the Browse tab and
drop it in the CSD window area.

(2) Menu or Toolbar - On the menu, click File — Open or Click the Open File button &
on the toolbar. Either of these will bring up the Open File dialog illustrated in Figure
2-19.

[d open File
CADocuments and Settingsicrossihihly DocumentstGRASP_HandbookliexamplesiTutarialsiHello

Look In: |] Hello - @@ E:E:|E

("] Hello.class | 4 @ G
Hello.java Format;
("] Hello2.class @ Text
Hello2.java) Binary

Language:

[Default] o

Filter Extensions:

| |
File Hame: |
Files of Type: |All Files -

Open Cancel

Figure 2-19. Open File dialog

(3) Windows File Browser - If you have a Windows file browser open (e.g., My
Computer, My Documents, etc.), and the file is marked as a JGRASP file, you can
just double click the file name.

(4) Windows File Browser (drag and drop) - If you have a Windows file browser open
(e.g., My Computer, My Documents, etc.), you can drag a file from the file browser
to the JGRASP Desktop and drop it in the area where the CSD window would
normally be displayed.

29

Getting Started (v1.8)
8/9/2005

In all cases above, if a file is already open in JGRASP, the CSD window containing it
will be popped to the top of the Desktop rather than JGRASP opening a second CSD
window with the same file.

Multiple CSD Windows

When you have multiple files open, each is in a separate CSD window. Each program
can be compiled and run from its respective CSD window. When multiple windows are
open, the single menu and toolbar go with the top window only, which is said to have
“focus” in the desktop. In Figure 2-20, two CSD windows have been opened. One
contains Hello.java and the other contains Hello2.java. If the window in which you want
to work is visible, simply click the mouse on it to bring it to the top. If you have many
windows open, you may need to click the Window menu, then click the file name in the
list of the open files. However, the easiest way to give focus to a window is to click the
window’s button on the windowbar below the CSD window. As described earlier, these
buttons can be reordered by dragging/dropping them on the windowbar. In the figure
below, the windowbar has buttons for Hello and Hello2. Notice that Hello2.java is
underlined both on the windowbar and in the Browse tab to indicate that it has the current
focus. Hello2.java is also displayed in the desktop’s blue title bar.

[File: Hello2.java C:\Documents and Settings\crossjh\My Documents\jGRA. .. |Z||E|rz|
File Edit Wiew Build nject Settings Tools Window Help

oG BEDR nay 4 i e eoNE

All Sow * | (Sort ... | |k =
pu ‘._l 3 Hello.java C:\Do ents and Settings\cro... nz 4 E
R || Bo.. |:
- public class Hello -
C:Documents and § 10 When Hello2.java has the current
Hello.java public static void ms focus in the desktop, the file name is
Hello? java £ indi in i i
(] Hello2 java . indicated in jGRASP desktop ftitle
above, as well by underlining in the
Hello2java C:'Docuni Browse tab at left and in the
Sgpublic class windowbar below.
{
public static woid main(String[] abm |=
Bystem. out.println ("Hello world!'|[|
Gwsten. out.pryintln [("Welcome to I
TR Il |/

IL Browse L Find

Dehuy /
| Workbench : [&] Hello.java HelluE.iava

BiE|8 Line:d Cok10 Code:83 Top1 lovs Eu{

Figure 2-20. Multiple files open

30

Getting Started (v1.8)
8/9/2005

2.12 Closing a File
The open files in CSD windows can be closed in several ways.

1) R If the CSD window is maximized, you can close window and file by clicking the
Close button at the right end of the top level Menu.

I
@) A g Es If the CSD window is not maximized, click the Close button in the upper
right corner of the CSD window itself.
(3) File Menu - Click File — Close or Close All Files.
(4) Window Menu - Click Window — Close All Windows.

In each of the scenarios above, if the file has been modified and not saved, you will be
prompted to Save and Exit, Discard Edits, or Cancel before continuing. After the files
are closed, your Desktop should look like the figure below, which is how we began this
tutorial.

[d Workspace: 1210 - jGRASP M=1E3
File Edit View Project Settings Tools Window Help

=

All S0 « | |Sort...| v

4= +|R||B.|[:
C'Documents an|| b
CHello_Project_dd |
Hello.java *
Hello2.java

N | T OOt

[Compile Messages | jGRASP Messages | Run /0

T T |
o T TSy
Browse | Find | || | Clear
Debug : =
3 Copy
\ Workbench | : 14 [»]
=)[3][m

Figure 2-22. Desktop with all CSD Windows closed

31

Getting Started (v1.8)
8/9/2005

2.13 Exiting jGRASP

When you have completed your session with JGRASP, you should always close (or
“exit”) JGRASP rather than let your computer close it when you log out or shut down.
However, you don’t have to close the files you have been working on before exiting
JGRASP. When you exit JGRASP, it remembers the files you have open, including their
window size and scroll position, before closing them. If a file was edited during the
session, JGRASP prompts you to save or discard the changes. The next time you start
JGRASP, it will open your files, and you will be ready to begin where you left off. For
example, open the Hello.java file and then exit JGRASP by one of the methods below.
After JGRASP closes down, start it up again and you should see the Hello.java program
in a CSD window. This feature is so convenient that many users tend to leave a few files
open when they exit JGRASP. However, if a file is really not being used, it is best to go
ahead and close the file to reduce the clutter on the windowbar.

Close JGRASP in either of the following ways:

(1) Click the Close button @ in the upper right corner of the desktop; or
(2) On the File menu, click File — Exit JGRASP.

2.14 Exercises

(1) Create your own program then save, compile, and run it.

(2) Generate the CSD for your program. On the View menu, turn on Auto Generate
CSD (Settings — CSD Window Settings — then (checkbox) Auto Generate CSD).

(3) Display the line numbers for your program.
(4) Fold up your program then unfold it in layers.

(5) On the Build menu, make sure Debug Mode is ON (indicated by a check box). [Note
that Debug Mode should be ON by default, and we recommend that this be left ON.]
Recompile your program.

(6) Set a breakpoint on the first executable line of your program then run it with the
debugger. Step through each statement, checking the Run 1/0 window for output.

(7) If you have other Java programs available, open one or more of them, then repeat
steps (1) through (5) above for each program.

32

Getting Started (v1.8)
8/9/2005

2.15 Review and Preview of What's Ahead

As a way of review and also to look ahead, let’s take a look at the JGRASP toolbar.
Hovering the mouse over a button on the toolbar provides a “tool hint” to help identify its
function. Also, View — Toolbar Buttons allows you to display text labels on the buttons.

While many of these buttons were introduced in this section, some were assumed to be
self-explanatory (e.g., Print, Cut, Copy, etc.). Several others will be covered in the next
section along with Projects and the Object Workbench (e.g., Generate UML, Generate
Documentation, Create Object, and Invoke Method). Section 9 provides an in depth look
at the CSD, which can be read at any time, but is most relevant when control structures
are studied (e.g., selection, iteration, try-catch, etc).

TIP: Right-click here to turn
Open File menu groups on or off.

Save File

Set Browse Tab to directory of current file
Print
Cut Copy Paste Undo last edit

td
OEES ¥R DD WiV X606 0H

/\

Generate CSD Remove CSD Toggle Line Number Freeze line numbers

Generate CPG Generate UML Generate Documentation

= TEEEEERY n &) @80 N

//

Compile Run Run Debug Debug Create Invoke
Applet Applet Object Method

33

Getting Started with Objects (v1.8)
8/9/2005

3 Getting Started with Objects

If you are an experienced IDE user, you may be able to do this tutorial without having
done the previous tutorial, Getting Started. However, at some point you should read the
previous tutorial and make sure you can do the exercises at the end.

Objectives — When you have completed this tutorial, you should be able to use projects,
UML class diagrams, the Object Workbench, and Viewers in JGRASP. These topics are
especially relevant for an objects first or objects early approach to learning Java.

The details of these objectives are captured in the hyperlinked topics listed below.
3.1 Starting JGRASP
3.2 Navigating to Our First Example Project
3.3 Opening a Project and UML Window
3.4 Compiling and Running the Program from UML Window
3.5 Exploring the UML Window
3.6 Viewing the Source Code in the CSD Window
3.7 Exploring the Features of the UML and CSD Windows
3.7.1 Viewing the source code for a class
3.7.2 Displaying class information
3.7.3 Displaying Dependency Information
3.8 Generating Documentation for the Project
3.9 Using the Object Workbench
3.10 Opening a Viewer Window
3.11 Invoking a Method
3.12 Invoking Methods with Object Parameters
3.13 Invoking Methods on Object Fields
3.14 Invoking Inherited Methods
3.15 Running the Debugger on Invoked Methods
3.16 Creating Objects from the CSD Window
3.17 Creating an Instance from the Java Class Libraries
3.18 Exiting the Workbench
3.19 Closing a Project
3.20 Exiting JGRASP
3.21 Exercises

34

Getting Started with Objects (v1.8)
8/9/2005

3.1 Starting JGRASP

A Java program consists of one or more class files, each of which defines a set of objects.
During the execution of the program, objects can be created and then manipulated toward
some useful purpose by invoking the methods provided by their respective classes. In
this tutorial, we’ll examine a simple program called PersonalLibrary that consists of five
Java classes. In JGRASP, these five Java files are organized as a project.

You can start JGRASP by double clicking on the icon at left. If you are working
on a PC in a computer lab and you don’t see the JGRASP icon on the desktop,
icrasp try the following: click Start — Programs — JGRASP

Depending on the speed of your computer, JGRASP may take between 10 and 30 seconds
to start up. The JGRASP virtual Desktop, shown below, is composed of a Control Panel
with a menu across the top plus three panes. The left pane has tabs for Browse, Find,
Debug, and Workbench. The large right pane is for UML and CSD windows. The
lower pane has tabs for JGRASP messages, Compile messages, and Run Input/Output.

S=1E

File Edit View Project Settings Tools Window Help

rce Files| + | |Sort B... |«

= t|R|| Book.. |-]

pkiexamplesiTutorials| v | -
[Hello Browse, Find, Debug,
: and Workbench Tabs

CSD and UML
Windows

ClPersonalLibrary
CJviewerExamples :
OddEven.java Message

: Tab Pane

e T i

Browse [Find
| Debug | Workbench |

L e AT T S nrr e nn s e e e et et s e s e s s s st e e e e s s e e s e s e e

Compile Messages r IGRASP Messages r Run 11O

Stop

Clear

|4 [y

Figure 3-1. The JGRASP Virtual Desktop

35

Getting Started with Objects (v1.8)
8/9/2005

3.2 Navigating to Our First Example Project

Example programs are available in the JGRASP folder in the directory where it was
installed (e.g., C:\Program Files\|GRASP\examples\Tutorials). If JGRASP was installed
by a system administrator, you may not have write privileges for these files. If this is the
case, you should copy the Tutorials folder to one of your own folders (e.g., in your My
Documents folder).

The files shown initially in the Browse tab will most likely be in your home directory.
You can navigate to the appropriate directory by double-clicking on a folder in the
Browse tab or by clicking on the up-arrow as indicated in the figure below. The left-
arrow and right-arrow allow you to navigate back and forward to directories that have
already been visited during the session. The “R” refreshes the Browse pane. In the
example below, the Browse tab is displaying the contents of the Tutorials folder.

File Edit Yiew Project Settings Tools Window Help

: p To move up in the directory
1 - / -
rce Filesi g |SoTtB. Lt click on the UP arrow

+- f[R|| Book.. |:
pkiexamplesiTutorials| ¥ |’
[JHello | G-
[PersonalLibrary '
ClviewerExamples
OddEven.java

To open a folder
double-click on the folder name

To open a file
double click on the file name

e T B

Browse [Find
| Debug | wWorkbench | .

L D

Compile Messages |/ IGRASP Messanes |/ Run 110

Stop
Clear
Copy hd
14]
BIEa

Figure 3-2. The JGRASP Virtual Desktop

36

Getting Started with Objects (v1.8)
8/9/2005

3.3 Opening a Project and UML Window

After double-clicking the PersonalLibraryProject folder, the Java source files in the
project as well as the JGRASP project file are displayed in the Browse tab. To open the
project, double-click on the project file (PersonalLibraryProject.gpj), as shown in Step 1
below. After the project is opened, the Browse tab is split into two sections, the upper
section for files and the lower section for open projects as indicated below.

We are now ready to open a UML window and generate the class diagram for the project.
As indicated in Step 2 below, simply double-click on the UML symbol shown beneath
the project name in the open projects section of the Browse tab. Alternatively, on the
desktop menu you can click Project — Generate/Update UML Class Diagram.

After you have opened the UML window, you can compile and run your program in the
traditional way using the toolbar buttons or the Build menu. However, from an objects
first perspective, you can also create objects directly from your classes and place them on
the Workbench and then invoke their methods. Both of these approaches are explored
below.

File Edit Yiew Project Settings Tools Window Help
rce Files| » || Sort B... |«
= 1 |R|| Book.. |: Step 1. Open Project

prials'PersonalLibrary| v | / Double-click project file name
[}| NonFiction.java [P]

PersonalLibraryPrg ~ | Step 2. Open UML Window

S Pl A Double-click UML symbol

Open Projects :
FersonalldraryProj || -
=3 ﬁ_l:m/ BIE
Boaok.java T o S e S o
Fictionjava |=|| || Comnpile Messages | jGRASP Messages | Run liO
ManFiction java | || =
Movel java Stop
Personallibrary|=||

A L] D] LG (Stear

Browse [Find : Copy

| Debug | Workbench | 4] I

Figure 3-3. After loading file into CSD Window

37

Getting Started with Objects (v1.8)
8/9/2005

3.4 Compiling and Running the Program from UML Window

You can compile the files in the UML window by clicking the green plus 9 as indicated
in Step 3 below. Note that the classes in the UML diagram become crosshatched with
red lines when they need to be recompiled. After a successful compile, the classes should
be green again. If at least one the classes in the diagram has a main method, you can also
run the program by clicking the Run button % as shown by Step 4. When you compile
or run the program, the respective Compile Messages or Run 1/O tab pops open in the
lower pane to show the results.

TIP: Usually the reason for compiling a program is because you have modified or
“added” something, hence the green plus .

Step 3. Compile program Step 4. Run program

ar X

[Project: -=Per5unall_ihrar3r_pruject=- File: UMI_ (Java) for Project: Person... |Z||E|fz|

ource Files| + | |Sort By N... | = _;

4= 4 | R || Bookmarks
slTuturiaIsWPersunaILihrarﬂ -
[!| NonFictionjava [P] :
Novel java [P] e
PersonalLibrary.java [P] :
[PersonalLibrary_Project|« || PersonalLibrary
1] Il [| "| ; {main}
e T . [|§
Open Projects g Y

¢ [W PersonalLlibrary_Proje =] | |

S =L r, Fiction MonFiction

Book java t‘\-“

Fiction java -

[::::::] Scale: 1.0

211211122

[»

[]n]

: |
MonFiction java Naovel
Movel java |
] FersonalLibraryja ||

L] e O Lit] [»]

Browse | Goto | Debug | : [] <Persona...
| UMLInfo | workbench | i ——

[1=][=]{m] Classes | Interfaces: 5
Figure 3-4. After loading file into CSD Window

[4]

38

Getting Started with Objects (v1.8)
8/9/2005

3.5 Exploring the UML Window

In the figure below, the UML window has been opened for the PersonalLibraryProject
and the class diagram has been generated. Below the toolbar is a panning rectangle
which can be used to move around in the UML diagram. A set of scaling buttons is
located to the right of the panning rectangle. Try clicking each of the scaling buttons one
or more times to see the effect on the UML diagram. Clicking “1” always resets the
diagram to its original size. The Update UML button on the toolbar can be used to
regenerate the diagram in the event any of the classes in the project are modified outside
of JGRASP (e.g., edited or compiled). Just below the UML window is the windowbar
which contains a button for each UML or CSD window that is opened. Clicking the
button pops its window to the top. Windowbar buttons can be reordered by dragging
them around on the windowbar.

Windowbar Update UML Panning Rectangle Scaling Buttons

[A Project: <PersonallibraryProject> File: UML (Java) for Project: Persona. .. |Z||E|fz|

MISIEY

File Edit Wiew \ Build Proje Settings Tools ndow Help

R8sy +41 060N E

\

rce Files| v | |Sort B, | ¥ |)
« 5 1R :

Scale: 1.0

I 2[112]1]12] 2

Novel.java [P] :
PersonalLibrary.j {F’ni;?:;alubranr
[PersonalLibranyPr

Jd T D\ Ny] f |
. Fiction MonFiction

T e T T T T
Open Projects \

PersonalLibrarProj= || R
£ <UML= \‘1:4?
Book java Movel
Fiction java :
MonFiction java
Movel java
- TR

4 L] []

Browse | Goto i« \‘ L] [

Debug | UML Info || B] <Persona...
Workbench —--

[1=][=]{m] Classes | Interfaces: 5

"

:I Project Oass ——» heritancs
- = = =2 COhar jraferancs, &)

[«]

[4]

Figure 3-5. After opening the UML Window

39

Getting Started with Objects (v1.8)
8/9/2005

3.6 Viewing the Source Code in the CSD Window

To view the source code for a class in the UML diagram, simply double-click on the class
symbol, or in the Browse tab, double-click the file name in the Files or Open Projects
sections. Each of these will open the Java file in a CSD window, which is a full-featured
editor for entering and updating your program. Notice that with the CSD window open
the toolbar buttons now include Generate CSD, Remove CSD, Number Lines, Compile,
and Run, as well as buttons for Create Instance and Invoke Method.

Generate a CSD
Remove CSD Compile Create Instance
Number Lines (on/off) Run Invoke Method

Generate, UML

[d Project: <PersonallibraryProject> File: Personall.ibrary.java [P] C:\Do... r:_ E|[Z|
File Edit View Build Project\Settings Todls Window Halp \ |5 X/

aEaEe LD WaY +xééoH=

rCEFiIES - SunB - F’ Jf;rrr e~

: =jclass Personallibrary
4= t R || Book.. |: I M
urialsPersunalLihraw|v : A oo o
o ST : F¥f Instantiates a deriwved class aml invokes its
Howvel.java [P] — iﬁ 1local methods. 3
Personall ibrary.jay — ipuhlic: static void main [(3tring[] args)
B PersonalLibraryPrd v || - i
4| I [1] |E = Eook hemingway = new Book("Hemingway" ,
T, AT T T T "Freen Hills of Africa", Z34); |
Open Projects = Fiction clancy = new Fiction("Clancy",
PersonallibraryPraj = "The Hunt for Red October",
B oML w |E 490, "Sean"];

. . = Nowel grisham = new Novel [("Grisham",
Book java "The Firm", 550, "Tom", 0):

Fiction.java //MonFiction temp = new NonFiction() ;
ManFiction java :
Movel java

— Systewmw. out.printlh(heningway) ;
Gystem. out.printlniclancy) :

KTl
|

q ||TII_|| = — v — System.out.println("in" + clancy.getMainCh
Browse | Find | .4 | Il | i3
Debug | UML Info [&] <Persona.. Personal...
Workhench T
[1=][2][m] Line:1 Cok1 Code:d? Topd [oys ELK

Figure 3-6. After the CSD is generated

40

Getting Started with Objects (v1.8)
8/9/2005

3.7 Exploring the Features of the UML and CSD Windows

Once you have a UML window open with your class diagram, you are ready to do some
exploring. The steps below are intended to give you a semi-guided tour of some of the
features available from the UML and CSD windows.

3.7.1

1.

3.7.2

Viewing the source code for a class

In the UML diagram, double-click on the PersonalLibrary class. This should
open the source file in a CSD window. Notice a button for this CSD window is
added to the windowbar. You should also see a button for the UML window.

Review the source code in the CSD window; generate the CSD; fold and unfold
the CSD; turn line numbers on and off. [See next page or Sec 2.5-2.7 for details.]

On the windowbar, click the button for the UML window to pop it to the top.
Remember to do this anytime you need to view the UML window.

View the source code for the other classes by: (1) double-clicking on the class in
the UML diagram, (2) double-clicking on the class in the Open Projects section of
the Browse tab, or (3) double-clicking on the file name in the upper section of the
Browse tab.

Close one or more of the CSD windows by clicking the X in the upper right
corner of the CSD window.

Displaying class information
In the UML window, select the Fiction class by left-clicking on it.

Right-click on it and select Show Class Info. This should pop the UML Info tab
to the top in the left pane of the Desktop, and you should be able to see the fields,
constructors, and methods of the Fiction class.

In the UML Info tab, double-click on the getMainCharacter() method. This
should open a CSD window with the first executable line in the method
highlighted.

Close the CSD window by clicking the X in the upper right corner.
Displaying Dependency Information

In the UML window, select the arrow between PersonalLibrary and Fiction by
left-clicking on it.

If the UML Info tab is not showing in the left pane of the desktop, right-click on
the arrow and select Show Dependency Info. Alternatively, you can click the
UML Info tab near the bottom of the left pane.

Review the information listed in the UML tab. As the arrow in the diagram
indicates, PersonalLibrary uses a constructor from Fiction as well as the
getMainCharacter() method.

Double-click on the getMainCharacter method. This should open a CSD window
for PersonalLibrary with the line highlighted where the method is invoked.

41

Getting Started with Objects (v1.8)
8/9/2005

3.8 Generating Documentation for the Project

With your Java files organized as a project, you have the option to generate project level
documentation for your Java source code, i.e., an application programmer interface
(API). To begin the process of generating the documentation, click Project — Generate
Documentation. Alternatively, click the Generate Documentation button & on the
toolbar. This will bring up the “Generate Documentation for Project” dialog, which asks
for the directory where the generated HTML files are to be stored. The default directory
name is the name of the project with “_doc” appended to it. Thus, for the example, the
default will be PersonalLibaryProject_doc. Using the default name is recommended so
that your documentation directories will have a standard naming convention. However,
you are free to use any directory as the target. Pressing the Default button will get you
back to the default directory in the event a different directory is listed. When you click
Generate on the dialog, JGRASP calls the javadoc utility, included with the JDK, to
create a complete hyper-linked document. The documentation is then opened in a
Documentation Viewer as shown below for PersonalLibaryProject.

Gy JjGRASP Documentation Viewer

File Edit Yiew
= HandhooklexamplesTutarialsiPersonallibrandPersonalLibrary_Project_doclindex html
All Classes | - —
Eook 3
Fiction Package Tree Deprecated Index Help -
MonFiction FRAMES HO FRAMES
Movel . FREW CLASS HEXT CLASS
Ferzonallibrary All Classes
SUMMARY: HESTED | FIELD | CONSTR | METHO DETAIL: FIELD | CONSTR | METHO
=]]
Class Book
Java.lang. Chiect
L Book
Direct Known Subclasses:
Fictiot, MonFiction |
q] ¥
|

Figure 3-7. After generating documentation for PersonalLibaryProject

42

Getting Started with Objects (v1.8)
8/9/2005

3.9 Using the Object Workbench

Now we are ready to begin exploring the Object Workbench. The figure below shows
the UML window opened for the PersonalLibraryProject. Earlier, we learned how to run
the program as an application using the Run button %. Since main is a static method, we
can also invoke it directly from the class diagram by right-clicking on PersonalLibary and
selecting Invoke Method. Alternatively, you can select the PersonalLibrary class, and
then click the Invoke Method button B on the toolbar. When the Invoke Method dialog
pops up, select and invoke main (without parameters). Try this now.

The focus of this and the next several sections is on creating objects and placing them on
the workbench. We begin by right clicking on the Fiction class in the UML diagram, and
then selecting Create New Instance, as shown in Figure 3-8. Alternatively, select the
Fiction class, and then click the Create Instance button I on the toolbar. A list of
constructors will be displayed in a dialog box.

If a parameterless constructor is selected as shown in Figure 3-9, then clicking Create
will immediately place the object on the workbench. However, if the constructor requires
parameters, the dialog will expand to display the individual parameters as shown in

[d Project: <Personallibrary_Project> File: UML {Java) for Project: Person... [Zl[ﬁl[il

- =[]

File Edit Yiew Build Project Settings Tools Window Help

: 1 e T e e e e e e e e e e
ource | * | |Sort ... | ¥ |k a
«|=|1|rR| Bo. |
ils'PersonalLibrary| + 55 i
SLEL L A personalibran | [Book
(] Noveljava [P] | — |- — ‘f‘
PersonalLibrany=|| - | |
[PersonalLibrany « || -
=l Fiction | MonFiction |
4] DN E
T g; S T Show Class Info I;
Open Projects B u
p J - g = Create New Instance
¢ [PersonalLibr || Mo
B =UML= Imvoke Method
Bookjava _||: Create Array Of
Fiction ja [Praecicis — | Edit
MonFictio || “T°7| compile
Noveljavis) |- Compile Al
« [[¥] : Add To Project d
Browse | Goto a Remove From Project
Debug | UML Info ||] <Persona... Generate / Show Documentation
Workbench e =
e s == Layout b
E 0| status: workbench active for project <PersonalLibrory—rrojecor—crosses rimermaces: 3

Figure 3-8. Creating an Object for the Workbench

43

Getting Started with Objects (v1.8)
8/9/2005

Click on “stick-pin” J}to keep
dialog open.

\-@ Show: [| Synthetic

Workbench Name
[fiction_2

[public Fiction()
[public Fiction{String theAuthor, String theTitle, i

[# Cresie New Fiction

? Show: [| Synthetic
Workbench Hame
[fiction_1 | 4] i | ID
| public Fictioni) | Parameters:
E public Fiction{String theAuthor, String theTit java.lang.String theAuthor
|"Dan Brown™ | - |
java.lang.String theTitle
“The Davinci Code” |~
int thePages
4] 1 | Ir 9
476 |
| Create I Show Doc | Close java.lang.String theMainCharacter
|"Rubert Langdun“| | hd |
Figure 3-9. Selecting a constructor
| Create | | Show Doc | ‘ Close ‘

Figure 3-10. Constructor with
parameters

Figure 3-10. The values for the parameters should be filled in prior to clicking Create.
Be sure to enclose strings in double quotes. In either case, the user can set the name of
the object being constructed or accept the default assigned by JGRASP. Also, the “stick-
pin” ¥ located in the upper left of the dialog can be used to make the Create dialog
remain open. This is convenient for creating multiple instances of the same class. If the
project documentation has been generated, clicking the Show Doc button on the dialog
will display the documentation for the constructor selected.

In Figure 3-11, the Workbench tab is shown after two instances of Fiction and one of
Novel have been created. The second object, fiction_2, has been expanded so that the
fields (mainCharacter, author, title, and pages) can be viewed. An object can be
expanded or contracted by double-clicking on its name. Notice that three fields in
fiction_2 are also objects (i.e., instances of the String class); they too can be expanded.

Notice that objects and object fields have various shapes and colors associated with them.
Top level objects are indicated by blue square symbols (e.g., fiction_2). The symbols for
fields declared in an object are either a square for an object (e.g., mainCharacter) or a
triangle for a primitive type (e.g., pages). A green symbol indicates the field is declared

44

Getting Started with Objects (v1.8)

8/9/2005

within the class (e.g., mainCharacter in fiction_2, and an orange symbol means the field
was inherited from a super class (e.g., author inherited from Book). Finally, a red border
on a symbol means the field is inaccessible outside the class (i.e., the object was declared

as either private or protected).

Blue square — top

Green square with

level object red border — object | with red border —
declared in object inherited
Fiction, not from super class,

accessible outside

Orange square

not accessible

Fiction. outside Fiction.

Orange triangle
with red border —
primitive type
inherited from
super class, not
accessible outside

Fiction.

(A Preject: <Persorallibrary_Project> File: UML (Java) for Praject: Person... |Z||E|[z|

o [novel_1 id = 368 : Movel

A |

BEvaluate Expression

-

Go

ages = 476 ;. protects

PersonalLibrary

{main}
| Fiction

MonFiction

5i

Movel

:I Project Class ———» Inhadtancs

— = === e {redamnce, aic)

-

| K0

| b

UML Info | Workbench |

Browse LGutu LDehug | :

[%] <Persona...

:5 e T T T T T T T T T T T T T T

H|E]|ME| Status: workbench active for project <PersonallLibrary_Project=

Figure 3-11. Workbench with three objects

45

Getting Started with Objects (v1.8)
8/9/2005

3.10 Opening a Viewer Window

A separate Viewer window can be opened for NGRS eRi i IR @

any object or field of an object on the
workbench. To open a viewer, left-click on an F| ction_2iie =
object in the Workbench tab and while holding | rype: java.lang String

down the left mouse button, drag it from the
workbench to the location where you want the
viewer to open. When you start to drag the The Davinci Code
object, a viewer symbol should appear to
indicate a viewer is being opened. At a
minimum, a viewer always provides the same
basic view shown on the workbench. However,
some objects will have additional views. For
example, the viewer for a String object will]] .
display its text value fully formatted. Figure 3- Figure 3-12. Viewer on String title
12 shows a viewer on the title field in fiction_2. field of fiction_2 (fiction_2 title)

Figure 3-13 shows a viewer opened for Basic view on the “pages” field of fiction_2,
which is an int primitive type. Figure 3-14 shows the viewer set to Detail view, which
shows the value of pages in decimal, hexadecimal, octal, and binary. The Detail view for
float and double values shows the internal exponent and mantissa representation used for
floating point numbers. Note that the last view selected will be used the next time a
Viewer is opened on the same class or type. Special presentation views are provided for
instances of array, ArrayList, LinkedList, HashMap, and TreeMap. When running in
Debug mode, a viewer can also be opened on any variable in the Debug tab.

View: |Formatted -

Note that the viewer in Figure 3-12, which contains an object, has an Invoke Method
button E; however the viewers for the ints in Figures 3-13 and 3-14 do not since
primitives have no methods associated with them.

Select view from pull-down list.

[d value of: fiction_2.pages @ [@ value of: fiction_2.pages

? fiction_2.pages g fiction_2 . pages

Twpe: int Type: int

view: |Basic v View: |Detail -

b =476 :int Decimal: 476

Hex 0x10DC

Dctal 0734

Binary; 0000 0000 0000 0000 00000001 1101 1100

Figure 3-13 Viewer with Basic Figure 3-14 Viewer with Detail View of
View of Primitive int Primitive int

46

Getting Started with Objects (v1.8)
8/9/2005

(8 Project: <Personallibrary_Project> File: UML (Java) for Project: Person... |Z E|[Z|

File Edit Yiew Build Project Settings Tools Window Help

- [F[X]

a8 e &0 F2é @M=
¢ [l fiction_2 id =353 :Fi |. e |
o [l mainCharacter = OKE g
o [author = "Dan Br Add to Workbench
o [Jtitle ="The Davin Create New Instance Sook
b\ pages= 476 prq Create Array OF
o [l novel_1id =362 N{ Change Value %
View by Name MonFiction =]
View Yalue |
Copy Hame
Create New Instance of Library Class
p | m | | Create Array of Library Class
Invoke Method on Library Class IFS——
Evaluate Expression T [
- Go —
Browse | Goto 4] Lt L]
. Debug L UML Info [&] <Persona...
Workbench R
IEI 0| status: workhench active for project <PersonalLibrary_Project> Classes | Interfaces: 5

Figure 3-15. Workbench with two instances of Fiction

311 Invoking a Method

To invoke a method on an object in a
viewer (see Figure 3-12), click the | Cimvole Nonrtua
Invoke Method button E. To invoke a Show: []Inaccessible [Synthetic
method for an object on the workbench,
select the object, right click, and then : — :
select Invoke Method. In Figure 3-15, oot o s oo,
fiction_2 has been selected, followed by [toString(: public String toString()
a right mouse click, and then Invoke
Method has been selected. A list of
visible user methods will be displayed in I I |
: : : 1 1l b
aY(()jLIJa(I:Z?] :lgz)((?ISS F;E’II;;V\;TI quigurﬁeiggs getMainCharacter() declared in Fiction
by selecting the appropriate option.
After one of the methods is selected and
the parameters filled in as necessary, [mwoke || showdoc || close |
then click Invoke. This will execute the

|\ﬁsible from Fiction : user methods onhy | - |

Returns: java.lang.String

[] Don't Show Result Dialog

Figure 3-16. Selecting a method
47

Getting Started with Objects (v1.8)
8/9/2005

method and display the return value (or void) in a dialog, as well as display any output in
the usual way. If the method updates a field (e.g., setMainCharacter()), the effect of the
invocation is seen in appropriate object field in the Workbench tab. The “stick-pin”
located in the upper left of the dialog can be used to make the Invoke Method dialog
remain open. This is useful when invoking multiple methods for the same object. The
Show Doc button will be enabled if documentation has been generated for the project.

As indicated above, perhaps one of the most compelling reasons for using the workbench
approach is that it allows the user to create an object and invoke each of its methods in
isolation. Thus, with an instance of Fiction on the workbench, we can invoke each of its
three methods: getMainCharacter(), setMainCharacter(), and toStirng(). By carefully
reviewing the results of the method invocations, we can informally test the class without
the need for a driver with a main() method.

3.12 Invoking Methods with Object Parameters

In the example above, we created two instances of Fiction. Instances of any class in the
UML diagram can be created and placed on the workbench. If the constructor requires
parameters that are primitive types and/or strings, these can be entered directly, with any
strings enclosed in double quotes. However, if a parameter requires an object, then you
must create an object instance for the workbench first. Then you can simply drag the
object (actually a copy) from the workbench to the parameter field in the Invoke Method
dialog. You can also use the new operator when entering the value of a parameter.

3.13 Invoking Methods on Object Fields

If you have an object in the Workbench tab pane, you can expand it to reveal its fields.
Recall, in Figure 3-11, fiction_2 had been expanded to show its fields (mainCharacter,
author, title, and pages). Since the field mainCharacter is itself an object of the String
class, you can invoke any of the String methods. For example, right-click on

[4 Invoke Method on fiction_2.mainCharacter @ result 2: Result of fic..

[] Imvoke Hon-virtual Hame result_2

Type: java.lang.String

Show: [|Inaccessible [| Synthetic

View: |Formatted -

Visible from java.lang.String -

FROBERT LANMGDOM

E| toUpperCase(): public String toUpperCase{) |*

-

q Il] |
toUpperCase() declared in java.lang.String

Returns: java.lang.String

[| Don't Show Result Dialog
Figure3-16. Result of
Pe— Show Doc Close fiction_1. mainCharacter.
toUpperCase()

Figure 3-15. Invoking a String method

48

Getting Started with Objects (v1.8)
8/9/2005

mainCharacter, select Invoke Method. When the dialog pops up (Figure 3-15), scroll
down and select the first toUpperCase() method and click Invoke. This should pop up
the Result dialog with “NONE” as the return value (Figure 3-16). This method call has
no effect on the value of the field for which it was called; it simply returns the string

value converted to uppercase. .
To view another category of

3.14 Invoking Inherited Methods method, click here

The methods we have invoked thus far were

declared in the class from which we created the |G B TETR AN
object. An object also inherits methods from its L e
parents. We now consider an instance of the Novel
class, which inherited several methods from the
Book class in our example. If we right-click on the isible from Novel user methods only -]
novel_1 in the Workbench tab pane (shown below | [& uetmainCharacter(: public String getMainChar
fiction_2 in Figure 3-11) and select Invoke | (5 ocanchorocterts pubicund stttonchore
Method, the dialog in Figure 3-17 pops up. Since
the default is to list visible user method, toString()
method and the two inherited user methods are
listed. Notice the orange color coding indicating : 1 ' D
“inherited” methods similar to the fields on the
workbench. To view other lists of methods, find the
pull-down menu located above the list. A gray Figure 3-17. Invoking a method
symbol in front of a method indicates it has been for novel 1

overridden by another method in the category.

Show: [|Inaccessible [| Synthetic

3.15 Running the Debugger on Invoked Methods

When objects are on the workbench, the workbench is actually running Java in debug
mode to facilitate the workbench operations. Thus, if you set a breakpoint in a method
and then invoke the method from the workbench, the CSD window will pop to the top
when the breakpoint is reached. When this occurs, you can single step through the
program, examining variables in the Debug tab or you can open a separate viewer for a
particular variable as described above in Section 3-10. See the Tutorial entitled “The
Integrated Debugger” for more details.

3.16 Creating Objects from the CSD Window

In addition to creating instances of classes from the UML class diagram as described
above, instances can be created directly from the CSD window for the class it contains.
Figure 3-18 shows a CSD window containing class Fiction. From the menu, select Build
— Java Workbench — Create New Instance. Buttons are also available on the toolbar
for Create New Instance Il and Invoke Static Method B (remember only static methods
can be invoked from a class). You can always create instances from the CSD window
even if you have not created a project and UML diagram. This makes it convenient to
quickly create an instance for the workbench and then invoke its methods. In Figure 3-
18, the Fiction class has been opened in a CSD window without a project being opened,
and two instances have been placed on the workbench. Figure 3-19 shows a viewer for
fiction_2. Notice the viewer has its own button = for invoking the methods of fiction_2.

49

Getting Started with Objects (v1.8)
8/9/2005

(3 File: Fiction.java C:WDocuments and Settings\crossjh\My DocumentsjGRA. ..

File Edit Yiew Build Project Settings

Tools Window Help

inﬂm@ll@ MG X =
o [l fiction_1 i = 336 ||} =
9 .T'l:tll:ln_E id= 245 a{class Fiction extends Eook
T .mainCharactE i = protected Strihg mainCharacter = T aLringi('m
o= [author ="na tit) | :
o [title ="nane" : i| = rulic Fiction() i
=0 nrd| {
b pames=0:pra : I
; L}
ipuhlic: Fiction(3tring eduthyr, 3tring theTi
int thePages, tring theMainfharacter)
{
— =uper (theluthor, theTitlg, thelagesz):
— mainCharacter = theMainfharacter:
L}
“l m | “ ipuhlic: rold zetMainChoracter(3tring theMainCh
§5 {
Evaluate Expression i }— mainCharactgr = tHeMainCharacter: a
- Go —
d K M I
Browse L Debug | Fi[:tiun.ia'i.ra / /
Find | Workbench | Y5 —— / —~+~ ¥
[H|E1|O)| Status: workbench active / I,ﬁ1e.3l] Col:10 Code:114 Topsé fovs ELH

Figure 3-18. Creating an Instance from theCSD Window

Click . to create an instance
of the Fiction class.

Click E to invoke a static
method. Note that Fiction has
no static methods; try this
with PersonalLibrary and you
should see main in the list).

[8 value of: fiction_2 @

X fiction_z =
Type: Fiction

View: |Basic -
? =345 Fiction

6 [l mainCharacter="no
o [authar="nao title" - id
o [title ="nane" : id = 34

by pages =0 protected

Click B on a viewer opened for an
instance of Fiction (e.g., fiction_2) to
invoke a method for the instance.

q | M | [»

Figure 3-19. Viewer for

Fiction instance

50

Getting Started with Objects (v1.8)
8/9/2005

3.17 Creating an Instance from the Java
Class Libraries

You can create an instance of any class that is available ?
to your program, which includes the Java class libraries.
Find the Workbench menu at the top of the UML Class Name:

window. Click Workbench — Create New Instance of java.lang.String -
Class. In the dialog that pops up, enter the name of a
class such as java.lang.String and click OK. This
should pop up a dialog containing the constructors for
String. Select an appropriate constructor, enter the]]
argument(s), and click Create. This places the instance ~ Figure 3-20. Creating an
of String on the workbench where you can invoke any ~ instance of String

of its methods as described earlier.

3.18 Exiting the Workbench

The workbench is running
whenever you have objects (8 jGRASP: End Workbench? @

on it or if you have invoked

OK Cancel

- Workbench is active.

main() directly from the class =

diagram. If you attempt to do OK to end Workbench and continue with Compile?
an operation that conflicts

with workbench, such as End Workbench Cancel

compiling a class, JGRASP
will prompt you with a Fjgyre 3-21. Making sure it is okay to exit the
message indicating that the \norkbench

workbench is active and ask

you if it is is it OK to end the Workbench (Figure 3-21). The prompt is to let you know
that the operation you are about to perform will clear the workbench. You can also clear
or exit the workbench by right-clicking in the Workbench tab pane and selecting
Clear/Exit Workbench.

3.19 Closing a Project

If you leave one or more projects open when you exit JGRASP, they will be opened again
when you restart JGRASP. You should close any projects you are not using to reduce
clutter in the Open Projects section of the Browse tab.

Here are three ways to close a project:
(1) From the Desktop menu — Click Project — Close or Close All Projects.

(2) In the Open Projects section of the Browse tab — Right-click on the project name and
select Close or Close All Projects.

All project information is saved when you close the project as well as when you exit
JGRASP.

51

Getting Started with Objects (v1.8)
8/9/2005

3.20 Exiting jGRASP

When you have completed your session with JGRASP, you should “exit” (or close)
JGRASP rather than leaving it open for Windows to close when you log out or shut down
your computer. When you exit JGRASP, it saves its current state and closes all open
files. If a file was edited during the session, it prompts you to save or discard the
changes. The next time you start JGRASP, it will open your files, and you will be ready
to begin where you left off.

Close JGRASP in either of the following ways:

(1) Click the Close button in the upper right corner of the desktop; or
(2) On the File menu, click File — Exit JGRASP.

When you try to exit JGRASP while a process such as the workbench is still running, you
will be prompted to make sure it is okay to quit JGRASP.

[3 jGRASP: Exit jGRASP?

- Workbench is active. Exit JGRASP amyway?

Exit Cancel

Figure 3-22. Making sure it is okay to exit

52

Getting Started with Objects (v1.8)
8/9/2005

3.21 Exercises

(1) Create a new project (Project — New) named PersonalLibraryProject? in the same
directory folder as the original PersonalLibraryProject. During the create step, add
the file Book.java to the new project.

a. After the new project is created, add the other Java files in the directory to the
project. Do this by dragging each file from the Files section of the Browse tab
and dropping it in PersonalLibraryProject2 in the open projects section.

a. Remove a file from PersonalLibraryProject2. After verifying the file was
removed, add it back to the project.

(2) Generate the documentation & for PersonalLibraryProject2, using the default name
for the documentation folder. After the Documentation Viewer pops up:

a. Click the Fiction class link in the API (left side).
b. Click the Methods link to view the methods for the Fiction class.
c. Visit the other classes in the documentation for the project.

(3) Close the project.

(4) Open the project by double-clicking on the project file in the files section of the
Browse tab.

(5) Generate the UML class diagram for the project.
a. Display the class information for each class.

b. Display the dependency information between two classes by selecting the
appropriate arrow.

Compile 9 and run % the program using the buttons on the toolbar.
d. Invoke main() directly from the class diagram.

e. Create three instances of Fiction from the class diagram. Open Novel in a
CSD window, then create two instances of Novel from the CSD window

f. Invoke some of the methods for one or more of these instances.

g. Open an object viewer for one or more String fields of one of the instances.
(6) Open the CSD window for PersonalLibrary.

a. Set a breakpoint on the first executable statement.

b. From the UML window, start the debugger by clicking the Debug button.

c. Step through the program, watching the objects appear in the Debug tab as
they are created.

d. Restart the debugger. This time click “step in” instead of “step”. This should
take you into the constructors, etc.

(7) If you have other Java programs available, repeat steps (1), (2), (5), and (6) above for
each program.

53

Projects (v1.8)
8/9/2005

4 Projects

A project in JGRASP is essentially one or more files which may be located in the same or
different directories. When a “project” is created, all information about the project,
including project settings and file locations, is stored in a project file with the .gpj
extension.

Although projects are not required to do simple operations such as Compile and Run, to
generate UML class diagrams and to use many of the Object Workbench features, you
must organize your Java files in a Project. UML Class Diagrams and the Object
Workbench are discussed in Sections 5 and 6. Many users will find projects useful
independent of the UML and Object Workbench features.

Before doing this tutorial, be sure you have read the tutorial entitled Getting Started with
Objects since the concept of a JGRASP project is first introduced there.

Objectives — When you have completed this tutorial, you should be able to create
projects, add files to them, remove files from them, generate documentation, and close
projects.

The details of these objectives are captured in the hyperlinked topics listed below.

4.1 Creating a Project

4.2 Adding files to the Project

4.3 Removing files from the Project

4.4 Generating Documentation for the Project (Java only)
4.5 Jar File Creation and Extraction

4.6 Closing a Project

4.7 Exercises

54

Projects (v1.8)
8/9/2005

4.1 Creating a Project

On the Desktop menu, click Project — New — New Standard Project (Figure 4-1) to
open the New Project dialog. Note that the ““New J2ME Project” option should only be
selected if you have installed the Java Wireless Took Kit (WTK) and you plan to develop
a project based on the Java 2 Micro Edition (J2ME).

Within the New Project dialog (Figure 4-2), notice the two check boxes (Add Files Now
and Open UML Window). Normally, you would want to have the Add Files Now checked
ON so that as soon as you click the Create button, the Add Files dialog will pop up. If
you are working in Java, you may also want to turn ON the Open UML Window option.
This will generate the UML class diagram and open the UML window (see Section 5 for
details).

File Edit VYiew | Project | Settings Tools Window Help

New » Mew Standard Project
: Open Hew JZME Project
urce Fi| v | |Sort.. Close
4= 4 |R||f Close all
hook'examplesiTy Save

CHello Save As

[PersonalLibra e Lo R
CviewerExamp

OddEven.java| "0 les
Remove Selected Files From Projectis)

Generate / Update UML Class Diagram
Generate Documentation

Show Documentation
Create JAR File For Project

JAR I £ip Extractor .
l/ Compile Messages |/ IGRASP Messages |/ Hun 110
R i —
Erowse L Debug | - Stop [-
Find --—-jGRASP: operation complete. -
\ Workbench Clear el | |
oE0

Figure 4-1. Creating a Project

55

Projects (v1.8)
8/9/2005

Navigate to the directory where you want the project to reside and enter the project file
name. It is recommended that the project file be stored in the same directory as the file
containing main. A useful naming convention for a project is ClassnameProject where
Classname is the name of the class that contains main. For example, since the
PersonalLibrary class contains main, an appropriate name for the project file would be
PersonalLibaryProject.

After entering the project file name, click Create to save the project file. Notice the new
project file with .gpj extension is listed in the Files section of the Browse tab. The
project is also listed in the Open Projects section of Browse tab.

If Add Files Now was checked ON when you created the project, the Add Files dialog
will pop up. As files are added to the project, they will appear under the project name in
the Open Projects section of the Browse tab. When you have finished adding files, click
the Close button on the dialog. You can always add more files to a project later.

Note that when you have multiple projects open, these are all listed in the Open Projects
section of the Browse tab. If you open a UML window for one or more projects and/or if
you open one or more CSD windows for files in projects, then the UML or CSD window
with focus will determine which open project has focus. The project with focus will have
a black square in the project symbol and the project name will be displayed in the title bar
of the JGRASP desktop.

8 New Project @
Eﬁingslcrussjhmﬂy Documents)GRASP_HandbookexamplesiTutarials\Personallibrany
Look In: | [T PersonalLibrary « | |H ||| |3 [as] a=
7 PersonalLibrary_Project_doc @ % i] B

|:| PersonalLibrary_Project.gpj
Default Extension:
ap] | v

Add Files How

[| Open UML Window

Filter Extensions:

L | [l

File Hame: Fersonallibrary_Project? apj

L

Files of Type: |jGRASP Projects (*.gpj)

Create Cancel

Figure 4-2. New Project window

56

Projects (v1.8)
8/9/2005

4.2 Adding files to the Project

The Browse tab is split to show the current file directory in the top part and the open
projects in the lower part as shown in Figure 4-3. After a project has been created and/or
opened, there are several ways to add Java files to the project.

(1) From Browse Tab - Drag the file (left click and hold) from the Files section to the
project in the Open Projects section below.

(2) From Browse Tab - Drag the file from the Files section to the UML Window.
(3) In Browse Tab - Right click on the file and select Add to Project. (Figure 4-3).
(4) From CSD window — Click Project — Add files.

You can also select multiple files (holding down the control or shift key), and add or drag
the highlighted files all at once. The files in the project are shown beneath the project
name in the Open Projects section of the Browse tab. Double-clicking on the project
name (or single-clicking on the “handle” in front of the project name) will open or close
the list of files in the project.

(=13

File Edit View Project Settings Tools Window Help

-

e Files| + | |Sort ... | ™ . .
Files Section

+ | |1 |R||Bo... / of Browse Tab
Isﬁpersunau]mwkf’f

NonFiction.java || |-
Noveljava [P] — Add Novel.java to an
PersunalLihraJ Edit open project by right-
j'"i °=ji==""*7y_Edit Binary / clicking on file name
O Add To Project — in the File section then
Open Projects ™ selecting
¢ [PersonaiLip —~ Add To Project
2 == | Properties
Bookjava _ :
Fiction Ja] T Open Projects
NonFictid || | section of |
ND'-.-'ELEI'-.-‘: e T T T BrOWSQ Tab ..
4 ||||| = | "|_ l/CumpiIE Messane . es | Run O |
Browse LDEhug Stop %
Find : -
Workhench Al L4 [+]
=)[a][m

Figure 4-3. Adding a file to the Project

57

Projects (v1.8)
8/9/2005

4.3 Removing files from the Project

You can remove files from the project by selecting one or more files in the Open Projects
section of the Browse tab, then right clicking and selecting Remove from Project(s) as
shown in Figure 4-4. You can also remove the selected file(s) by pressing Delete on the
keyboard. Note that removing a file from a project does not delete the file from its
directory, only from the project. However, you can delete a file by selecting it in the
Files section of the Browse tab, then right-clicking and selecting Delete from the pop up
menu or by pressing the Delete key. Note that deleting a file is a permanent operation, so
JGRASP warns you accordingly.

S=1E

File Edit View Project Settings Tools Window Help

e Files| + | |Sort ... |«

] 4+ | R || Bo...

IsﬁPersunaILihrarﬂ -
MonFiction java
Novel.java [P]
PersonalLibrary
Axl FTE
ol o [] |
T
Open Projects
¢ [PersonalLibf~|
& =UnL=
Boakja
Fiction j3 -
NonFicti Remove From Project{s)
NI:I'I.I'Ela Make paths Rﬂlaﬁu‘e ..

i Iy Make Paths Absolute JGRASP Messages | Run 110
el i —

Browse [Dehug Stop %

Find
Workbench Clear 4] L¥]

Figure 4-4. Removing a file from the Project

ENMAED

Open

58

Projects (v1.8)
8/9/2005

4.4 Generating Documentation for the Project (Java only)

Now that you have established a project, you have the option to generate project level
documentation for your Java source code, i.e., an application programmer interface
(API). To generate the documentation for the PersonalLibaryProject, select Project —
Generate Documentation — <PersonalLibaryProject> as shown in the Figure 4-5.
This will bring up the “Generate Documentation for Project” dialog which asks for the
directory in which the generated HTML files are to be stored. The default directory name
is the name of the project with “_doc” appended to it (e.g., PersonalLibaryProject_doc).
Using the default name is recommended so that your documentation directories will have
a standard naming convention. If the default directory is not indicated, click the Default
button in the dialog. However, you are free to use any directory as the target. Click the
Generate button on the dialog to start the process. JGRASP calls the javadoc utility,
which is included with the JDK, to create a complete hyper-linked document within a few
seconds.

S=1E

Project

Settings Tools Window Help

= How '
. Open

e Files| + | (Sort .. Close b
] +R||H Close all

Is'PersonalLibrar, Save]
@] NonFictionjav, gaye s b

Noveljava [P]

r . Recent Projects b
PersonallLibra— /

- I Add Files k
e Remove Selected Files From Project(s)

Open Projects gonerate / Update UML Class Diagram b

f D I;I:Iraznrﬁll_u Generate Documentation ¥ =PersonallLibrary_Project>
= =
Booki Show Documentation ¢ <PersonalLibrary_Project2>
Fiction | Create JAR File For Project 3

MonFic{ JAR / Zip Extractor

Nnvel.javl: ._,,,, .. __
q |"|| A3 D |— l/Cumplle Messages |/ IGRASP Messages |/Hun 10y
Browse | Debug Stop %
Find i -
Workhench Clear | l L¥]
=]/S]m

Figure 4-5. Generating Documentation for the Project

59

Projects (v1.8)
8/9/2005

The documentation generated for PersonalLibaryProject is shown below in Figure 4-6.
Note that in this example, even though no JavaDoc comments were included in the
source file, the generated documentation is still quite useful. However, for even better
documentation, JavaDoc formal comments should be included in the source code. When
generated for a project, the documentation files are stored in a directory that becomes part
of the project and, therefore, persists from one jGRASP session to the next. Project —
Show Documentation can be used to display the documentation without regenerating it.
However, if any changes have been made to a project source file and the file has been
saved, JGRASP will indicate that the documentation needs to be regenerated. You may
choose to view the documentation anyway or to regenerate the documentation.

Documentation generated for an individual file is stored in a temporary directory for the
duration of the JGRASP session unless the individual file is part of a project for which
documentation has already been generated. In this case, the Generate Documentation
displays the existing documentation rather than generating a temporary documentation
file.

Gy JGRASP Documentation Viewer

File Edit YWiew
= HandhbookiexamplesiTutorialziPersonallibrardPersonallibrary_Project_doclfindes himl
All Classes |]
Book =
Fiction Package Tree Deprecated Index Help n
MonFiction FRAMES NO FRAMES
Movel . FPREW CLASS NEXMT CLASS
Personallibrany All Classes

SURKARY: HESTED | FIELD | COMSTR | METHO DETAIL: FIELD | CONSTR | METHO

L i}

Class Book

Jawva.lang. Chiect

L_Book
Direct Enown Subclasses:
Fiction, HonFiction |

q] | »]

L

Figure 4-6. Project documentation

60

Projects (v1.8)
8/9/2005

4.5 Jar File Creation and Extraction

JGRASP provides a utility for the creation and extraction of a Java Archive file (JAR) for
your project. To create a JAR file, click Project — Create Jar File for Project. This
will allow you to create a single compressed file containing your entire project.

The Project — Jar/Zip Extractor option enables you to extract the contents of a JAR or
ZIP archive file.

These topics are described in more detail in JGRASP Help (find using the Index tab).

4.6 Closing a Project

When you exit JGRASP, the projects and files that are currently open on the desktop are
remembered so that the next time you start JGRASP, you can pick up where you left off.
However, to prevent clutter you should close the ones you are no longer using.

(1) From the Desktop toolbar - Click Project — Close All Projects.
(2) From the Desktop toolbar - Click Project — Active Project < > — Close.

(3) From the Browse Tab — Right-click on the project file name in the Open Projects
section of the Browse tab and select Close.

All project information is saved when you close the project as well as when you exit
JGRASP. Note that closing a project does not close the files that are currently open. You
can close these individually or all at once with File — Close All Files.

4.7 Exercises

(1) Create a new project called PersonalLibraryProject2 in the same directory folder as
the original PersonalLibraryProject. During the create step, add the file Book.java to
the new project. Close the Add Files dialog.

(2) Add the other Java files in the directory to the project by dragging each file from the
Files section of the Browse tab and dropping the files in PersonalLibraryProject2 in
the open projects section.

(3) Remove a file from PersonalLibraryProject2. After verifying the file was removed,
add it back to the project.

(4) Generate the documentation for PersonalLibraryProject2. After the Documentation
Viewer pops up:

a. Click the Fiction class link in the API (left side).
b. Click the Methods link to view the methods for the Fiction class.
c. Visit the other classes in the documentation for the project.

(5) Close the project.

(6) Open the project by double-clicking on the project file in the files section of the
Browse tab

61

UML Class Diagrams (v1.8)
8/9/2005

5 UML Class Diagrams

Java programs usually involve multiple classes, and there can be many dependencies
among these classes. To fully understand a multiple class program, it is necessary to
understand the interclass dependencies. Although this can be done mentally for small
programs, it is usually helpful to see these dependencies in a class diagram. jGRASP
automatically generates a class diagram based on the Unified Modeling Language
(UML). In addition to providing an architectural view of your program, the UML class
diagram is also the basis for the Object Workbench which is described in a separate
section.

Objectives — When you have completed this tutorial, you should be able to generate the
UML class diagram for your project, display the members of a class as well as the
dependencies between two classes, and navigate to the associated source code.

The details of these objectives are captured in the hyperlinked topics listed below.

5.1 Opening the Project

5.2 Generating the UML

5.3 Compiling and Running from the UML Window
5.4 Determining the Contents of the UML Class Diagram
5.5 Laying Out the UML Diagram

5.6 Displaying the Members of a Class

5.7 Displaying Dependencies Between Two Classes
5.8 Navigating to Source Code via the Info Tab

5.9 Finding a Class in the UML Diagram

5.10 Opening Source Code from UML

5.11 Saving the UML Layout

5.12 Printing the UML Diagram

62

UML Class Diagrams (v1.8)
8/9/2005

5.1 Opening the Project

The JGRASP project file is used to determine which user classes to include in the UML
class diagram. The project should include all of your source files (.java), and you may
optionally include other files (e.g., .class, .dat, .txt, etc.). You may create a new project
file, then drag and drop files from the Browse tab pane to the UML window.

To generate the UML, JGRASP uses information from both the source (.java) and byte
code (.class) files. Recall, .class files are generated when you compile your Java program
files. In particular, you must compile your .java files in order to see the dependencies
among the classes in the UML diagram. Note that the .class files do not have to be in the
project file, but they should be in the same directory as the .java files.

If your project is not currently open, you need to open it by doing one of the following:

(1) On the Desktop tool bar, click Project — Open Project, and then select the project
from the list of project files displayed in the Open Project dialog and click the Open
button.

(2) Alternatively, in the files section of the Browse tab, double-click the project file.

When opened, the project and its contents appear in the open projects section of the
Browse tab, and the project name is displayed at the top of the Desktop. If you need
additional help with opening a project, review the previous tutorial on Projects.

The remainder of this section assumes you have created your own project file or that you
will use PersonalLibraryProject from the examples that are included with JGRASP.

TIP: Remember your Java files must be compiled before you can see the dependencies
among your classes in the UML diagram. When you recompile any file in a project, the
UML diagram is automatically updated.

63

UML Class Diagrams (v1.8)
8/9/2005

5.2 Generating the UML

In Figure 5-1 below, PersonalLibraryProject is shown in the Open Projects section of the
Browse tab along with a UML symbol == and the list of files in the project. To generate
the UML class diagram, double-click the UML symbol . Alternatively, on the Desktop
menu, click on Project — Generate/Update UML Class Diagram.

The UML window should open with a diagram of all class files in the project as shown
below. You can select one or more of the class symbols and drag them around in the
diagram. In the figure, the class containing main has been dragged to the upper left of the
diagram and the legend has been dragged to the lower center.

The UML window is divided into three panes. The top pane contains a panning
rectangle that allows you to reposition the entire UML diagram by dragging the panning
rectangle around. To the right of the panning rectangle are the buttons for scaling the
UML.: divide by 2 (/2), divide by 1.2 (/1.2), no scaling (1), multiply by 1.2 (*1.2), and
multiply by 2 (*2). In general, the class diagram is automatically updated as required;
however, the user can force an update by clicking the Update UML diagram button <= on
the desktop menu.

[A Project: <Personallibrary_Project> File: UML (Java) for Project: Person... |Z||E|fz|

File Edit View Build Project Settings Tools Window Help
ElFEREGEE Y T E
‘e Files| | (Sort ...| « : Scale: 1.0

- + (R | Bo.. | I:I 212121222

IsﬁPersunaILihrarﬂ =

S TT T OOy

MISIEY

- B

(] PersonalLibranj— ol

[d] PersonalLibran=| |

[] PersonalLibrary ~ | | - {main}
|

] Il T

e T B 5 .
Open Projects . . |_ | .
¢ [W PersonalLibl =] | r, Fiction MonFiction
& =UML= t‘!\
Bookjavd || |
Fictionjal || Novel
MonFictid ||
Movel jav

«] [»] |
Browse | Goto | |4/ L] [

Debug | UML Info || B <persona...
Workbench —_——

[1=][=]{m] Classes | Interfaces: 5

Personallibrary

[PrajeciClass ——f» Inbatancs
— = == Omher {refamncs, aic)

-

[4]

Figure 5-1. Generating the UML

64

UML Class Diagrams (v1.8)
8/9/2005

If your project includes class inheritance hierarchies and/or other dependencies as in the
example, then you should see the appropriate red dashed and solid black dependency
lines. The meaning of these lines is annotated in the legend as appropriate.

5.3 Compiling and Running from the UML Window

The Build menu and buttons on the toolbar for the UML window are essential.lg the same
as the ones for the CSD window. For example, clicking the Compile button =® compiles
all classes in the project (Figure 5-2). When a class needs to be recompiled due to edits,
the class symbol in the UML diagram is marked with red crosshatches (double diagonal
lines). During compilation, the files are marked and then unmarked when done. Single
red diagonal lines in a class symbol indicate that another class upon which the first class
depends has been modified. Clicking the Run button % on the toolbar will launch the
program as an application assuming there is a main() method in one of the classes.
Clicking on the Run as Applet button ® as an applet will launch the program as an
applet assuming one of the classes is an applet. Similarly, clicking the Debug button @
or the Debug Applet button @ will launch the program in debug mode. Note that for
running in debug mode, you should have a breakpoint set somewhere in the program so
that it will stop.

[A Project: <Personallibrary_Project> File: UML (Java) for Project: Person... E”E'E'

File Edit View Build Project Settings Tools Window Help

- |5

K -

PersonalLibrary
{main}

Fiction MaonFiction

1
&
A
X
w
]
1
1
iy

Movel

[PrajeciClass ———f» Inbedtanc:

— - - = Ofher {refamnos, o)

n m]

[4]

: Personal... Fiction.java Noveljava | [£] =Persona...
Bvaluate Expressi... | ‘' o0
v Go l/ Compile Messages | jGRASP Messages | Runli0 |
Browse L Goto Stop ‘ %
_Debug | UMLInfo | hd
Workbench : Clear Al n] [y

H|E]|E| Status: compiling Classes | Interfaces: 5

Figure 5-2. Compiling Your Program

65

UML Class Diagrams (v1.8)
8/9/2005

5.4 Determining the Contents of the UML Class Diagram

JGRASP provides one option to control the contents of your UML diagram, and another
option to determine which elements in the diagram are actually displayed. Settings —
UML Generation Settings allows you to control the contents of the diagram by
excluding certain categories of classes (e.g., external superclasses, external interfaces,
and all other external references). The View menu allows you to make visible (or hide)
certain categories of classes and dependencies that are actually in the UML diagram.
Both options are described below.

Most programs depend on one or more JDK classes. Suppose you want to include these
JDK classes in your UML diagram (the default is to exclude them). Then you will need
to change the UML generation settings in order to not exclude these items from the
diagram. Also, if you do not see the red and black dependency lines expected, then you
may need to change the View settings. These are

described below.

Excluding (or not) items from the diagram - On
the UML window menu, click on Settings —
UML Generation Settings, which will bring up
the UML Settings dialog. Generally you should d ESEE @
leave the top three items unchecked so that they Exclude By Type of Use:

are not excluded from the UML diagram. Now for [_] External Superclasses

our example of not excluding the JDK classes,] External Interfaces
under Exclude by Type of Class, uncheck (turn

OFF) the checkbox that excludes JDK Classes, as] Other External References
shown in Figure 5-3. Note, synthetic classes are Exclude By Type of Class:
created by the Java compiler and are usually not (] JDK Classes

included in the UML diagram. After checking (or) .
unchecking) the items so that your dialog looks v java.lang.Object
like the one in the figure, click the OK button. [v| Synthetic Classes
This should close the dialog and update the UML
diagram. All JDK classes used by the project
classes should now be visible in the diagram as
gray boxes. This is shown in Figure 5-4 after the
JDK classes have been dragged around. To
remove them from the diagram, you will need to _]
turn on the exclude option. If you want to leave ~Figure 5-3. Changing the UML
them in the diagram but not always display them, Settings

see the next paragraph. For more information see

UML Settings in JGRASP Help.

Hew HNode Layout | Tree Down ™

OK

66

UML Class Diagrams (v1.8)
8/9/2005

Making objects in the diagram visible (or not) - On the UML window menu, click on
View — Visible Objects, then check or uncheck the items on the list as appropriate. In
general, you will want all of the items on the list in View — Visible Objects checked ON
as shown in Figure 5-4. For example, for the JDK classes and/or other classes outside the
project to be visible, External References must be checked ON. Clicking (checking)
ON or OFF any of the items on the Visible Objects list simply displays them or not, and
their previous layout is retained when they are redisplayed. Note that if items have been
excluded from the diagram via Settings — UML Generation Settings, as described
above, then making them visible will have no effect since they are not part of the
diagram. For more information see View Menu in JGRASP Help.

(A Project: <Personallibrary_Project> File: UML (Java) for Project: Person... |Z||E|[z|

File Edit [View | Build Project Settings Tools Window Help
i =) Visible Objects ¥ ¥ Classes
= Visible Dependencies * ¥ Interfaces
Hide ! Show k| ¥ Public Scale: 1.0
Info k| ¥ Non-public r2 121|122
Legend ¥ ® Anorymous 0 L
Appearance k ¥ Inner =
Toolbars ¢| ¥ External References
Toolbar Buttons BT > | Book
Messagehars Lo £|k
Menus LN ""'-h1‘ | S !i |
T bl Fiction/ .| MonFiction
I.-' v ‘*:EE“ ' \‘1\ ::4'1\ r‘I
.' ' J‘II}IWL\:‘J\“-“ .!l *--.L;'.- . E
\ YW R Wy =
PrintStream String StringBuilder System
java.io java.lang java.lang java.lang
[Project Clas= —» hentancs
[] oK Climx or ntarfaca - —— - 3 Cfer redamnca, aie)
1K m Dl
|| [&] <Persona...
T T T T T e T T
Classes ! Interfaces: 9

Figure 5-4. Making objects visible

67

UML Class Diagrams (v1.8)
8/9/2005

Making dependencies visible - On the UML window menu, click on View — Visible
Dependencies, then check or uncheck the items on the list as appropriate. The only two
categories of dependencies in the example project are Inheritance and Other.
Inheritance dependencies are indicated by black lines with closed arrowheads that point
from a child to a parent to form an is-a relationship. Red dashed lines with open
arrowheads indicate other dependencies. These include has-a relationships that indicate
a class includes one or more instances of another class. Also a class may simply
reference an instance variable or method of another class. The red dashed arrow is drawn
from the class where an object is declared or referenced to the class where the item is
actually defined. In general, you probably want to make all dependencies visible. as
indicated in Figure 5-5.

Displaying the Legend - The legend has been visible in each of the UML diagrams
(figures) in this tutorial. To set the options for displaying the legend, click View —

(A Project: <Personallibrary_Project> File: UML (Java) for Project: Person... |Z||E|rz|

File Edit |View | Build Project Settings Tools Window Help B
&5 wisivte Oviects >L.|._+_L_ML
1 Visible Dependencies * ™ Inheritance r
P Hide / Show k ¥ Interface Implementation Scale: 1.0
: Info ¥ ¥ Inner / Quter i201.2]1]*12|*2
Po—— Legend ¥ ™ Other referenceetc) |
Appearance [-
Toolhars [
Toolbar Buttons BT > Book
Messagehars L t|k
Menus LI5S "“'-h,‘ | !i |
; T bl Fiction .| MonFiction
.' ~ Shovel L R =|
v YW T W u
PrintStream String StringBuilder System
java.io java.lang java.lang java.lang
[Project Clas= —» hentancs
[] oK Climx or ntarfaca - —— - 3 Cfer redamnca, aie)
i K m Dl
||] <Persona... | [&] Personal..
e
12}[=]{m] Classes / Interfaces: 9

Figure 5-5. Making dependencies visible

68

UML Class Diagrams (v1.8)
8/9/2005

Legend. Typically, you will want the following options checked ON: Show Legend,
Visible Items Only, and Small Font. Notice that if “Visible Items Only” is checked ON,
then an entry for JDK classes appears in the legend only if JDK classes are visible in the
UML diagram. Experiment by turning on/off the options in View — Legend. When you
initially generate your UML diagram, you may have to pan around it to locate the legend.
Scaling the UML down (e.g., dividing by 2) may help. Once you locate it, just select it
and drag to the location where you want it as described in the next section.

5.5 Laying Out the UML Diagram

Currently, JGRASP has limited automatic layout capabilities. However, manually
arranging the class symbols in the diagram is straightforward, and once this is done,
JGRASP remembers your layout from one generate/update to the next.

To begin, locate the class symbol that contains main. In our example, this would be the
PersonalLibrary class. Remember the project name should reflect the name of this class.
Generally, you want this class near the top of the diagram. Left click on the class symbol
and then, while holding down the left mouse button, drag the symbol to the area of the
diagram you want it, and then release the mouse button. Now repeat this for the other
class symbols until you have the diagram looking like you want it. Keep in mind that
class—subclass relationships are indicated by the inheritance arrow and that these should
be laid out in a tree-down fashion. You can do this automatically by selecting all classes
for a particular class—subclass hierarchy (hold down SHIFT and left-click each class).
Then click Edit — Layout — Tree Down to perform the operation; alternatively, you can
right-click on a selected class or group of classes, then on the pop up menu select Layout
— Tree Down. Finally, right-clicking in the background of the UML window with no
classes selected will allow you to lay out the entire diagram.

With a one or more classes selected, you can move them as a group. Figure 5-5 shows
the UML diagram after the PersonalLibrary class has been repositioned to the top left and
the JDK classes have been dragged as a group to the lower part of the diagram. You can
experiment with making these external classes visible by going to View — Visible
Objects — then uncheck External References.

Here are several heuristics for laying out your UML diagrams:
(1) The class symbol that contains main should go near the top of the diagram.

(2) Classes in an inheritance hierarchy should be laid out tree-down, and then moved
as group.

(3) Other dependencies should be laid out with the red dashed line pointing
downward.

(4) JDK classes, when included, should be toward the bottom of the diagram.
(5) Line crossings should be minimized.
(6) The legend is usually below the diagram.

69

UML Class Diagrams (v1.8)
8/9/2005

5.6 Displaying the Members of a Class

To display the fields, constructors, and methods of a class, right-click on the class, then
select Show Class Info which will pop the UML Info tab to the top in the left tab pane.
Also, in the left tab pane, you can click on the UML Info tab to pop it to the top. Once
the Info tab is on top, each time you select a class its members will be displayed.

In Figure 5-6, class Fiction has been selected and its fields, constructors, and methods
are displayed in the left pane. This information is only available when the source code for
a class is in the project. In the example below, the System class from package java.lang
is an external class, so selecting it would result in a “no data” message. If the only field
you are seeing is mainCharacter, click View — Info — Show Inheritance within Project.
You should now see the fields that are inherited by Fiction (i.e., author, pages, and title).

(8 Project: <Personallibrary_Project> File: UML (Java) for Project: Person... |Z||E|[z|

File Edit View Build Project Settings Tools Window Help

- |5IX

A 1 o e et T e e T e T e e T T e e e T T e T e e T T T e e T e T e T e e T e T e e T T T et e e T T T e T T T T e e e T e T T e T T e Ta T e T T T re e e T Ta e T e e Tt
Project: |P..| = * sl
Fiction

FIELDS: : Fersonallibrary | N Book

[author: private|| : {main} -

[mainCharacter;| AR / ?

[pages: protects| A N f' ! | | |

|:|t|tle: private jau 3 Fiction Show Class Info

CONSTRUCTORS: : ."I 1 " J?I\lr:l E

[l Fiction(): public| / \ A | Create Newlnstance

[Fiction(): public| : | Naowel Imoke Method g
METHODS: : V7 | Create Array Of -
[getMainCharac v \, ,;ﬁrj h | Eait

[setMainCharac || Printstream String Compile

I tostring(: publl | jaya o java.lang | compile Al

[l toString(): publ|: :

5 Add To Project
[Project Class — Bemowe From Project
[o cies armiertace -~ Ganarate | Show Documentation
Layout »
4] [»
Browse : ‘E
_ Goto | Debug | |4l L [»]
UML Info || [#] <persona... Personal... Fiction.java ‘

workbench | - —— —
[i=)|=]|m] Classes / Interfaces: 9

Figure 5-6. Displaying class members

70

UML Class Diagrams (v1.8)
8/9/2005

5.7 Displaying Dependencies Between Two Classes

Let’s reduce the number of classes in our UML diagram by not displaying the JDK
classes. Click View — Visible Objects and uncheck External References. Now to
display the dependencies between two classes, right-click on the arrow, then select Show
Dependency Info. You can also click on the UML Info tab to pop it to the top. Once the
Info tab is on top, each time you select an arrow, the associated dependencies will be
displayed.

In Figure 5-7, the edge drawn from PersonalLibrary to Fiction has been selected as
indicated by the large arrowhead. The list of dependencies in the Info tab includes one
constructor (Fiction) and one method (getMainCharacter). These are the resources that
PersonalLibrary uses from Fiction. Understanding the dependencies among the classes
in your program should provide you with a more in-depth comprehension of the source
code. Note that clicking on the arrow between PersonalLibary and the PrintStream class
in Figure 5-6 would show that PersonalLibary is using two printin() methods from the
PrintStream class. Make the External References visible again and try this.

(8 Project: <Personallibrary_Project> File: UML (Java) for Project: Person... |Z||E|rz|
File Edit View Build Project Settings Tools Window Help

Glade &V 10600 EH
1 o b i S T T T T Tty T T Tt e T e et Ta T Ta e e e Tt T T Ta T Ta e Tt o T T e T Fa T Ta T Tt e T T e Tt Tata T T Tt e T Ta T ot Ta T Ta e Tt e T T e Tt Ta e,
Project: |Pers.. |« F
Personallibrary - Fic...
FIELDS:
CONSTRUCTORS: F’n'i;?:”a"—‘mw S Book
[Fiction(): Fictiongav - {main} ,]5 |
METHODS: : =]
[vetMainCharacterq) - —— |
g : . Fiction NonFiction
N
Movel
] D E i
Browse | Goto | - n o |,, -
Debug | UMLInfo | °
Workbench [&] <Persona...
e T T T T e T T T T T T T T T e T e T T e e T Tt T T e T T T T S T e T T S T T T e T e T T S T T T e T e T T T S T T T T e T P T S T T T S T T T e T P T S T Ty
Classes ! Interfaces: 5

Figure 5-7. Displaying the dependencies between two classes

71

UML Class Diagrams (v1.8)
8/9/2005

5.8 Navigating to Source Code via the Info Tab

In the Info tab, a green symbol indicates the item is defined or used in the class rather
than inherited from a parent class. Double-clicking on a green item will take you to its
definition or use in the source code. For example, clicking on getMainCharacer() in
Figure 5.7 above will open a CSD window for PersonalLibrary with the line containing
getMainCharacter() highlighted as shown in Figure 5-8 below.

5.9 Finding a Class in the UML Diagram

Since a UML diagram can contain many classes, it may be difficult to locate a particular
class. In fact, the class may be off the screen. The Goto tab in the left pane provides the
list of classes in the project. Clicking on a class in the list brings it to the center of the
UML window.

5.10 Opening Source Code from UML

The UML diagram provides a convenient way to open source code files. Simply double-
click on a class symbol, and the source code for the class is opened in a CSD window.

[A Project: <Personallibrary_Project> File: Personallibrary.java [P] C:\D... E”E'E'
File Edit View Build Project Settings Tools Window Help

oaeEe BOR T nay 4 i e eomE

f;:r:rrrrrr:r:r:rrrrrr:r:r:rrrrrr:r:r:rrrrrrrrrrrrrrrrrrrrrrrrrr -

Project: |Perse..| w | |- =Jpublic class Personallibrary
: {]
PersonalLibrary -= Fict... - R
FIELDS: /¢ Instantiates a derived class amd invokes its i
/¥ local methods,
COMSTRUCTORS: - =
EFiEﬁDn{}: Fiction{jav i{puhlic: static void main (3tring[] args)
METHODS: —= Book hewingway = new EBook("Hemingeay" ,
EgEtMainChara[:’terﬂ: "Green Hills of Africa", 234): | 4

l—= Fiction clancy = new Fiction("Clancy",
"The Hunt for Red October",
490, "Sean");

—= Nowel grisham = mew Nowel (["Grisham',
"The Firm", 550, "Tom", 0O):

— &ystewm. out.printlin(heningway) ;
— System.out.printlniclancy) ;
ysten. out.println(MAm"Y + clancy.getMainCha

<]] D
Browse LFind :

Debug | UML Info
Workhench

n I | I
@{Persuna... Persunal...

Line:23 Col1 Code:207 Top:d b\{s ELH

Figure 5-8. Opening CSD Window from UML

72

UML Class Diagrams (v1.8)
8/9/2005

5.11 Saving the UML Layout

When you close a project, change to another project, or simply exit JGRASP, your UML
layout is automatically saved in the project file (.gpj). The next time you start JGRASP,
open the project, and open the UML window, you should find your layout intact.

If the project file is created in the same directory as your program files (.java and .class
files), and if you added the source files with relative paths, then you should be able to
move, copy, or send the project and program files as a group (e.g., email them to your
instructor) without losing any of your layout.

5.12 Printing the UML Diagram

With a UML window open, click on File — UML Print Preview to see how your
diagram will look on the printed page. If okay, click the Print button in the lower left
corner of the Print Preview window. Otherwise, if the diagram is too small or too large,
you may want to go back and scale it using the scale factors near the top right of the
UML window, and then preview it again.

For details see UML Class Diagrams in JGRASP Help.

73

Object Workbench (v1.8)
8/9/2005

6 The Object Workbench

The Object Workbench, which is tightly integrated with the CSD and UML windows,
provides a useful approach for learning the fundamental concepts of classes and objects.
The user can create instances of any class in the CSD window, the UML window, or the
Java class libraries. When an object is created, it appears on the workbench where the
user can select it and invoke any of its methods. The user can also invoke static (or class)
methods directly from the class without creating an instance of the class. One of the most
compelling reasons for using the workbench approach is that it allows the user to create
an object and invoke each of its methods in isolation. That is, being able to invoke the
methods without the need for a driver program. Some of the examples in this section
were also presented in the section on Getting Started with Objects; however, more detail
is included in this section.

Objectives — When you have completed this tutorial, you should be able to create objects
for the workbench from classes in CSD or UML windows as well as directly from the
Java libraries, invoke the methods for each of these objects, and display the dynamic
states of these objects by opening object viewers for them.

The details of these objectives are captured in the hyperlinked topics listed below.

6.1 Invoking Static Methods from the CSD Window

6.2 Invoking Static Methods from the UML Window

6.3 Creating an Object for the Workbench

6.4 Invoking a Method

6.5 Invoking Methods with Parameters Which Are Objects
6.6 Invoking Methods on Object Fields

6.7 Selecting Categories of Methods to Invoke

6.8 Opening Object Viewers

6.9 Running the Debugger on Invoked Methods

6.10 Exiting the Workbench

74

Object Workbench (v1.8)
8/9/2005

6.1 Invoking Static Methods from the CSD Window

In the tutorial Getting Started, we ran the Hello program as an application by clicking the
Run button %. Now let’s see how we can invoke its main method directly by using the
workbench. Since main is a static method, it is associated with the Hello class rather than
an instance of the Hello class; therefore, we don’t have to create an instance for the
workbench. There are two ways to invoke a static method from the CSD window:

a. Click Build - Java Workbench — Invoke Static Method.
b. Click the Invoke Static Method button B on the toolbar.

The latter is the easiest way, so click the Invoke Static Method B button now. This pops
up the Invoke Method dialog which lists the static method main. After selecting main,
the dialog expands to show the available parameters (Figure 6-2). We can leave the
java.lang.String[] args blank since our main method is not expecting command line
arguments to be passed into it.

In Figure 6-2, notice the two check boxes below the String[] args field. The first, Don’t
Show Result Dialog, will be useful when you want to repeatedly invoke a method that has
a void return type or one that you do not care about. When checked ON, all result dialogs
(e.g., Figure 6-3) will be suppressed. The second check box, Run Without Clearing the
Workbench, is a special case option for running a main. Normally it is okay to invoke a
main method without clearing the workbench if you are sure this won’t interfere with
objects you previously placed on the workbench.

(3 File: Hello.java C:\Documents and Settings\crossjh\My Documents\jGRAS. .. [Z”E”z|

File Edit View Build Project Settings Tools Window Help =
aEme BOD eV +X0 60N

public class Hello

: {
4= tIR||. tuhlic: static woid main(String[] args)
' {
}

v

ce Fi||v 0. | v

mplesiTutorials| ¥ || -

System.out.println ("Hello wworldliyn")

Hello java ; | 3
HelloZ java : }
[Hello_Project.g|| -]
[T | os
e T R e e e e et e e, :
:L I | [» rCumpiIE Messages erRASP Messages |/Hun 10
Browse | Find End | ﬂ
Debuy -
Workbench | | | Clear Kl I []
]S [m! Line:9 Col1 Code:d Top:1 Mﬂ

Figure 6-1. Invoking a static method from the Workbench

75

Object Workbench (v1.8)
8/9/2005

ARV (3 o eivoson et)
the upper left corner which is used (4 Invoke Method on Hello X]
to keep the dialog open until you 4
close it. This will allow you to

times.

[] Invoke Non-virtual

Yisible from Hello : user methods onhy -

Now you are ready to invoke the
main method _by clicking the Emain{}: public static void main(String[] args)
Invoke button in the lower left
corner of the dialog. Figure 6-3
shows the desktop and the dialog main() declared in Hello
that pops up with the result: Returns: void
“Method invocation successful
(void return type).” Recall that Parameters:

main has a “void” return type. The ava.lang.String[] args

standard output from the program, —
“Hello World!” appears in the Run

1/0 tab pane. When the return type [] Don't Show Result Dialog

for a method is not void, the dialog
in Figure 6-3 will contain the value
of the return type.

[| Run Without Clearing Workbench

Imvoke Show Doc Close

Figure 6-2. Invoking main

[File: Hello.java C:\Documents and Settings\crossjh\My Documents\jGRAS. .. |:||E|[z|
File Edit View Build Project %Settings Tools Window Help

e
Ssanes r Run 1O

e A EEEEEESESESESE .
Jf: —_—
Browse | Find | - End | Hello world! %
Debug =
Workbench | | | Clear] | »]

Line:2 Coli1 Code:d Top:1 E\,.rs ELH

Figure 6-3. The Result dialog from invoking a method

76

Object Workbench (v1.8)
8/9/2005

6.2 Invoking Static Methods from the UML Window

Figure 6-4 shows that we have created a project file, Hello_Project, added Hello.java to
the project, and then generated the UML class diagram. To make the class diagram more
interesting, we have elected to display the Java library classes used by the Hello class.
We did this by selecting Settings — UML Generation Settings — then in the dialog, we
unchecked JDK classes under the Exclude by Type section. As always, feel free to
substitute your own examples in the discussion below.

Since main is a static method associated with the class rather than an instance of the
class, it can be invoked by selecting the Hello class in the UML diagram, then right-
clicking and selecting Invoke Method. This pops up the Invoke Method dialog which
lists the static method main as described in the section above. After selecting main, leave
the parameters blank, and then click the Invoke button. The “Result” dialog should pop
up and you should see the output “Hello World!” in the Run 1/O tab as shown in Figure
6-5.

You can also invoke the static methods of a class in the UML window by using the
Workbench menu or by clicking the Invoke Static method button [on the toolbar.

(8 Project: <Hello_Project> File: UML {Java) for Project: Hello_Project C:... |Z E'E'

File Edit View Build Project Settings Tools Window Help -
GlEde &0 %% o660 H
! T, P
‘ce Files| v | |SortB... « |k -
« |+ |4|R|| Book.. |
mples\TutorialsiHello| v |-
Hello.java [P] Hello
Hello2 java : {main
[[] Hello_Project.gpj - ; show Class Info
: ! | Create New Instance
A,’!"D ------------ p-ct ------------------ rig N I_rWDkE Method
pen Frojects : System PrintStre
[W] Hello_Praject CDoc|| o, i javao | Create Array Of
& =UML> : Edit
Hellojava Compile
: Compile All
[Froject Ctass Add To Project
I:I JO¥ Class or Interiace
g Remove From Project
L0 TR [¥ Generate | Show Documentatior
Browse | Goto | |4 L] Layout
Debug | UML Info || [E]nenojava | (5] <telio_pr...
Workbench e
[1=2][S][m] Classes | Interfaces: 4 |

Figure 6-4. Invoking a static method from a class

77

Object Workbench (v1.8)
8/9/2005

File Edit Yiew Build Project Settings Tools Window Help - ﬁ =
SlEde &0 2@ 0N =
,! T PP
Files| ¥ | |S0.. | ¥ [k -
|+ t|R Hello
iTutorials'Hello| « {main}
] Hello.java [P] « P N
HelloZjava |— i
Hellu I!"ru'e = & - ¢ =]
O f>|_ Systemn PrintStream String —
P : Javalang java.io java.lang
Open Projects |-
(W] Hello_Project o | ¢ — R 0 0
it Praje
m [uoxell tethod invocation successful (void return type).
Hellojava ||
s
i Close
Hello.java @ <Hellg
: e
e
m DIE : :
— & |/Cumplle Messages |/ IGRASP Messages |/Run 10
Browse i —
Goto Lnehug End ‘ Hello world! %
UML Info Bl
Workbench | Clear [«] [»]
mE0

Figure 6-5. Invoking a static method from a class

78

Object Workbench (v1.8)
8/9/2005

6.3 Creating an Object for the Workbench

Now we move to a more interesting example which contains multiple classes. Figure 6-5
shows the PersonalLibraryProject loaded in the UML window. We could invoke main by
following the procedure described in the preceding section (i.e., right-clicking on
PersonalLibary and selecting Invoke Method or by clicking the Invoke Static method
button B on the toolbar. However, in this section we want to create objects and place
them on the workbench. In the next section, we’ll see how to invoke the instance (or
non-static) methods of the objects we’ve placed on the workbench.

So we begin by right clicking on the Fiction class in the UML diagram, and then
selecting Create New Instance, as shown in Figure 6-6. A list of constructors will be
displayed in a dialog box.

If a parameterless constructor is selected as shown in Figure 6-7, then clicking Create
will immediately place the object on the workbench. However, if the constructor requires
parameters, the dialog will expand to display the individual parameters as shown in
Figure 6-8. The arguments (values of the parameters) should be filled in prior to clicking
Create. Remember to enclose String arguments in double quotes.

[A Project: <Personallibrary_Project> File: UML (Java) for Project: Person... E”E'E'
File Edit View Build Project Settings Tools Window Help

aEEce 2y +xée6m=

Files| * | |S0... | ¥ [k a

- TR g FersonalLibrary
*ersonalLibrary| « || - {main} F=ma

[JPersonalLibr~ ||~ Book
Bookjava [P|=| | AF.
i I milt — l. |. _
T T, ol b Fiction | ManFiction |
Open Projects l“-\ Show Class Info =
= ;:-riilnhﬂall_l;im: I':l Create New Instance B
: v
Bookjavd= Invoke Method
Fictionjay || Create Array Of
— [eroject Clarss. —| Edit
=z _ Compile
r Compile All n
Gut: rufu[s):hug q] Add To Project ﬂ:
UML Info @ R Remove From Project
Workhench | o Generate | Show Documentation | __
Layout g

Figure 6-6. Creating an Object for the Workbench

79

[H Create Mew Fiction @

g Show: [| Symthetic

Workbench Hame
(fiction_1 |

| public Fictiong)
E public Fiction{String thefut

Create Close

Figure 6-7. Selecting a constructor

In either case above, the user can set the name of
the object being constructed or accept the default
assigned by jGRASP. Also, the “stick-pin” ¥
located in the upper left of the dialog can be used to
make the Create dialog “stay up” after you create an
instance. This is handy for creating multiple
instances of the same class. Click on the “stick-
pin” ¥ (it should turn darker), then click the Create
button three times and you should see three new
instances appear on the workbench.

Object Workbench (v1.8)
8/9/2005

[8 Create New Fiction @

¥

Workbhench Hame

Show: [| Synthetic

[fiction_1 |

[public Fiction()
E public Fiction(String theAuth

4

T IC

Parameters:

ava.lang.String thefuthor

“Rowling™ -

ava.lang.String theTitle

"Harry Potter” -
int thePages
208 -

ava.lang.String theMainChar...

“Harry" —

Create Show Doc

Figure 6-8. Constructor with
parameters

In Figure 6-9, the Workbench tab is shown after four instances (or objects) of Fiction
have been created. Notice fiction_2 and fiction_3 have been expanded so that their
respective fields (mainCharacter, author, title, and pages) can be viewed. Since the first
three fields are instances of the String class, they too can also be expanded. You should
also note that mainCharacter is color coded green since it is the only field actually
declared in Fiction. The other fields are color coded orange to indicate they are inherited
from a parent, which in this case is Book. The placement of these fields in Book vs.
Fiction was a design decision. Since not all books have a mainCharacter (e.g., a math
book) but works of fiction almost certainly do, mainCharacter was defined in Fiction.
Notice that Novel, a subclass (or child) of Fiction, appropriately inherits mainCharacter.

80

Object Workbench (v1.8)
8/9/2005

(3 Project: <Personallibrary_Project> File: UML {Java) for Project: Person... |Z||E|[Z|

File Edit Yiew Build Project Settings Tools Window Help

EEEEFRBCE Y T E

1 e T R N R T R R R R R A R R R R R R R R R e R R R R R R R R R R R R R R R A R R R R R R R R R

o [fiction_1 id = 336 : Fictia b
e . fiction_2 id = 345 : Fictio
o~ [l mainCharacter="nd|
o= [authar = "na title" : id Fersonallibrary
o~ [title = "none" - id = 34| b "=
I\ pages=0: protecteq| :
¢ [fiction_3 id = 352 ; Fictio|| - ?
o [l mainCharacter="ng Yy | |
o [author ="no title" : idf | - . Fiction MNonFiction
o [Jtitle ="none": id= 39| -
I\ pages=0: protectsq| : \ﬁ‘
o [fiction_4 id = 359 : Fictio Maovel

- [F[x]

e

Book

: | | > [ProjeciClass. ——f» Inbantancs
I | B === O (redemnce, o)

Bvaluate Expression

= Go E
e Kl L] [»]

Browse LGDW LDehug | [&] <Persona...
UMLInfo | Workbench | g ——— ——-— —

IEI 0| status: workbench active for project <PersonalLibrary_Project> Classes | Interfaces: 5

Figure 6-9. Workbench with four instances of Fiction

[4 Invoke Method on fiction_2 E

6.4 Invoking a Method F | Clivoke Non-virtual

To invoke a method for an object on the Show: [|Inaccessible [|Syn..
workbench, select the object, right click, and then
select Invoke Method. In Figure 6-10, fiction_2 Visible from Fiction : user met... | =
has been selected, followed by a right mouse
click, and then Invoke Method has been selected.
A list of user methods visible from Fiction will be
displayed in a dialog box as shown in Figure 6-11.
After one of the methods is selected and the
parameters filled in as necessary, click Invoke. 1 ll | | »
This will execute the method and display the
return value (or void) in a dialog. Other output, if Invoke Show Doc
any, is handled in the usual way. If a method
updates a field (e.g., setMainCharacter()), the

[vetMainCharacter(): public Strif
E setMainCharacter(): public void
E toStringd): public String toString

Figure 6-10. Selecting a method

81

Object Workbench (v1.8)
8/9/2005

effect of the invocation is seen in the appropriate object field in the Workbench tab. The
“stick-pin” ¥ located in the upper left of the dialog can be used to make the Invoke
Method dialog stay up. This is useful for invoking multiple methods for the same object.
For example, in a graphics program a “move” method could be clicked repeatedly to see
an object move across the display.

As indicated above, perhaps one of the most compelling reasons for using the workbench
approach is that it allows the user to create an object and invoke each of its methods in
isolation. Thus, with an instance of Fiction on the workbench, we can invoke each of its
three methods: getMainCharacter(), setMainCharacter(), and toStirng(). By reviewing
the results of the method invocations, we are essentially testing our class without a driver

program.
i - _ ke Method
6.5 Invoking Methods with Parameters (8 Invoke Method on res... (K]

Which Are Objects g [] imvoke Non-virtual

If a method (or constructor) requires parameters that
are primitive types and/or strings, these can be

Show: [|Inaccessible [..

entered directly. However, if a parameter requires an Visible from java.lang.String | v
object, then you must create an object instance for the

workbench first. Then you can simply drag the object [= toupperCaseq): public Str|~
(actually a copy) from the workbench to the [toUpperCase(): public Str|~
parameter field in the Invoke Method dialog. | []

toUpperCased) declared in java...

6.6 Invoking Methods on Object Fields

Returns: java.lang.String
If you have an object in the Workbench tab, you can

: e X 7 Don't Show Result Dial
expand it to reveal its fields. In Figure 6-9, fiction_2 I Don't Show Result Dialog
and fiction_3 are expanded to show their fields
(mainCharacter, author, title, and pages). Since the RS SIS

field mainCharacter is itself an object of the class
String, any of the String methods can be invoked on Figure 6-10. Invoking a
it. For example, right-click on mainCharacter in String method

fiction_2, then select Invoke Method. When the

dialog pops up (Figure 6-10), you’ll see a rather

lengthy list of all the methods visible to String
objects. Scroll down the list angl select the fir_st g Name [result_1 H
toUpperCase() method, and then click Invoke. This
should pop up the Result dialog with “HARRY” as | Twpe: javalano.String

the return value (Figure 6-11). This method call has | view: |Formatted -
no effect on the value of the field for which it was
called; it simply returns the string value converted to
uppercase.

HARRY

Figure 6-11. Result of
fiction_2.mainCharacter.
toUpperCase()

82

Object Workbench (v1.8)
8/9/2005

6.7 Selecting Categories of Methods to Invoke

The Invoke Method dialog provides a
list of categories of method on a drop
down menu. The default category is
“Visible from object name - user
methods only.” As the category name
suggests, this list includes methods
defined in the object’s class as well as
those inherited from parent classes.
This category was selected as the
default so that the all user defined
methods could Dbe conveniently
viewed. In this section, we’ll explore
the various categories of methods.

Let’s create an instance of Novel by
right-clicking on Novel in the UML
window and then selecting Create
New Instance. On the Create dialog,
choose the parameterless constructor
and click Create. Now you should see
novel 1 on the workbench. Right-
clicking on novel_1 and then selecting
the Invoke Method will open the
Invoke Method dialog as shown in
Figure 6-12. Notice the first two
methods are inherited (gold method
symbols) and the third is defined in
Novel (green method symbol). Now
look back at the Invoke Method dialog
for fiction_2 in Figure 6-10. The same
methods are listed, but all are marked
with green method symbols since those
are defined in the Fiction class. One
should surmise from this that both
Fiction and Novel must have their own
toString method.

Now let’s look at another category of
method on the Invoke Method dialog
for novel_1. Click the pull-down
menu on the dialog (see info box for
Figure 6-12) and select “Declared in
superclass Fiction. Notice that the
toString method in figure 6-13 has a
gray bar through its gold method
symbol to indicate that it has been

Click pull-down menu
to select a category of
methods.

[4 Invoke Method on novel_1

g [] Irmvoke Mon-virtual

Show: [|Inaccessible [| Synthetic

Visible from Hovel : user methods onhy -

E| getMainCharacter(): public String getMainCh
E| setMainCharacter(): public void setMainCha
E toString): public String toString()

4 I | [»

Close

Figure 6-12. Invoking a method for
novel_1

[4 Invoke Method on novel_1 @

? [] Imvoke Hon-virtual

Show: [|Inaccessible [| Synthetic

Declared in superclass Fiction -

E| getMainCharacter(): public String getMainCh
E| setMainCharacter(): public void setMainCha
EtuString{}: public String toString()

1| Il | I

Close

Figure 6-13 Methods declared in
superclass Fiction

83

overridden by the toString method defined for
Novel. This means that if you select and invoke the
toString method listed in Figure 6-13, the toString
defined in Novel will be the one that gets called.
Remember, it is the object itself that determines
which method is actually called. In your Java
program, if you wanted to call an overridden
method for an object, you would need to cast the
object to the superclass and then call the method.
JGRASP provides a short cut for doing this on the
workbench with the “Invoke Non-virtual” check
box on the dialog. In the example in 6-13, if you
invoke the toString method without the checking
the box for Invoke Non-virtual, Novel’s toString
method is called, and you get the result shown in
Figure 6-14. However, if you invoke the method
with the box checked, Fiction’s toString method is
called, and you get the result in Figure 6-15. Notice
the only difference is that Novel’s toString method
includes one more line of text (“Number of sequels:
0”) than Fiction’s toString method.

The other two check boxes “Inaccessible Methods”
and “Synthetic Methods” are primarily for advanced
users. The first can be used to display inaccessible
methods such as inherited private methods. The
second provides a list of synthetic methods created
by the compiler such as access methods for fields of
inner classes.

To wrap up this section, you are invited to select
among the other categories of methods that can be
displayed on the Invoke Method dialog for novel_1:

Declared in superclass Book
Declared in superclass java.lang.Object
Visible from Novel

Object Workbench (v1.8)

8/9/2005

G result_3: Result of no... @

¥

Hame result_3

=

Type: java.lang. String

View: [Formatted

ALthar: no title

Title: nane

Fages: 0

Main Character. none
Fumber of sequels: 0

Figure 6-14. Viewing
superclasses for novel 1

G result_4: Result of no... @

Hame result_4

¥

=

Type: java.lang. String

View: [Formatted

Author no title

Title: none

Fages: 0

Main Character: none

Figure 6-15. Viewing
superclasses for novel_1

Notice that novel_1 inherits a large number of methods from java.lang.Object. The most
inclusive category is “Visible from Novel” which includes all available methods.
Perhaps now you see why the default category is “Visible from Novel — user methods

only.”

84

6.8 Opening Object Viewers

A separate Viewer window can be opened for any
object (or field of an object) on the workbench. All
objects have a basic view which is the view shown
in the workbench and debug tabs. However, some
objects will have additional views.

The easiest way to open a viewer is to left-click on
an object and drag it from the workbench to the
location where you want the viewer to open. This
will open a “view by name” viewer. You can also
open a viewer by right-clicking on the object and
selecting either View by Value or View by Name.

Figure 6-16 shows an object viewer for the title
field of fiction_3 which is a String object in an
instance of Novel. Formatted is the default “view”
for a String object which is especially useful when
viewing a String object with a large value (e.g., a
page of text). In Figure 6-17, the Basic view has
been selected and expanded to show the gory details
of the String object. Notice the first field is
value[12] which is a character array holding the
actual value of the string. If we open a separate
viewer on value, we have a nice Presentation view
of the array as shown in Figure 6-18. In the next
tutorial, Viewers for Objects and Primitives,
additional Presentation views will be discussed.
You are encouraged to open separate viewers for
the objects on the workbench. In addition to
providing multiple views of the object, each viewer
includes an Invoke Method button & for the object
being viewed.

Object Workbench (v1.8)
8/9/2005

[d value of: fiction_3.title @

& fiction_3title =

Type: javalang.String

View: [Formatted -

Harry Potter

Figure 6-16. Viewing a String
Obiect

[8 value of: fiction_3.title @

& | fiction_3title =

Type: java.lang.String

Yiew: |Basic -

o [="Harry Potter :id = 387
o [value[12] :id = 437 : pri
by offset=0: private final
By count=12: private fina
b hash=0: private int
b serialversionUID = -G8
o [serialPersistentFields]
o .C."J'.SE INSERSITIVE O
T [»

Figure 6-17. Basic view of a
string (expanded to see fields)

[E value of: fiction_3.title.value @

& | fiction_a title value

Type: char]

=

Wiew: |Presentatiun

|v|

g = - ——0

12 elements

[Hfalrfefv] Jrfol]

tlefelr]

0 1 2 3 4 5 6 7

W T LT

8 9 o0 11

Figure 6-18. Presentation view of the character

array for ""Harry Potter™

85

Object Workbench (v1.8)
8/9/2005

6.9 Running the Debugger on Invoked Methods

When objects are on the workbench, the workbench is actually running the Java Virtual
Machine (JVM) in debug mode. Thus, if you have a class open in a CSD window and set
a breakpoint in one of its methods and then invoke the method from the workbench, the
CSD window will pop to the top when the breakpoint is reached. At this time, you can
single step through the program, examine fields, resume, etc. in the usual way. See the
tutorial on “The Integrated Debugger” for more details.

6.10 Exiting the Workbench

The workbench is running whenever you have objects on it. If you attempt to do an
operation that conflicts with workbench (e.g., recompile a class, switch projects, etc.,
JGRASP will prompt you with a message indicating that the workbench process is active
and ask you if it is is it OK to end the process (Figure 6-19). When you try to exit
JGRASP, you will get a similar message (Figure 6-12). These prompts are to let you
know that the operation you are about to perform will clear the workbench. You can also
clear or exit the workbench by right-clicking in the Workbench tab pane and selecting
Clear/Exit Workbench.

[jGRASP: End Workbench? %]

-] Workhench is active.

OHK to end Workhench and continue with Compile?

End Workhench Cancel

Figure 6-19. Making sure it is okay to exit the
Workbench

[H jGRASP: Exit jGRASP?

o Workbench is active. Exit JIGRASP amavay?

Exit Cancel

Figure 6-17. Making sure it is okay to exit

86

Integrated Debugger (v1.8)
8/9/2005

[The Integrated Debugger

Your skill set for writing programs would not be complete without knowing how to use a
debugger. While a debugger is traditionally associated with finding bugs, it can also be
used as a general aid for understanding your program as you develop it. jGRASP
provides a highly visual debugger for Java, which is tightly integrated with the CSD and
UML windows, the Workbench, and the Viewers. The JGRASP debugger includes all of
the traditional features expected in a debugger.

If the example program used in this section is not available to you, or if you do not
understand it, simply substitute your own program in the discussion.

Objectives — When you have completed this tutorial, you should be able to set
breakpoints and step through the program, either by single stepping or auto stepping.
You should also be able to display the dynamic state of objects created by the program
using the appropriate Object Viewer.

The details of these objectives are captured in the hyperlinked topics listed below.
7.1 Preparing to Run the Debugger
7.2 Setting a Breakpoint
7.3 Running a Program in Debug Mode
7.4 Stepping Through a Program — the Debug Buttons
7.5 Stepping Through a Program — without Stepping In
7.6 Stepping Through a Program — and Stepping In
7.7 Opening Object Viewers
7.8 Debugging a Program

87

Integrated Debugger (v1.8)
8/9/2005

7.1 Preparing to Run the Debugger

In preparation to use the debugger, we need to make sure that programs are being
compiled in debug mode. This is the default, so this option is probably already turned on.
With a CSD or UML window in focus, click Build on the menu and make sure Debug
Mode is checked. If the box in front of Debug Mode is not checked, click on the box.
When you click on Build again, you should see that Debug Mode is checked. When you
compile your program in Debug Mode, information about the program is included in the
.class file that would normally be omitted. This allows the debugger to display useful
details as you execute the program. If your program has not been compiled with Debug
Mode checked, you should recompile it before proceeding.

7.2 Setting a Breakpoint

In order to examine the state of your program at a particular statement, you need to set a
breakpoint. The statement you select must be “executable” rather than a simple
declaration. To set a breakpoint in a program, move the mouse to the line of code and
left-click the mouse to move the cursor there. Now right-click on the line to display a set
of options that includes Toggle Breakpoint. For example, in Figure 7-1 the cursor is on

(8 Project: <Personallibrary_Project> File: Personallibrary.java [P] C:\D... Z E'E'

File Edit View Build Project Settings Tools Window Help .
afeaé BRLD Bl +iédé0 R
urce F“ES - Snrt By-“. - :_ L;rrr E
ZJpublic class Personallibrary ||
4= 1+ | R || Bookma... ||: i
uturialsﬁpersunalLihrarﬂv : #f - oo oo oo oo L
[Book java [P] il £ Instantiates a derived class and invokes
] | E: /# 1local methods.
Fiction.java [P] - 2 -
HonFiction.java [P] = public static void main (String[] args)
: - n {
HWEIJM_"J] . | @ Book hemingw| o sy ,
PersonalLibrany.java ~||: "Green Hil = [i s
4| Il EDEIE Fiction clan| Cut lancy" ,
e T o] b "The Hunt
& Paste
Open Projects : 490, "Seal o n
[d] Eookjava Nk Edit » had
Fiction java 4] I | Toggle Bookmark]
NI:Ir'IFII-:tII:Ir'I.JEI'-.-'EI —|| || [&] <Persona... Personal., Next Bookmark
Movel java : e
Pergnnallerawjava E E E;;I:I"'il"e'h'e's';;"e'; - '(:iﬁﬁg'l Euukmarks h _i
4[] DHIE i 4 ! Toggle Breakpoint
Browse | Find | || Stop Breakpoints b %
Debug UMLInfo | - b
Workbench : Clear 4] []
[12][2]{m| Line:27 Cok1 Code:d Topd [ovsbik

Figure 7-1. Setting a breakpoint

88

Integrated Debugger (v1.8)
8/9/2005

the first executable line in main (which declares Book hemingway ...), and after Toggle
Breakpoint is selected in the options popup menu, a small red stop sign symbol @
appears in the left margin of the line to indicate that a breakpoint has been set. To
remove a breakpoint, you repeat the process since this is a toggle action. You may set as
many breakpoints as needed.

You can also set a breakpoint by hovering the mouse over the leftmost column of the line
where you want to set the breakpoint. When you see the red octagonal breakpoint
symbol @, you just left-click the mouse to set the breakpoint. You can remove a
breakpoint by clicking on the red octagonal. This second approach is the one most
commonly used for setting and removing breakpoints.

7.3 Running a Program in Debug Mode

After compiling your program in Debug Mode and setting one or more breakpoints, you
are ready to run your program with the debugger. You can start the debugger in one of
two ways:

(1) Click Build — Debug on the CSD window menu, or
(2) Click the Debug button @ on the toolbar.

After you start the debug session, several things happen. In the Run window near the
bottom of the Desktop, you should see a message indicating the debugger has been
launched. In the CSD window, the line with the breakpoint set is eventually highlighted,
indicating that the program will execute this statement next. On the left side of the
JGRASP desktop, the Debug tab is popped to the top. Each of these can be seen in
Figure 7-2. Notice the Debug tab pane is further divided into three sub-panes or sections
labeled Threads, Call Stack, and Variables/Eval. Each of these sections can be resized
by selecting and dragging one of the horizontal partitions.

The Threads section lists all of the active threads running in the program. In the
example, the red thread symbol K indicates the program is stopped in main, and green
indicates a thread is running. Advanced users should find this feature quite useful for
starting and stopping individual threads in their programs. However, since beginners and
intermediate users rarely use multi-threading, the thread section is closed when the
debugger is initially started. Once the Threads section is dragged open, it remains open
for the duration of the JGRASP session.

The Call Stack section is useful to all levels of users since it shows the current call stack
and allows the user to switch from one level to another in the call stack. When this
occurs, the CSD window that contains the source code associated with a particular call is
popped to the top of the desktop.

The Variables/Eval section shows the details of the current state of the program in the
Variables tab and provides an easy way to evaluate expressions involving these variables
in the Eval tab. Most of your attention will be focused on the Variables tab where you
can monitor all current values in the program. From the Variables tab, you can also
launch separate viewers on any primitives or objects as well as fields of objects.

89

Integrated Debugger (v1.8)
8/9/2005

Threads Section

Call Stack Section

Highlighted Line When
Stopped at Breakpoint

Variables/Eval Section

[d Project: <Personallibrary_Project> File: Personallibrary.java [P] C:\D... |:||E|[g|

=g |

"Green Hills of Africa", 234);
i . il tem, —= Fiction clancy = mew Fiction("Clancy",
¥ il "The Hunt for Red October",
B rmain=1, 1 490, "Sean");
«f nl] |/ 2 | = Nowel grisham = new Nowel ["Grisham',
P e S e "The Firm", 550, "Tom", 0):
| Call Stack : . N] =
. : B — Systew.out.printlniheninogway) ;
PersonalLibrary.main {Pers : | systew.out.printin(clancy) s
4| M /| [» — System.out.println("in" + clancy.getMa
e L} | o

Variables/ | Eval \

o [static - (PersonalLit
¢ [] Arguments
o [aros(0)id=55
[]Locals _ _
1 i | D
: [#] <Persona... Personal...
4 | "| | | ’ 4,3,-- .. - ...
B r Compile Messages |/ IGRASP Messages r Run 110
. Browse L Find End | ----IGRASP: commected to debugge: =
Debug | UMLInfo | - > L E
Workbench : Clear] |+
I:I Status: debugging user program Line:13 Col10 Code:66 Top:i1 E\.rs ELH

Figure 7-2. Desktop after debugger is started

90

Integrated Debugger (v1.8)
8/9/2005

7.4 Stepping Through a Program — the Debug Buttons

1LJE B> €D ¢ E

After the program stops at the breakpoint (Figure 7-2), you can use the buttons at the top
of the Debug tab to step, step into a method call, step out of a method, run to the cursor,
pause the current thread, resume, turn on/off auto step mode, turn on/off auto resume
mode, and suspend new thread. Note that an application program begins at the first
executable statement in the main method. The sequence of statements that is executed
when you run your program is called the control path (or simply path). If your program
includes statements with conditions (e.g., if or while statements), the control path will
reflect the true or false state of the conditions in these statements.

& Clicking the Step button will single step to the next statement. The highlighted line in
the CSD window indicates the statement that’s about to be executed. When the Step
button is clicked, that statement is executed and the “highlighting” is moved to the
next statement along the control path.

LY Clicking the Step in button for a statement with a method call that’s part of the user’s
source code will open the new file, if it’s not already open, and pop its CSD window
to the top with the current statement highlighted. The top entry in the Call Stack
indicates where you are in the program. Note that clicking the Step in button for a
statement without a method call is equivalent to clicking Step.

J Clicking the Step out button will take to the statement in the CSD window from
which you previously stepped in. The Call Stack will be updated accordingly.

& Clicking the Run to Cursor button will cause your program to step automatically until
the statement with the cursor L is reached. If the cursor is not on a statement along
the control path, the program will stop at the next breakpoint it encounters or at the
end of the program. The Run to Cursor button is convenient since placing the cursor
on a statement is like setting “temporary” breakpoint.

m Clicking the Pause button suspend the program running in debug mode. Note that if
you didn’t have a breakpoint set in your code, you may have to select the main thread
in the Threads section before the Pause button is available. After the program has
halted, refer to the Call Stack and select the last method in your source code that was
invoked. This should open the CSD window containing the method with the current
line highlighted. Place a breakpoint on the next line and click the step & button to
advance through the code.

> Clicking the Resume button advances the program along the control path to the next
breakpoint or to the end of the program. If you have set a breakpoint in a CSD
window containing another file and this breakpoint is on the control path (i.e., in a
method that gets called), then this CSD window will pop to the top when the
breakpoint is reached.

91

Integrated Debugger (v1.8)
8/9/2005

g The Auto Step button is used to toggle off and on a mode which allows you to step
repeatedly after clicking the step & button only once. This is an extremely useful
feature in that it essentially let’s you watch your program run. Notice that with this
feature turned on, a Delay slider bar appears beneath the Debug controls. This allows
you to set the delay between steps from 0 to 26 seconds (default is .5 seconds). While
the program is auto stepping, you can stop the program by clicking the Pause W
button. Clicking the Step & button again continues the auto stepping. Remember
after turning on Auto Step #, you always have to click the step & button once to get
things rolling.

® The Auto Resume button is used to toggle off and on a mode which allows you to
resume repeatedly after clicking the Resume 2 button only once. The effect is that
your program moves from breakpoint to breakpoint using the delay indicated on the
delay slider bar. As with auto step above, you can click the Pause B button to
interrupt the auto resume; then clicking the Resume 2 button again continues the
auto resume.

¥ The Use Byte Code Size Steps button toggles on and off the mode that allows you to
step through a program in the smallest increments possible. With this feature off, the
step size is approximately one source code statement, which is what most users want
to see. This feature is seldom needed by beginning and intermediate programmers.

K The Suspend New Threads button toggles on and off the mode that will immediately
suspend any new threads that start. With this feature on when the debugging process
is started, all startup threads are suspended as soon as is possible. Unless you are
writing programs with multiple threads, you should leave the feature turned off.

As you move through the program, you can watch the call stack and contents of variables
change dynamically with each step. The integrated debugger is especially useful for
watching the creation of objects as the user steps through various levels of constructors.
The JGRASP debugger can be used very effectively to explain programs, since a major
part of understanding a program is keeping track (mentally or otherwise) of the state of
the program as one reads from line to line. We will make two passes through the
example program as we explain it. During the first pass, we will “step” through the
program without “stepping into” any of the method calls, and we will concentrate on the
Variable section.

7.5 Stepping Through a Program — without Stepping In

After initially arriving at the breakpoint in Figure 7-2, the Variables/ Settings section
indicates no local variables have been declared. Figure 7-3 shows the results of clicking
the Step & button to move to the next statement. Notice that under Locals in the
Variables/Eval section, we now have an instance of Book called hemingway. Objects,
represented by a colored square, can be opened and closed by clicking the “handle” in
front of the square object. Primitives, like the integer pages, are represented by colored
triangles. In Figure 7-3, hemingway has been opened to show the author, title, and pages
fields. Each of the String instances (e.g., author) can be opened to show the details of a
String object, including the character array that holds the actual value of the string.

92

Integrated Debugger (v1.8)
8/9/2005

Since hemingway is an instance of Book, the fields in hemingway are marked with green
object or primitive symbols to indicate that they were declared in Book. Notice that the
symbols for author and title have red borders since they were declared to be private in
Book to indicate they are inaccessible from the current context of main in
PersonalLibrary. The field pages, which was declared to be protected in Book, has a
symbol without a red border. The reason for this is somewhat subtle. The protected field
pages is accessible in all subclasses of Book as well as in any class contained the Java
package containing Book. Since the PersonalLibrary program is not in a package, the
directory containing it is considered the “package.” Thus, since Book is in the same
directory as PersonalLibrary, the protected field pages is accessible to PersonalLibrary.

After executing the next statement in Figure 7-3, an instance of the Fiction class called
clancy is created as shown in Figure 7-4. In the figure, clancy has been opened to reveal
its fields. The field “mainCharacter” is green, indicating it is defined in Fiction. The

(A Project: <Personallibrary_Project> File: Personallibrary.java [P] C:\D... |Z||E|[z|

File Edit View Build Project Settings Tools Window Help "

aEEEe B0 &Y $ 1 é@0oM=

3 y]gle m» ffm oo =
s Ff Instantiates a derived class amd invoks
Wl T A/ local methods.
Call Stack i L —— |
PersonalLibrary.main (Persoi | : puwblic static void main (String[] args)
g {
i —= Book hemincgway = new Book |"Hemingway"
[Green Hills of Africa", Z34): 3
*-- ction clancy = new |
"The Hunt for Red Octohber',
, 490, "Sean");
1 I | |- Novel pesshan - new Hovel (“Grishant
OO O OrCrOTT, : "The Firm', 550, "Tom', 0):
Variables | Eval | :
o [— Systemw.out.printlniheminguay) ;
o [static: (Persanallibrs : | ysten, out.printlniclancy) s
T Dﬂrgumentﬁ — Swaten.out.printlni"in" + clancy.ogetlh
o [l aros(0):id=55 3| | L}
o []Locals :) |
-

¢ [l hemingway id = 58|
o [l author="Hem 4] M | o
T . I @ <Persona... Personal...
NS || e S ————————

f Compile Messages |/ IGRASP Messages |’ Run Lo

A | IC
End ‘ -——=]GRASP: connected to debugc
: |
Browse LFind LDehug |_ Clear
UMLInfo | Workbench | | — |l4l L] 0
H|E]|E| Status: debugging user program Line:14 Col13 Code:34 Top:7? m

Figure 7-3. Desktop after hemingway (book) is created

93

Integrated Debugger (v1.8)
8/9/2005

other fields (author, title, and pages) are orange, which indicates these fields were
inherited from Book.

As you continue to step though your program, you should see output of the program
displayed in the Run I/0 window in the lower half of the Desktop. Eventually, you
should reach the end of the program and see it terminate. When this occurs, the Debug
tab should become blank, indicating that the program is no longer running.

7.6 Stepping Through a Program — and Stepping In

Now we are ready to make a second pass and “step in” to the methods called. Tracing
through a program by following the calls to methods can be quite instructive in the
obvious way. In the object-oriented paradigm, it is quite useful for illustrating the
concept of constructors. As before, we need to run the example program in the debugger

o 1 —
4B JE | R =
i 3 Ff Instantiates a deriwved class aml invok
il W .ol e e e e e e le e le e le e le e e ale e e e e e e e e ae] f,{ 106&1 Mt}wdj‘.
Call Stack : B e »
PersonalLibrary.main {Persor | [public static void main (String[] args
5 {
@ —= Eook hemingway = new Book ("Hemdngway!' i
|'_Green Hills of Africa", 234); »
—= Fiction clancy = mew Fiction("Clancy'
g "The Hunt for Red October",
490, "Sean'):
L | | IIf | | 4 * -- Jrisham J | |
e T Ef "The Firm', 550, "Tom', 0):
Variahles Eval | :
|:| Locals - — 3Svsten. out.println(hemingway) ;
)) — — System. out.printlh(clancy);
¢ Il heminoway id = 58 L System. out.println("iwn" + clancy. get]
o W author ="Hemi| |||: 1
o W titte ="Green H| ||| o
b pages =234 o 1=
o I ciancyid=ss Fiet ||| 14 I | [+
¢ [l mainCharacter §§ @ <Persona... Personal...
o [authar="Clang |{||:

AT

r Compile Messages |/ IGRASP Messages |/ Run 110

o [title = "The Hun
[pages =490 |

L n | [¥] End
g -——-jJGRASP: connected to debug
: - |
Browse | Find | Debug |_ Clear
UMLInfo | Workbench | | — |l<lJL] v
I:I Status: debugging user program Line:14 Col13 Code:34 Top:7d E\,.rs ELH

Figure 7-4. After next step and *‘clancy” created

94

Integrated Debugger (v1.8)
8/9/2005

by clicking Build — Debug on the CSD window menu or by clicking the debug button @
on the toolbar. After arriving at the breakpoint, we click the Step in button ® and the
constructor for class Book pops up in the CSD window (Figure 7-5). Notice the Call
Stack in the Debug tab indicates you have moved into Book from PersonalLibrary (i.e.,
the entry for Book is listed above PersonalLibrary in the call stack). If you click on the
PersonalLibrary entry in the call stack, the associated CSD window will pop to the top
and you see the variables associated with it. If you then click the Book entry, its CSD
window pops to the top and you see the variables associated with the call to Book’s
constructor. In Figure 7-5, the entry for this has been expanded in the Variables section.
The this object represents the object that is being constructed. Notice none of the fields
have a red border since we are inside the Book class. As you step through the
constructor, you should see the fields in this get initialized to the values passed in as
arguments. Also, note the id for this (it is 325 in our example debug session; it may be a
different number in your session). You can then step through the constructor in the usual
way, eventually returning to the statement in the main program that called the
constructor. One more step should finally get you to the next statement, and you should
see hemingway in the Variables section with the same id as you saw in the constructor as
it was being built. If you expand hemingway, you should see the red borders are back on
author and title since we’re no longer in book class.

There are many other scenarios where this approach of tracing through the process of
object construction is useful and instructive. For example, consider the case where the
Fiction constructor for “clancy” is called and it in turn calls the super constructor located
in Book. By stepping into each call, you can see not only how the program proceeds
through the constructor’s code, but also how fields are initialized.

Another even more common example is when the toString method of an object is invoked
indirectly in a print statement (System.out.println). The debugger actually takes the user
to the object’s respective toString method.

7.7 Opening Object Viewers

A separate Viewer window can be opened for any primitive or object (or field of an
object) displayed in Variables section of the Debug tab. All objects have a basic view
which is the view shown in the Debug tab. However, when a separate viewer window is

opened for an entry, some objects will have additional
Views. (8 value of: hemingway... @

The easiest way to open a viewer is to left-click on an B hemingwaytitie =
object and drag it from the workbench to the location
where you want the viewer to open. This will open a
“view by name” viewer. You can also open a viewer | vfiew: |Formatted -
by right-clicking on the object and selecting either
View by Value or View by Name.

Twpe: java.landg.String

Green Hills of Africa

Figure 7-6 shows an object viewer for the title field of
hemingway in Figure 7-4, which is a String object in
an instance of Book. Formatted is the default “view” Figure 7-6. Viewing a String
for a String object which is especially useful when Qbject

95

Integrated Debugger (v1.8)
8/9/2005

viewing a String object with a large value (e.g., a i
page of text). In Figure 7-7, the Basic view has _ Value of: hemingway... @
been selected and expanded to show the details of , ,

. hieminguay title
the String object. Notice the first field is value[21] ? e O
which is a character array holding the actual value | Twpe: java.lang.String
of the string. If we open a separate viewer on value,

we have a nice Presentation view of the array as

Yiew: |Basic -

shown in Figure 7-8. Notice that the first element ¢ Il ="CreenHils" . :id= 33
(‘G”) in the array has been selected and this opened o Malue[21] :id=329:p
a subview of type character. The subview displays by offset= 0 private fina
the ‘G’ and its integral value of 71. If our example B count= 21 : private fin
had been an array of strings (e.g., a list of words) Dy hash =0 private int
then selecting an array element would have D\ serialversionUiD = -6
displayed the formatted view of a String object in o W serialPersistentrields
the subview. Presentation view is the default for o [CASE_INSENSITIVE
arrays. There is also a view called Array Elements

which is quite useful for large arrays.] L

You are encouraged to open separate viewers for
any of the primitives and objects in the Variables Figure 7-7. Basic view of a
section of the Debug tab. In addition to providing string (expanded to see fields)
multiple views of the object, each viewer includes

an Invoke Method button B for the object being viewed. In the tutorial Viewers for
Objects and Primitives, many other examples are presented along with a more detailed
description of viewers in general.

[d value of: hemingway.title.value @

? hemingway tithe value E

Type: char]

Yiew: [Presentation -
G 1 [ﬁ 1
E 21 elements
G I rjefle|n Hli|l]Il]s o|f Alf]r]ijc]|a

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

e TS I T T T T,

hemingwaytitle value [0]

View: [Basic -

b [0]=G=71:char

Figure 7-8. Presentation View of hemingway.title.value

96

Integrated Debugger (v1.8)
8/9/2005

7.8 Debugging a Program

You have, no doubt, noticed that the previous discussion was only indirectly related to
the activity of actually finding and removing bugs from your program. It was intended to
show you how to set and unset breakpoints and how to step through your program.
Typically, to find a bug in your program, you need to have an idea where in the program
things are going wrong. The strategy is to set a breakpoint on a line of code prior to the
line where you think the problem occurs. When the program gets to the breakpoint, you
can inspect the variables of interest to ensure that they have the correct values. Assuming
the values are okay, you can begin stepping through the program, watching for the error
to occur. Of course, if the value of one or more of the variables was wrong at the
breakpoint, you will need to set the breakpoint earlier in the program.

You can also set several types of “watches” on a field of an object. In Figure 7-9, a
Watch for Access has been set on the title in hemingway just after it was created. If you
click the Resume button 2 at this point, with no breakpoints set before the end of the
program, the next place the program should stop is in the toString method of Book in
conjunction with the println statement for hemingway. This is because the title field of
hemingway is accessed in the statement:

return(“\nAuthor: ' + author +
"\nTitle: " + title +
"\nPages: " + pages);

Note that setting Watch All for Access on the title field of hemingway sets the watch on
all occurrences of the title field (i.e., in all instances of Book, Fiction, and Novel).

As your programs become more complex, the debugger can be an extremely useful for
both understanding your program and isolating bugs. For additional details, see
Integrated Java Debugger in JGRASP Help.

g hemingway El

Type: Book

View: [Basic -

¢ [i1=58:Book
o D authar ="Hemingway" : id = 80 : private java.lang. String

o= El title ="Green Hills "..
b pages =234 protec

[Watch for Modification

¥ Watch for Access

[Watch Al for Modification
[J wWatch all for Access

Add to Workbench

Figure 7-9. Setting a Watch for Access

97

Control Structure Diagram (v1.8)
8/9/2005

8 The Control Structure Diagram (CSD)

The Control Structure Diagram (CSD) is an algorithmic level diagram intended to
improve the comprehensibility of source code by clearly depicting control constructs,
control paths, and the overall structure of each program unit. The CSD is an alternative to
flow charts and other graphical representations of algorithms. The major goal behind its
creation was that it be an intuitive and compact graphical notation that was easy to use
manually and relatively straightforward to automate. The CSD is a natural extension to
architectural diagrams, such as data flow diagrams, structure charts, module diagrams,
and class diagrams.

Objectives — When you have completed this tutorial, you should be able to use and
understand the graphical notations used in the CSD for basic control constructs of
modern programming language, including sequence, selection, iteration, exits, and
exception handling.

The details of these objectives are captured in the hyperlinked topics listed below.

8.1 An Example to Illustrate the CSD
8.2 CSD Program Components/Units
8.3 CSD Control Constructs

8.4 CSD Templates

8.5 Hints on Working with the CSD
8.6 Reading Source Code with the CSD
8.7 References

98

Control Structure Diagram (v1.8)
8/9/2005

8.1 An Example to lllustrate the CSD

Figure 8-1 shows the source code for a Java method called binarySearch. The method
implements a binary search algorithm by using a while loop with an if..else..if statement
nested within the loop. Even though this is a simple method, displayed with colored
keywords and traditional indentation, its readability can be improved by adding the CSD.
In addition to the while and if statements, we see the method includes the declaration of
primitive data (int) and two points of exit. The CSD provides visual cues for each of
these constructs.

[BinarySearchExample1.java * C:\Documents and Settings\crossjhiMy Doc... E'@'E'
File Edit View Build Settings Help

public static int binarySearch (int key, int[] intarray)
1
int low, widdle, high:
low = 0;
high = intarray.length - 1;
while (low <= high)
{
middle = (low + high) / 2:
if (key < intarray[middle])
high = middle - 1;
else if (key > inthrray[middle]) -
low = middle + 1:
else
return niddle;

'

return -1:

3

| | I | b
O Line:30 Col:5 Code:d Top:12

Figure 8-1. binarySearch method without CSD

99

Control Structure Diagram (v1.8)
8/9/2005

Figure 8-2 shows the binarySearch method after the CSD has been generated. Although
all necessary control information is in the source text, the CSD provides additional visual
stimuli by highlighting the sequence, selection, and iteration in the code. The CSD
notation begins with symbol for the method itself g followed by the individual
statements coming off the stem as it extends downward. The declaration of primitive
data is highlighted with special symbol = appended to the statement stem. The CSD
constructs for the while statement is represented by the double line “loop” (with break at
the top), and the if statement uses the familiar diamond symbol from traditional
flowcharts. Finally, the two ways to exit from this method are shown explicitly with an
arrow drawn from inside the method through the method stem to the outside.

Ed BinarySearchExample1.java * C:\Documents and Settings\crossjhiMy Doc... g@g|
File Edit Yiew Build Settings Help

[»

iipuhlic gtatic int binarySearch (int key, int[] intidrray)

int low, middle, high:

low = 0;

high = intidrray.length - 1:

(while (low <= high])

{

— middle = (low + high) / Z:
if (key < intArray[middle])

. high = middle - 1:

Qlfise if (key > intArray[middle]) —

. low = middle + 1;

—el=e

:1—— return middle;

LT

f

h

-return -1:

T
|

[4]

4] | M | | ¥

\Ojovs pLEK Line:30 Col:5 Code:d Top:12
Figure 8-2. binarySearch with CSD

While this is a small piece of code, it does illustrate the basic CSD constructs. However,
the true utility of the CSD can be realized best when reading or writing larger, more
complex programs, especially when control constructs become deeply nested. A number
of studies involving the CSD have been done and others are in progress. In one of these,
CSD was shown to be preferred significantly over four other notations: flowchart, Nasi-
Schneiderman chart, Warnier-Orr diagram, and the action diagram [Cross 1998]. In a
several later studies, empirical experiments were done in which source code with the
CSD was compared to source code without the CSD. In each of these studies, the CSD
was shown provide significant advantages in numerous code reading activities [Hendrix
2002]. In the following sections, the CSD notation is described in more detail.

100

Control Structure Diagram (v1.8)
8/9/2005

8.2 CSD Program Components/Units

The CSD includes graphical constructs for the following components or program units:
class, abstract class, method, and abstract method. The construct for each component
includes a unit symbol, a box notation, and a combination of the symbol and box
notation. The symbol notation provides a visual cue as to the specific type of program
component. It has the most compact vertical spacing in that it retains the line spacing of
source code without the CSD. The box notation provides a useful amount of vertical
separation similar to skipping lines between components. The symbol and box notation
is simply a combination of the first two. Most of the examples in this handbook use the
symbol notation because of its compactness. CSD notation for program components is
illustrated in the table below.

Symbol and Box

Component Symbol Notation Box Notation Notation

class
or {
} {
Ada package }

abstractclass

method

or {
function ;

or 1}
procedure

abstract
method "
t

T
T

101

8.3 CSD Control Constructs

Control Structure Diagram (v1.8)
8/9/2005

The basic CSD control constructs for Java are grouped in the following categories:
sequence, selection, iteration, and exception handling, as described in the table below.
Note, the semi-colons in the examples are placeholders for statements the language.

Sequence f Sequential flow is represented in the
' CSD by a vertical stem with a small
s horizontal stem for each individual
statement on a particular level of
control.
Selection
if 1T (cond) For selection statements, the
: True/False condition itself is marked
with a small diamond, just as in a flow
chart. The statements to be executed if
the condition is true are marked by a
solid line leading from the right of the
decision diamond.
w (cond)
if..else . The control path for a false condition
ol s;a is marked with a dotted line leading
L _ from the bottom of the diamond to
’ another decision diamond, an else
clause, a default clause, or the end of
the decision statement.
. . %}E (cond) _ _
if..else..if . By placing the second if on the same
els’e if (cond) !ine With the first elsez the unnecessary
C _ indentation of nested if statements is
' avoided. However, if the deep nesting
—\ilse effect is desired, the second if can be
- ; placed on the line after the else.

102

Control Structure Diagram (v1.8)
8/9/2005

Selection
(cont’d)

switch

switch

(when break is
omitted)

switch(item
{
Qf case a:

4— — break;

07 case b:

4— — break;
default:

3

switch (expr)
{
(— case 1:

— break;

()— case 2:

The semantics of the switch statement
are different from those of if
statements. The expr (of integral type:
int, char) is evaluated, and then
control is transferred to the case label
matching the result or to the default
label if there is no match. If a break
statement is placed at the end of the
sequence within a case, control passes
“out” (as indicated by the arrow) and
to the end of the switch statement after
the sequence is executed. Notice the
similarity of the CSD notation for the
switch and if statements when the
break is used in this conventional
way. The reason for this is that,
although different semantically, we
humans tend to process them the same
way (e.g., if expr is not equal to case
1, then take the false path to case 2
and see if they are equal, and so on).
However, the break statement can be
omitted as illustrated next.

When the break statement is omitted
from end of the sequence within a
case, control falls through to the next
case. Inthe example at left, case 1 has
a break statement at the end of its
sequence, which will pass control to
the end of the switch (as indicated by
the arrow).

However, case 2, case 3, and case 4 do
not use the break statement. The CSD
notation clearly indicates that once the
flow of control reaches case 2, it will
also execute the sequences in case 3
and case 4. The diamonds in front of
case 3 and case 4 have arrows pointing
to each case to remind the user that
these are entry points for the switch.
When the break statement precedes
the next case (as in case 1), the arrows
are unnecessary.

103

Control Structure Diagram (v1.8)
8/9/2005

Iteration

while loop
(pre-test)

for loop
(discrete)

do loop
(post-test)

break in loop

while(cond)

{

‘T ,
Tor(i=0;i<j;i++)
{

F} ,

—|do
{
} :
while(cond);

U

—{iwhille (cond)

{

__Oljf (cond)
<« break;

U}

The CSD notation for the while
statement is a loop construct
represented by the double line, which
is continuous except for the small gap
on the line with the while. The gap
indicates the control flow can exit the
loop at that point or continue,
depending on the value of Boolean
condition. The sequence within the
while will be executed zero or more
times.

The for statement is represented in a
similar way. The for statement is
designed to iterate a discrete number
of times based on an index, test
expression, and index increment. In
the example at left, the for index is
initialized to 0, the condition is | <,
and the index increment is i++. The
sequence within the if will be
executed zero or more times.

The do statement is similar to the
while except that the loop condition is
at the end of the loop instead of the
beginning. As such, the body of the
loop is guaranteed to execute at least
once.

The break statement can be used to
transfer control flow out of any loop
(while, for, do) body, as indicated by
the arrow, and down to the statement
past the end of the loop. Typically,
this would be done in conjunction
with an if statement. If the break is
used alone (e.g., without the if
statement), the statements in the loop
body beyond the break will never by
executed.

104

Control Structure Diagram (v1.8)

8/9/2005
Iteration _ o
(cont’d) _Ndo The continue statement is similar to
) the break statement, but the loop
continue { condition is evaluated and if true, the
— body of the loop body is executed
w (cond) again. Hence, as indicated by the
«— continue: arrow, control is not transferred out of
I the loop, but rather to top or bottom of
) ’ the loop (while, for, do).
cwhille (cond);
Exception In Java, the control construct for
Handling — try exception handling is the try..catch
{ statement with optional finally clause.
. In the example at left, if stmtl
’ generates an exception E, then control
} is transferred to the corresponding
catch(E) catch clause. After the catch body is
{ executed, the finally clause (if
; present) is executed. If no exception
} occurs in the try block, when it
finally completes, the finally clause (if
{ present) is executed.
— The try..catch statement can have
1} multiple catch clauses, one for each
exception to be handled.
By definition, the finally clause is
With areturn | —] try always executed not matter how the
{ try block is exited. In the example at
— left, a return statement causes flow of
: control to leave the try block. The
44— return: CSD indicates that flow of control
} passes to the finally clause, which is
executed prior to leaving the try block.
catch(E) The CSD uses this same convention
{ for break and continue when these
; cause a try block to exited.
i } When try blocks are nested and break,
1finally continue, and return statements occur
{ at the different levels of the nesting,
— the actual control flow can become
1} quite counterintuitive. The CSD can

be used to clarify the control flow.

105

Control Structure Diagram (v1.8)
8/9/2005

8.4 CSD Templates

In Figure 8-3, the basic CSD control constructs, described above, are shown in the CSD
window. These are generated automatically based on the text in the window. In addition
to being typed or read from a file, the text can be inserted from a list of templates by
selecting Templates on the CSD window tool bar.

FA ConstructsOfCSD2. java C:\Documents and Settings\crossjh\My Documents... |Z||E|rz|

File Edit View Build Settings Help
Ff Sequence: defaulk | fFf Trteration: while E
— L rwhile (cond)
— = | B {
: I
Selection: if i (s
Q.l {cond) —|: /¢ Treration: for
i —, for (index=0;index<] ;index++)
5 {
/¢ Selection: if..else = —
Q.l {cond) In
else ff Trteration: oo
——l— E : L —ldo -
{
£ Selectiom: if..else..if 3 H
_{}]E {cond) 1
: : lwhile (cond) ; =
(}-Ie_lse if [cond)
: ; 3 /¢ Exception Handling
Lelse #F try..catch..finally| | &
1 : : L try
i {
Af Selection: swikck i ;
switch(iten) t 4
{ 5§ catch(ETYPE EXCEFTHN)
(}—Ese a: {
q— break: }
{}—Ese b: finally
: i : {
- break; i
(}—lffault: : L}
) = =
«] | I | o]l Ji[<1] I]
[OpvspLk Lined3 cok31 Code:d Top:d TopBi63

Figure 8-3. CSD Control Constructs generated in CSD Window

106

Control Structure Diagram (v1.8)
8/9/2005

8.5 Hints on Working with the CSD

The CSD is generated based on the source code text in the CSD window. When you
click View — Generate CSD (or press F2), JGRASP parses the source code based on a
grammar or syntax that is slightly more forgiving that the Java compiler. If your program
will compile okay, the CSD should generate okay as well. However, the CSD may
generate okay even if your program will not compile. Your program may be
syntactically correct, but not necessarily semantically correct. CSD generation is based
on the syntax of your program.

Enter code in syntactically correct chunks - To reap the most benefit from using the
CSD when entering a program, you should take care to enter code in syntactically correct
chunks, and then regenerate the CSD often. If an error is reported, it should be fixed
before you move on. If the error message from the generate step is not sufficient to
understand the problem, compile your program and you will get a more complete error
message.

“Growing a program” is described it the table below. Although the program being
“grown” does nothing useful, it is both syntactically and semantically correct. More
importantly, it illustrates the incremental steps that should be used to write your
programs.

Step Code to Enter After CSD is generated
1. We begin by public class M/d ass public class M/d ass
entering the code for | { {
a Java class. Note, } }

the file should be

saved with the name
of the class, which in
this case is MyClass.

public class MO ass

2. Now, inside the public class Hello

class, we enter the { {

text for a method myMethod() T myMet hod()
called myMethod, { {

and then re-generate }

the CSD by pressing h }

F2. }

107

Control Structure Diagram (v1.8)
8/9/2005

3. Next, inside public class Myd ass =4 public class M/d ass
myMethod, we enter | { {
a while loop with an ny Met hod() g v Vet hod()
empty statement, and { {
then re-generate the while (true) while (true)
CSD by pressing F2. { {
} }
} }
} 3

8.6 Reading Source Code with the CSD

The CSD notation for each of the control constructs has been carefully designed to aid in
reading and scanning source code. While the notation is meant to be intuitive, there are
several reading strategies worth pointing out, especially useful with deeply nested code.

Reading Sequence
The visualization of sequential control

condition is false, we read down the
dotted line (the false path) to the else and
then on to s(3). After s(3), again we read
down and to the left until we reach the
next statement on the stem which is s(4).

flow is as follows. After statements(1)is| —— s(1);
executed, the next statement is found by | L 5(2);
scanning down and to the left along the | | s(3):
solid CSD stem. While this seems trivial,
its importance becomes clearer with the if
statement and deeper nesting.

Reading Selection
Now combining the sequence with
selection (if.. else), after s(1), we enter the - s(1):
if statement marked by the diamond. If _ ’
the condition is true, we follow the solid it (cond)
line to s(2). After s(2), we read down and | s(2);
to the left (passing through the dotted line) ’—\ilse
until we reach the next statement on the - s(3);
vertical stem which is s(4). If the — s(4);

108

Control Structure Diagram (v1.8)
8/9/2005

Reading Selection with Nesting

As above, after s(1), we enter the if
statement and if condl and cond?2 are true,
we follow the solid lines to s(2). After
s(2), we read down and to the left (passing
through both dotted lines) until we reach
to the next statement on the stem which is
s(4). If the condl is false, we read down
the dotted line (the false path) to s(4). If
cond2 is false, we read down the dotted
line to the else and then on to s(3). After
s(3), again we read down and to the left
until we reach to the next statement on the
stem which is s(4).

— s(1);

1T (condl)

if (cond2)
s(2);

i else
LS(?:);

98(4);

Reading Selection with
Even Deeper Nesting

If condl, cond2, and cond3 are true, we
follow the solid lines to s(2). Using the
strategy above, we immediately see the
next statement to be executed will be s(7).

If condl is true but cond2 is false, we can
easily follow the flow to either s(4) or s(5)
depending on the cond4.

If s(4) is executed, we can see
immediately that s(7) follows.

In fact, from any statement, regardless of
the level of nesting, the CSD makes it
easy to see which statement is executed
next.

— s(1);

1T (condl)

1T (cond2)

if (cond3)
s(2);

—else
, LS(3);
—else

ifT (cond4)
| s(4);

: : else
- 1= s(5);
—else
LS(G);

— s(7);

109

Control Structure Diagram (v1.8)

Reading without the CSD

It should be clear from the code at right
that following the flow of control without
the CSD is somewhat more difficult.

For example, after s(3) is executed, s(7) is
next. With the CSD in the previous
example, the reader can tell this at a
glance. However, without the CSD, the
reader may have to read and reread to
ensure that he/she is seeing the
indentation correctly.

While this is a simple example, as the
nesting becomes deeper, the CSD
becomes even more useful.

In addition to saving time in the reading
process, the CSD aids in interpreting the
source code correctly, as seen in the
examples that follow.

s(1);
1T (condl)
1T (cond2)
it (cond3)
s(2);
else
s(3);
else
ifT (cond4)
s(4);
else
s(5);
else
s(6);
s(7);

110

Control Structure Diagram (v1.8)
8/9/2005

Reading Correctly with the CSD

Consider the fragment at right with s(1) s(1);

and s(2) in the body of the if statement. it (cond)
s(2);
s(3);

After the CSD is generated, the reader can — s(1);

see how the compiler will interpret the if (cond)

code, and add the missing braces. ﬂ s(2):

— s(3);

Here is another common mistake made if (cond);

glaring by the CSD. s(2);
s(3);

Most likely, the semi-colon after the _)

condition was unintended. However, the +'f (cond);

CSD shows what there rather than what — s(2);

was intended. — s(3);

Similarly, the CSD provides the correct
interpretation of the while statement.

Missing braces . . .

while (cond)
s(2);
s(3);

«Hihile (cond)
s(2);

— s(3);

Similarly, the CSD provides the correct
interpretation of the while statement.

Unintended semi-colon . . .

while (cond);
s(2);
s(3);

—{while (cond);
— s(2);

— s(3);

111

Control Structure Diagram (v1.8)
8/9/2005

As a final example of reading source code with the CSD, consider the following program,
which is shown with and without the CSD. FinallyTest illustrates control flow when a
break, continue, and return are used within try blocks that each have a finally clause.
Although the flow of control may seem somewhat counterintuitive, the CSD should make
it easier to interpret this source code correctly.

First read the source code without the CSD. Recall that by definition, the finally clause is
always executed not matter how the try block is exited. Refer to the output if you need a
hint. The output for FinallyTest is as follows:

finally 1
i O
finally 2
i1
finally 2
finally 3

Try-Finally with break, continue, and return statements

public class FinallyTest { S public class FinallyTest {
public static void main(String[] args) { ipublic static void main(String[] args) {
b: b:
try { —try {
break b; <—+%— break b;
} }
finally { 1finally {
Systemout. println(“finally 1"); — Systemout.println("finally 1");
} 3
try { try {
for(int i =0; i <2; i++) { Ffor(int i =0; i <2; i++) {
Systemout.printin("i " +1i); — Systemout.printin(™i " +i);
try { try {
if(i == 0) { if(i ==0) {
continue; . continue;
b -}
if(i <0 if(i < 0)
continue; . continue;
return; <t return;
}
finally { _) Finally {
System out. println(“finally 2"); System out. println("Finally 2");
} }
} y
! }
finally { R
. . - 1finally {
) Systemout. println("finally 3); | System out. println(“Finally 3"):
} 3

112

Control Structure Diagram (v1.8)
8/9/2005

In our experience, this code is often misinterpreted when read without the CSD, but
understood correctly when read with the CSD.

8.7 References

[Cross 1998] J. H. Cross, S. Maghsoodloo, and T. D. Hendrix, "Control Structure
Diagrams: Overview and Initial Evaluation,” Journal of Empirical Software Engineering,
Vol. 3, No. 2, 1998, 131-158.

[Hendrix 2002] T. D. Hendrix, J. H. Cross, S. Maghsoodloo, and K. H. Chang,
“Empirically Evaluating Scaleable Software Visualizations: An Experimental
Framework,” IEEE Transactions on Software Engineering, Vol. 28, No. 5, May 2002,
463-477.

113

Viewers for Objects and Primitives (v1.8)
8/9/2005

O Viewers for Objects and Primitives

During execution, Java programs usually create a variety of objects from both user and
library classes. Since these objects only exist during execution, being able to visualize
them in a meaningful way is an important element of program comprehension. Although
this can be done mentally for simple objects, most programmers can benefit from seeing
more tangible representations of complex objects while the program is running.

Viewers for objects and primitives are the most recent addition to the software
visualizations provided by JGRASP. The purpose of a viewer is to provide one or more
views of a particular class of objects. When a class does have more than one view
associated with it, you can have multiple viewers open on the same object with a separate
view in each viewer. These viewers are tightly integrated with the workbench and
debugger and can be opened for any item in the Workbench or Debug tabs.

Objectives — When you have completed this tutorial, you should be able to open a viewer
for any object or primitive displayed in the Workbench and/or Debug tabs; select among
the views provided by the viewer, and set the view options in the viewer window.

The details of these objectives are captured in the hyperlinked topics listed below.

9.1 Opening Viewers

9.2 Selecting Among Views
9.3 Setting the View Options
9.4 Exercises

114

Viewers for Objects and Primitives (v1.8)
8/9/2005
9.1 Opening Viewers
9.2 Selecting Among Views

9.3 Setting the View Options

9.4 Exercises

115

	Overview of jGRASP and the Tutorials
	Installing jGRASP
	Getting Started
	Starting jGRASP
	Quick Start - Opening a Program, Compiling, and Running
	Creating a New File
	Saving a File
	Generating a Control Structure Diagram
	Folding a CSD
	Line Numbers
	Compiling a Program – A Few More Details
	Running a Program - Additional Options
	Using the Debugger
	Opening a File – Additional Options
	Closing a File
	Exiting jGRASP
	Exercises
	Review and Preview of What’s Ahead

	Getting Started with Objects
	Starting jGRASP
	Navigating to Our First Example Project
	Opening a Project and UML Window
	Compiling and Running the Program from UML Window
	Exploring the UML Window
	Viewing the Source Code in the CSD Window
	Exploring the Features of the UML and CSD Windows
	Viewing the source code for a class
	Displaying class information
	Displaying Dependency Information

	Generating Documentation for the Project
	Using the Object Workbench
	Opening a Viewer Window
	Invoking a Method
	Invoking Methods with Object Parameters
	Invoking Methods on Object Fields
	Invoking Inherited Methods
	Running the Debugger on Invoked Methods
	Creating Objects from the CSD Window
	Creating an Instance from the Java Class Libraries
	Exiting the Workbench
	Closing a Project
	Exiting jGRASP
	Exercises

	Projects
	Creating a Project
	Adding files to the Project
	Removing files from the Project
	Generating Documentation for the Project (Java only)
	Jar File Creation and Extraction
	Closing a Project
	Exercises

	UML Class Diagrams
	Opening the Project
	Generating the UML
	Compiling and Running from the UML Window
	Determining the Contents of the UML Class Diagram
	Laying Out the UML Diagram
	Displaying the Members of a Class
	Displaying Dependencies Between Two Classes
	Navigating to Source Code via the Info Tab
	Finding a Class in the UML Diagram
	Opening Source Code from UML
	Saving the UML Layout
	Printing the UML Diagram

	The Object Workbench
	Invoking Static Methods from the CSD Window
	Invoking Static Methods from the UML Window
	Creating an Object for the Workbench
	Invoking a Method
	Invoking Methods with Parameters Which Are Objects
	Invoking Methods on Object Fields
	Selecting Categories of Methods to Invoke
	Opening Object Viewers
	Running the Debugger on Invoked Methods
	Exiting the Workbench

	The Integrated Debugger
	Preparing to Run the Debugger
	Setting a Breakpoint
	Running a Program in Debug Mode
	Stepping Through a Program – the Debug Buttons
	Stepping Through a Program – without Stepping In
	Stepping Through a Program – and Stepping In
	Opening Object Viewers
	Debugging a Program

	The Control Structure Diagram (CSD)
	An Example to Illustrate the CSD
	CSD Program Components/Units
	CSD Control Constructs
	CSD Templates
	Hints on Working with the CSD
	Reading Source Code with the CSD
	References

	Viewers for Objects and Primitives
	Opening Viewers
	Selecting Among Views
	Setting the View Options
	Exercises

