

Tut
Integra

*T

 Tutorials

orials* for the jGRASP™ 1.8
ted Development Environment

James H. Cross II and Larry A. Barowski
Copyright © 2005 Auburn University

All Rights Reserved

August 9, 2005

DRAFT

hese tutorials are from the jGRASP Handbook.
Copyright © 2005 Auburn University

All Rights Reserved

Table of Contents

Overview of jGRASP and the Tutorials ..5

1 Installing jGRASP ..8

2 Getting Started ..10

2.1 Starting jGRASP... 11

2.2 Quick Start - Opening a Program, Compiling, and Running.................................. 12

2.3 Creating a New File .. 14

2.4 Saving a File ... 17

2.5 Generating a Control Structure Diagram .. 18

2.6 Folding a CSD... 20

2.7 Line Numbers.. 21

2.8 Compiling a Program – A Few More Details ... 22

2.9 Running a Program - Additional Options ... 25

2.10 Using the Debugger .. 27

2.11 Opening a File – Additional Options .. 29

2.12 Closing a File .. 31

2.13 Exiting jGRASP.. 32

2.14 Exercises ... 32

2.15 Review and Preview of What’s Ahead ... 33

3 Getting Started with Objects...34

3.1 Starting jGRASP... 35

3.2 Navigating to Our First Example Project.. 36

3.3 Opening a Project and UML Window .. 37

3.4 Compiling and Running the Program from UML Window.................................... 38

3.5 Exploring the UML Window.. 39

3.6 Viewing the Source Code in the CSD Window.. 40

3.7 Exploring the Features of the UML and CSD Windows .. 41

3.7.1 Viewing the source code for a class.. 41

3.7.2 Displaying class information .. 41

3.7.3 Displaying Dependency Information.. 41

i

3.8 Generating Documentation for the Project ... 42

3.9 Using the Object Workbench.. 43

3.10 Opening a Viewer Window .. 46

3.11 Invoking a Method.. 47

3.12 Invoking Methods with Object Parameters... 48

3.13 Invoking Methods on Object Fields.. 48

3.14 Invoking Inherited Methods.. 49

3.15 Running the Debugger on Invoked Methods.. 49

3.16 Creating Objects from the CSD Window ... 49

3.17 Creating an Instance from the Java Class Libraries.. 51

3.18 Exiting the Workbench ... 51

3.19 Closing a Project ... 51

3.20 Exiting jGRASP.. 52

3.21 Exercises ... 53

4 Projects..54

4.1 Creating a Project.. 55

4.2 Adding files to the Project .. 57

4.3 Removing files from the Project ... 58

4.4 Generating Documentation for the Project (Java only) .. 59

4.5 Jar File Creation and Extraction ... 61

4.6 Closing a Project ... 61

4.7 Exercises ... 61

5 UML Class Diagrams ...62

5.1 Opening the Project... 63

5.2 Generating the UML... 64

5.3 Compiling and Running from the UML Window... 65

5.4 Determining the Contents of the UML Class Diagram .. 66

5.5 Laying Out the UML Diagram ... 69

5.6 Displaying the Members of a Class .. 70

5.7 Displaying Dependencies Between Two Classes ... 71

5.8 Navigating to Source Code via the Info Tab .. 72

5.9 Finding a Class in the UML Diagram... 72

5.10 Opening Source Code from UML... 72

ii

5.11 Saving the UML Layout ... 73

5.12 Printing the UML Diagram... 73

6 The Object Workbench ...74

6.1 Invoking Static Methods from the CSD Window... 75

6.2 Invoking Static Methods from the UML Window.. 77

6.3 Creating an Object for the Workbench ... 79

6.4 Invoking a Method.. 81

6.5 Invoking Methods with Parameters Which Are Objects .. 82

6.6 Invoking Methods on Object Fields.. 82

6.7 Selecting Categories of Methods to Invoke .. 83

6.8 Opening Object Viewers... 85

6.9 Running the Debugger on Invoked Methods.. 86

6.10 Exiting the Workbench ... 86

7 The Integrated Debugger ..87

7.1 Preparing to Run the Debugger... 88

7.2 Setting a Breakpoint.. 88

7.3 Running a Program in Debug Mode ... 89

7.4 Stepping Through a Program – the Debug Buttons .. 91

7.5 Stepping Through a Program – without Stepping In .. 92

7.6 Stepping Through a Program – and Stepping In ... 94

7.7 Opening Object Viewers... 95

7.8 Debugging a Program ... 97

8 The Control Structure Diagram (CSD) ...98

8.1 An Example to Illustrate the CSD .. 99

8.2 CSD Program Components/Units ... 101

8.3 CSD Control Constructs ... 102

8.4 CSD Templates ... 106

8.5 Hints on Working with the CSD... 107

8.6 Reading Source Code with the CSD... 108

8.7 References... 113

9 Viewers for Objects and Primitives ..114

9.1 Opening Viewers .. 115

9.2 Selecting Among Views ... 115

iii

9.3 Setting the View Options .. 115

9.4 Exercises ... 115

iv

Overview (v1.8)
8/9/2005

Overview of jGRASP and the Tutorials

jGRASP is a lightweight integrated development environment IDE), created specifically
to provide visualizations for improving the comprehensibility of software. jGRASP is
implemented in Java, and thus, runs on all platforms with a Java Virtual Machine. As
with the previous versions, jGRASP supports Java, C, C++, Ada, and VHDL, and it
comes configured to work with several popular compilers to provide “point and click”
compile and run. jGRASP, which is based on its predecessors, pcGRASP and UNIX
GRASP (written in C/C++), is the latest IDE from the GRASP (Graphical
Representations of Algorithms, Structures, and Processes) research group at Auburn
University.

jGRASP currently provides for the automatic generation of three important software
visualizations: (1) Control Structure Diagrams (Java, C, C++, Ada, and VHDL) for
source code visualization, (2) UML Class Diagrams (Java) for architectural visualization,
and (3) Data Structure Diagrams (Java). jGRASP also provides an innovative Object
Workbench and Debugger which are tightly integrated with these visualizations. Each is
briefly described below.

The Control Structure Diagram (CSD) is an algorithmic level diagram generated for
Ada, C, C++, Java and VHDL. The CSD is intended to improve the comprehensibility of
source code by clearly depicting control constructs, control paths, and the overall
structure of each program unit. The CSD, designed to fit into the space that is normally
taken by indentation in source code, is an alternative to flow charts and other graphical
representations of algorithms. The goal was to create an intuitive and compact graphical
notation that is easy to use. The CSD is a natural extension to architectural diagrams
such as UML class diagrams.

The CSD window in jGRASP provides complete support for the CSD generation as well
as editing, compiling, running, and debugging programs. After editing the source code,
regenerating a CSD is fast, efficient, and non-disruptive (approximately 5000 lines/sec).
The source code can be folded based on CSD structure (e.g., methods, loops, if
statements, etc.), then unfolded level-by-level. Standard features for program editors
such as syntax based coloring, cut, copy, paste, and find-and-replace are also provided.

The UML Class Diagram is currently generated for Java source code from all Java class
files and jar files in the current project. Dependencies among the classes are depicted
with arrows (edges) in the diagram. By selecting a class, its members can be displayed,
and by selecting an arrow between two classes, the actual dependencies can be displayed.
This diagram is a powerful tool for understanding a major element of object-oriented
software - the dependencies among classes.

The Data Structure Diagram (DSD) is a dynamic visualization of an instance of a class
such as ArrayList, LinkedList, HeapMap, and TreeMap. The DSD is displayed in the
presentation view of a viewer launched on the instance from the Workbench or Debugger
(described below). As the user steps through the program in debug mode or invokes
methods on the Workbench, DSDs are undated dynamically. The presentation views are
provided for instances of the most commonly used classes in the Java Collections

5

Overview (v1.8)
8/9/2005

Framework. A subsequent version of 1.8 will provide a Viewer API to allow users to
create dynamic views, including DSDs, of their own classes.

The Object Workbench, in conjunction with the UML class diagram and CSD window,
allows the user to create instances of classes and invoke their methods. After an object is
placed on the Workbench, the user can open a viewer to observe changes resulting from
the methods that are invoked. The Workbench paradigm has proven to be extremely
useful for teaching and learning object-oriented concepts, especially for beginning
students.

The Integrated Debugger works in conjunction with the CSD window, UML window,
and the Object Workbench. The Debugger provides a seamless way for users to examine
their programs step by step. The execution threads, call stack, and variables are easily
viewable during each step. The jGRASP debugger has been used extensively during
lectures as a highly interactive medium for explaining programs.

The jGRASP Tutorials provide best results when read while using jGRASP; however,
they are sufficiently detailed to be read in a stand-alone fashion by a user who has
experience with one or more other IDEs. The tutorials are quite suitable as supplemental
assignments during the course. When working with jGRASP and the tutorials, students
can use their own source code, or they can use the examples shown in the tutorials
(..\jGRASP\examples\Tutorials\). Users may want to copy the examples folder to their
own directories prior to modifying them. The Tutorials are listed below along with
suggestions for their use.

1. Installing jGRASP – This tutorial can be skipped if jGRASP and the Java JDK have
already been installed successfully. It is recommended for those students planning to
install jGRASP and the Java JDK on their personal machines.

2. Getting Started – This tutorial is a good starting place for those new to jGRASP. It
introduces the process of creating and editing Java source files, then compiling and
running programs. It also includes generating the CSD for the program.

3. Getting Started with Objects – This tutorial is a good starting place for those
interested in an Objects First approach to learning Java, but it assumes the reader will
refer to Section 2 as needed. Projects, UML class diagrams, the Object Workbench,
and Viewers are introduced.

4. Projects – This tutorial discusses the concept of a project file (.gpj) in jGRASP which
stores all information for a specific project. This includes the names (and paths) of
each file in the project, the project settings, and the layout of the UML diagram.
Some users may want to work in projects from the beginning while others want to
deal with projects only when programs have multiple classes or files.

5. The UML Class Diagram – This tutorial assumes the user understands the concept of
a project and is able to create a one (Tutorial 4).

6. The Object Workbench – This tutorial assumes the user is able to create a project
(Tutorial 4) and work with UML class diagrams (Tutorial 5). The workbench
provides an exciting way to approach object-oriented concepts and programming by

6

Overview (v1.8)
8/9/2005

allowing the user to create objects and invoke the methods directly rather than
indirectly via a main() method.

7. The Integrated Debugger – This tutorial can be done anytime. Students should be
encouraged to begin using the debugger early on so that they can step through their
programs, even if only to observe variables as they change.

8. The Control Structure Diagram – This tutorial is perhaps best read as control
structures such as the if, if-else, switch, while, for, and do statements are studied.
However, for those already familiar with the common control structures of
programming languages, the tutorial can be read anytime. The latter part contains
some helpful hints on getting the most out of the CSD.

9. The Viewers for Objects and Primitives [Planned] – This tutorial provides a more in-
depth introduction to using Viewers in conjunction with the Workbench and
Debugger. Included are examples of dynamic presentation views for instances of
ArrayList, LinkedList, HeapMap, and TreeMap.

For additional information and to download jGRASP, please visit our web site at the
following URL. http://www.jgrasp.org

New in jGRASP 1.8
Perhaps the most notable change in version 1.8 involves the “look and feel” of the user
interface. In addition, CSD generation can now be undone, and new viewers are now
available for the commonly used classes in the Java Collections Framework.

Single vs. Multiple Menus and Toolbars – The default View of the desktop is now
single menu and single toolbar. Previous versions of jGRASP provided a top level menu
for the desktop and a top level menu for each open CSD or UML window. In single
menu/toolbar mode, the CSD or UML window that has focus determines the content and
functionality of the menu and toolbar. Users who prefer the pre-1.8 look-and-feel of
multiple menus and multiple toolbars can select these options via the View menu.

CSD Undo – Beginning with version 1.8, CSD generation is treated like an edit, which
means it can be undone like any other edit (Edit – Undo, or Ctrl-Z). Note that undoing a
Generate CSD is different from a Remove CSD operation. The Undo returns the file to
the prior state, whereas the Romove CSD removes the diagram but leaves changes in
indentation and/or line feeds resulting from the previous Generate CSD.

Object Viewers for Workbench and Debugger – New viewers for array, ArrayList,
LinkedList, HeapMap, and TreeMap have been added to jGRASP. Each of these viewers
provides multiple views of an object. For example, the new array viewer includes basic
view, array elements view, and presentation view (or “textbook view”), as well as a
special two-dimensional array elements view. An incremental version of 1.8 will include
a Viewer API to encourage users to write viewers and views for their own classes.

7

Overview (v1.8)
8/9/2005

1 Installing jGRASP
The current version of jGRASP is available from http://www.jgrasp.org in four separate
files: two are self-extracting for Microsoft Windows, one is for Mac OS X, and the
fourth is a generic ZIP file. Although the generic ZIP file can be used to install jGRASP
on any system, it is primarily intended for Linux and UNIX systems. If you are on a
Windows machine, either “jGRASP exe” or “jGRASP JRE exe” is recommended.

jGRASP exe (2.3 MB) – Windows self-extracting exe file. The full Java 2
Platform Standard Edition (J2SE) Development Kit (hereafter referred to as JDK)
must be installed to run jGRASP and compile and run Java programs.

jGRASP JRE exe (17.7 MB) – Windows self-extracting exe file with Java
Runtime Environment (JRE). This version includes a copy of the JRE so that
no Java installation is required to run jGRASP itself; however, the JRE does not
include the Java compiler. If you will be compiling and running Java
programs, you must also install the full JDK. The jGRASP JRE version of
jGRASP is convenient if you will be compiling programs in languages other than
Java.

jGRASP pkg.tar.gz (2.6 MB) – Mac OS X tarred and gzipped package file
(requires admin access to install). J2SDK is pre-installed on Mac OS X
machines.

jGRASP (2.7 MB) – Zip file. After unzipping the file, refer to README file for
installation instructions. The full JDK must be installed in order to run jGRASP
and to compile and run Java programs.

Installing on Windows 95/98/2000/XP – After downloading either “jGRASP exe” or
“jGRASP JRE exe” (described above), simply double click on the .exe file, and the script
will take you through the steps for installing jGRASP. If you are uncertain about a step,
you should accept the default by clicking Next and/or pressing ENTER key. When you
have completed the installation, you should find the jGRASP icon on your desktop.
jGRASP should also be listed on the Window’s Start – Programs menu.

Installing on Mac OS X – To install jGRASP on a Mac OS X machine, a root password
is required. When you download jGRASP, the install file (.pkg.tar.gz) should unzip and
untar automatically. If this did not happen, you can use Stuffit Expander [or from a
terminal, use "gunzip jgrasp*.tar.gz" then "tar xf jgrasp*.tar"]. You should now be able
to double click on the .pkg file to continue the installation. The first time you run
jGRASP, the CSD font will be installed on your system, and a soft link to the jGRASP
startup script (for command line execution) will be created in /usr/bin or your
$HOME/bin directory.

Installing on x86 Linux, SPARC Solaris, and NetBSD/i386 – Unzip the distribution
(.zip) file in the directory where you wish to install jGRASP. This will create a jgrasp
directory containing all the files. You may want to add the "bin" subdirectory of this
directory to your execution path or create a soft link to .../jgrasp/bin/jgrasp from a
directory on the executable path.

8

Overview (v1.8)
8/9/2005

Compilers - Although jGRASP includes settings for a number of popular compilers, it
does not include any compilers. Therefore, if the compiler you need is not already
installed on your machine, it must be installed separately. Since these are generally
rather large files, the download time may be quite long. If a compiler is available to you
on a CD (e.g, with a textbook), you may save yourself time by installing it from the CD
rather than attempting to download it.

Compiler Settings - jGRASP includes settings for the following languages/compilers.
The default compiler settings are underlined. Note that links for those that can be freely
downloaded are included for your convenience.

Ada (GNAT)

ftp://cs.nyu.edu/pub/gnat/3.15p/winnt/gnat-3.15p-nt.exe

C, C++ (GNU/Cygnus, Borland, Microsoft)

http://sources.redhat.com/cygwin/

http://www.borland.com/downloads/download_cbuilder.html

FORTRAN (GNU/Cygnus)

Included with Cygwin, see (2) above. Note that FORTRAN is currently
treated as Plain Text so there is no CSD generation.

Java (J2SE JDK, Jikes)

http://java.sun.com/j2se/1.5.0/download.jsp

Assembler (MASM)

Note that assembler is treated as Plain Text so there is no CSD generation.

After you have installed the compiler(s) of your choice, you will be ready to begin
working with jGRASP. If you are not using the default compiler for a particular
language (e.g., JDK for Java), you may need to change the Compiler Settings by clicking
on Settings – Compiler Settings – Workspace (or Global). Select the appropriate
language, and then select the environment setting that most nearly matches the compiler
you have installed. Finally, click Use on the right side of the Settings dialog. For details
see Compiler Environment Settings in jGRASP Help.

Starting jGRASP - You can start jGRASP by double clicking on the icon on your
Windows desktop. See the next section for details.

jGRASP

9

Getting Started (v1.8)
8/9/2005

2 Getting Started
Java will be used in the examples in this section; however, the information applies to all
supported languages for which you have installed a compiler (e.g., Ada, C, C++, Java)
unless noted otherwise. In any of the language specific steps below, simply select the
appropriate language and source code. For example, in the “Creating a New File” below,
you may select C++ as the language instead of Java, and then enter a C++ example. If
you have installed jGRASP on your own PC, you should see the jGRASP icon on the
Windows desktop.

Objectives – When you have completed this tutorial, you should be comfortable with
editing, compiling, and running Java programs in jGRASP. In addition, you should be
familiar with the pedagogical features provided by the Control Structure Diagram (CSD)
window, including generating the CSD, folding your source code, numbering the lines,
and stepping through the program in the integrated debugger.

The details of these objectives are captured in the hyperlinked topics listed below.

2.1 Starting jGRASP

2.2 Quick Start - Opening a Program, Compiling, and Running

2.3 Creating a New File

2.4 Saving a File

2.5 Generating a Control Structure Diagram

2.6 Folding a CSD

2.7 Line Numbers

2.8 Compiling a Program – A Few More Details

2.9 Running a Program - Additional Options

2.10 Using the Debugger

2.11 Opening a File – Additional Options

2.12 Closing a File

2.13 Exiting jGRASP

2.14 Exercises

2.15 Review and Preview of What’s Ahead

10

Getting Started (v1.8)
8/9/2005

2.1 Starting jGRASP

If you are working in a Microsoft Windows environment, you can start jGRASP
by double clicking its icon on your Windows desktop. If you are working in a
computer lab and you don’t see the jGRASP icon on the desktop, try the
following: click Start – Programs – jGRASP

jGRASP

Depending on the speed of your computer, jGRASP may take between 10 and 30 seconds
to start up. The jGRASP virtual Desktop, shown below, is composed of a Control Panel
with a menu and toolbar across the top plus three resizable panes. The left pane has tabs
for Browse, Debug, Find, and Workbench (Project tab is combined with the Browse tab
beginning in version 1.7). The Browse tab, which is the default when jGRASP is started,
lists the files in the current directory. The large right pane is for UML and CSD
Windows. The lower pane has tabs for jGRASP messages, Compile messages, and Run
Input/Output. The panes can be resized by moving the horizontal or vertical partitions
that separate them. Select the partition with the mouse (left-click and hold down) then
drag the partition to make a pane larger or smaller. You can also click the arrowheads on
the partition to open and close the pane.

Figure 2-1. The jGRASP Virtual Desktop

To Resize Pane,
Select and Drag

Partition or Click
Arrowheads to
open or close

CSD and UML
Windows

Message
Tab Pane

Browse
Tab Pane

11

Getting Started (v1.8)
8/9/2005

2.2 Quick Start - Opening a Program, Compiling, and Running
Example programs are available in the jGRASP folder in the directory where it was
installed (e.g., c:\program files\jgrasp\examples\Tutorials). If jGRASP was installed by a
system administrator, you may not have write privileges for these files. If this is the case,
you should copy the tutorial folder to one of your personal folders (e.g., in your My
Documents folder).

Note: If you already have example programs with which you are familiar, you
may prefer to use them rather than the ones included with jGRASP as you work
through this first tutorial.

Clicking the Open File button on the toolbar pops up the Open File dialog. However,
the easiest way to open existing files is to use the Browse tab (below). The files shown
initially in the Browse tab will most likely be in your home directory. You can navigate
to the appropriate directory by double-clicking on a folder in the list of files or by
clicking on the up-arrow as indicated in the figure below. The “R” refreshes the Browse
pane. In the example, the Browse tab is displaying the contents of the Tutorials folder.

Figure 2. The jGRASP Virtual Desktop

To open a
folder

To m
the

ove up in
directory

To open a
file

Figure 2. The jGRASP Virtual Desktop

To open a
folder

To m
the

ove up in
directory

To open a file, double click on
the file name

To open a
folder

To open a file, double click on
the file name

To m
the

ove up in
directory

To open a
folder

To open a file, double click on
the file name

To open a file
double click on the file name

To move up in the directory
click on the UP arrow

To open a folder
double-click on the folder name

Figure 2-2. The jGRASP Virtual Desktop

12

Getting Started (v1.8)
8/9/2005

Double-clicking on the Hello folder, then the Hello.java file, as shown in Step 1 below,
opens the program in a CSD window. The CSD window is a full-featured editor for
entering and updating your programs. Notice that opening the CSD window places
additional buttons on the toolbar. Once you have opened a program or entered a new
program (File – New File – Java) and saved it, you are ready to compile the program and
run it. To compile the program, click on the Build menu then select Compile.
Alternatively, you can click on the Compile button indicated by Step 2 below. After a
successful compilation – no error messages in the Compile Messages tab (the lower
pane), you are ready to run the program by clicking on the Run button as shown in Step 3
below, or you can click the Build menu and select Run. The standard input and output
for your program will be in the Run I/O tab of the Message pane.

Figure 2-3. After loading file into CSD Window

Step 1. Open file

Double-click file name

Step 3. Run program

Step 2. Compile program

13

Getting Started (v1.8)
8/9/2005

2.3 Creating a New File
To create a new Java file within the Desktop, click on File – New File – Java. Note that
the list of languages displayed by File – New File will vary with your use of jGRASP. If
the language you want is not listed, click Other to see the additional available languages.
The languages for the last 25 files opened will be displayed in the initial list; the
remaining available languages will be under Other.

After you click on File – New File – Java, a CSD window is opened in the right pane of
the Desktop as shown in Figure 2-4 below. Notice the title for the frame, jGRASP CSD
(Java), which indicates the CSD window is Java specific. If Java is not the language you
intend to use, you should close the window and then open a CSD window for the correct
language. Notice the button for each open file appears below the CSD windows in an
area called the windowbar (similar to a taskbar in the Windows OS environment). Later
when you have multiple files open, the windowbar will be quite useful for popping a
particular window to the top. Later when you have numerous windows open, you may
want to reorder the buttons by dragging them around on the windowbar.

 In the upper right corner of the CSD window are three buttons that control its

Figure 2-4. Opening a CSD Window for Java

Buttons for Hello.java and
Grasp2 (an unnamed file)

on Windowbar

14

Getting Started (v1.8)
8/9/2005

display. The first button minimizes the CSD window; the second button maximizes the
CSD window or, if it is already maximized, the button restores the CSD window to its
previous size. The third button closes the CSD window. You may also make the
Desktop itself full screen by clicking the appropriate button in the upper corner of it.

Figure 2-5 shows the CSD window maximized within the virtual Desktop. The “L”
shaped cursor in the upper left corner of the empty window indicates where text will be
entered.

TIP: If you want all of your CSD windows to be maximized automatically when you
open them, click Settings – Desktop, and then click Open Desktop Windows
Maximized (note that a check mark indicates this option is turned ON).

Figure 2-5. CSD Window maximized in Desktop

15

Getting Started (v1.8)
8/9/2005

Type in the following Java program in the CSD window, exactly as it appears.
Remember, Java is case sensitive. Alternatively, you may copy/paste the Hello program
into this window, then change the class name to Hello2 and add the “Welcome…” line.
 public class Hello2
 {
 public static void main(String[] args)
 {
 System.out.println ("Hello world!");
 System.out.println ("Welcome to jGRASP!");
 }
 }

After you have entered the program, your CSD window should look similar to the
program shown in Figure 2-6.

Figure 2-6. CSD Window with program entered

16

Getting Started (v1.8)
8/9/2005

2.4 Saving a File
You can save the program as "Hello2.java" by doing any of the following:

(1) Click the Save button on the toolbar, or

(2) Click File – Save on menu (see Figure 2-7), or

(3) Pressing Ctrl-S (i.e., while pressing the Ctrl key, press the “s” key).

If the file has not been saved previously, the Save dialog box pops up with the name of
the file set to the name of the class file. Note, in Java, the file name must match the class
name (i.e., class Hello2 must be saved as Hello2.java). Be sure you are in the correct
directory. If you need to create a new directory, click the folder button on the top row of
the Save dialog. When you are in the proper directory and have the correct file name
indicated, click the Save button on the dialog. After your program has been saved, it
should be listed in the Browse tab (see Figure 2.8 on the next page). If you do not see the
program Browse tab, you may need to navigate to the directory where the file was saved.

TIP: Click on the toolbar to change the Browse tab to the directory of the current file.

Figure 2-7. Saving a file from the CSD Window

17

Getting Started (v1.8)
8/9/2005

2.5 Generating a Control Structure Diagram
You can generate a Control Structure Diagram in the CSD window whenever you have a
syntactically correct program. Note that CSD generation does not do type checking so,
even though the CSD may generate okay, the program may not compile. Generate the
CSD for the program by doing any of the following:

(1) Click the Generate CSD button , or

(2) Click View – Generate CSD on the menu, or

(3) Press the F2 key.

If your program is syntactically correct, the CSD will be generated as shown in the figure
below. After you are able to successfully generate a CSD, go on to the next section
below.

Figure 2-8. After CSD is generated

18

Getting Started (v1.8)
8/9/2005

If a syntax error is detected during the CSD generation, jGRASP will highlight the
vicinity of the error and describe it in the message window.

If you do not find an error in the highlighted line, be sure to look for the error in the line
just above it. For example in Figure 2-9, the semi-colon was omitted at the end of the
first println statement. As you gain experience, these errors will become easier to spot.

If you are unable find and correct the error, you should try compiling the program since
the compiler usually provides a more detailed error message (see Compiling_a_Program
below).

You can remove the CSD by doing any of the following:

(1) Click the Remove CSD button , or

(2) Click View – Remove CSD on the menu, or

(3) Press Shift-F2.

Figure 2-9. Syntax error detected

19

Getting Started (v1.8)
8/9/2005

Remember, the purpose of using the CSD is to improve the readability of your program.
While this is may not be obvious on a simple program like the example, it should become
apparent as the size and complexity of your programs increase.

TIP: As you enter a program, try to enter it in “chunks” that are syntactically correct.
For example, the following is sufficient to generate the CSD.

 public class Hello

{
}

As soon as you think you have entered a syntactically correct chunk, you should generate
the CSD. Not only does this update the diagram, it catches your syntax errors early.

2.6 Folding a CSD
Folding is a CSD feature that becomes increasingly useful as programs get larger. After
you have generated the CSD, you can fold your program based on its structure.

For example, if you double-click on the class symbol ÕÖ× in the program, the entire
program is folded (Figure 2-10). Double-clicking on the class symbol again will unfold
the program completely. If you double-click on the “plus” symbol, the first layer of the
program is unfolded. Large programs can be unfolded layer by layer as needed.

Although the example program has no loops or conditional statements, these may be
folded by double-clicking the corresponding CSD control constructs. For other folding
options, see the View – Fold menu.

Figure 2-10. Folded CSD

20

Getting Started (v1.8)
8/9/2005

2.7 Line Numbers
Line numbers can be very useful when referring to specific lines or regions of a program.
Although not part of the actual program, they are displayed to the left of the source code
as indicated in Figure 2-11.

 Line numbers can be turned on and off by clicking the Toggle Line Numbers button
on the CSD window toolbar or via the View menu.

With Line numbers turned on, if you insert a line in the code, all line numbers below the
new line are incremented.

 You may “freeze” the line numbers to avoid the incrementing by clicking on the
Freeze Line Numbers button. To unfreeze the line numbers, click the button again. This
feature is also available on the View menu.

Figure 2-11. Line numbers in the CSD Window

21

Getting Started (v1.8)
8/9/2005

2.8 Compiling a Program – A Few More Details
When you have a program in the CSD window, either by loading a source file or by
typing it in and saving it, you are ready to compile the program. When you compile your
program, the file is automatically saved if Auto Save is ON, which it is by default. Auto
Save can be turned on/off by clicking Settings – Auto Save. If you are compiling a
language other than Java, you will need to “compile and link” the program.

 Compile a Java program in jGRASP by clicking the Compile button or by clicking
on the Compiler menu: Build – Compile (Figure 2-12).

 Compile and Link the program (if you are compiling a language other than Java) by
clicking on the Compile and Link button or by clicking on the Build menu: Build –
Compile and Link. Note, this option will not be visible on the toolbar and menu in a
CSD window for a Java program.

In the figure below, also note that Debug Mode is checked ON. This should always be
left on so that the .class file created by the compiler will contain information about
variables in your program that can be displayed by the debugger and Object Workbench.

Figure 2-12. Compiling a program

22

Getting Started (v1.8)
8/9/2005

The results of the compilation will appear in the Compile Messages tab in the lower
window of the Desktop. If your program compiled successfully, you should see the
message “operation complete” with no errors reported, as illustrated in Figure 2-13. Now
you are ready to "Run" the program (see 2.9 Running A Program – Additional Options).

Error Messages

Figure 2-13. A successful compilation

An error message indicating “file not found,” generally means jGRASP could not find the
compiler. For example, if you are attempting to compile a Java program and the message
indicates that “javac” was not found, this means the Java compiler (javac) may not have
been installed properly. Go back to Section 1, Installing jGRASP, and be sure you have
followed all the instructions. Once the Java JDK is properly installed and set up, any
errors reported by the compiler should be about your program.

Figure 2-14 shows a program with a missing “)” in the first println statement. The error
description is highlighted in the Compiler Message tab, and jGRASP automatically
scrolls the CSD window to the line where the error most likely occurred and highlights it.

23

Getting Started (v1.8)
8/9/2005

If multiple errors are indicated, you should correct all that are obvious and then compile
the program again. Sometimes correcting one error can clear up several error messages.

Only after you have “fixed” all reported errors will your program actually compile, which
means a .class file will be created for your .java file. After this .class file has been
created, you can “Run” the program as described in the next section.

Figure 2-14. Compile time error reported

24

Getting Started (v1.8)
8/9/2005

2.9 Running a Program - Additional Options
At this point you should have successfully compiled your program. Two things indicate
this. First, there should be no errors reported in the Compile Messages window. Second,
you should have a Hello2.class file listed in the Browse pane, assuming the pane is set to
list “All Files.”

To run the program, click Build – Run on the toolbar (Figure 2-15). The options on the
Build menu allow you to run your program: as an application (Run), as an Applet (Run
as Applet), as an application in debug mode (Debug), as an Applet in debug mode
(Debug as Applet). Other options allow you to pass Run arguments, Run in an MS-DOS
window rather than the jGRASP Run I/O message pane, and Run Topmost to keep
frames and dialogs of the program on top jGRASP components.

 You can also run the program by clicking the Run button on the tool bar.

Figure 2-15. Running a program

25

Getting Started (v1.8)
8/9/2005

Output
If a program has any standard input and/or output, the Run I/O tab in the lower pane pops
to the top of the Desktop. In Figure 2-16, the output from running the Hello2 program is
shown in Run I/O tab.

Figure 2-16. Output from running the program

26

Getting Started (v1.8)
8/9/2005

2.10 Using the Debugger
jGRASP provides an easy-to-use visual Debugger that allows you to set one or more
breakpoints in your program, run the debugger, then after the program reaches a
breakpoint, step through your program statement by statement. To set a breakpoint, left-
click on the statement where you want your program to stop, then right-click and select
Toggle Breakpoint (Figure 2-17). Alternatively, after left-clicking on the line where you
want the breakpoint, click View – Breakpoints – Toggle Breakpoint. You should see
the red octagonal breakpoint symbol appear to the left of the line. The statement you
select must be an executable statement (i.e., one that causes the program to do
something). You can also set a breakpoint by hovering the mouse over the leftmost
columns of the line where you want to set the breakpoint. When you see the red
breakpoint symbol, left-click the mouse to set the breakpoint. In the Hello2 program
below, a breakpoint has been set on the first of the two System.out.println statements,
which are the only statements in this program that allow a breakpoint.

To start the debugger on an application, click the debug button on the toolbar.
Alternatively, you can click Build – Debug. When the debugger starts, the Debug tab
should pop up in place of the Browse tab, and your program should stop at the breakpoint

Figure 2-17. Setting a breakpoint

27

Getting Started (v1.8)
8/9/2005

as shown in Figure 2-18 below.

The debugger control buttons are
located at the top of the Debug tab.
Only one of the buttons is needed in
this section. Each time you click the
“step” button , your program should advance to the next statement. After stepping all
the way through your program, the Debug tab pane will go blank to signal the debug
session has ended. When a program contains variables, you will be able to view the
values of the variables in the Debug tab as you step through the program.

In the example below, the program has stopped at the first output statement. When the
step button is clicked, this statement will be executed and “Hello world!” will be output
to the Run I/O tab pane. Clicking the step button again will output “Welcome to
jGRASP!” on the next line. The third click on the step button will end the program, and
the Debug tab pane should go blank as indicated above. When working with the
debugger, remember that the highlighted statement with the blue arrow pointing to it will
be the next statement to be executed. For a complete description of the other debugger
control buttons, see the tutorial on the Integrated Debugger.

Figure 2-18. Stepping with the Debugger

28

Getting Started (v1.8)
8/9/2005

2.11 Opening a File – Additional Options
A file can be opened in a CSD window in a variety of ways. Each of these is described
below.

(1) Browse Tab - If the file is listed in jGRASP Browse tab, you can simply double click
on the file name, and the file will be opened in a new CSD window. We did this
back in section 2.1 Quick Start. You can also drag a file from the Browse tab and
drop it in the CSD window area.

(2) Menu or Toolbar - On the menu, click File – Open or Click the Open File button
on the toolbar. Either of these will bring up the Open File dialog illustrated in Figure
2-19.

Figure 2-19. Open File dialog

(3) Windows File Browser - If you have a Windows file browser open (e.g., My
Computer, My Documents, etc.), and the file is marked as a jGRASP file, you can
just double click the file name.

(4) Windows File Browser (drag and drop) - If you have a Windows file browser open
(e.g., My Computer, My Documents, etc.), you can drag a file from the file browser
to the jGRASP Desktop and drop it in the area where the CSD window would
normally be displayed.

29

Getting Started (v1.8)
8/9/2005

In all cases above, if a file is already open in jGRASP, the CSD window containing it
will be popped to the top of the Desktop rather than jGRASP opening a second CSD
window with the same file.

Multiple CSD Windows
When you have multiple files open, each is in a separate CSD window. Each program
can be compiled and run from its respective CSD window. When multiple windows are
open, the single menu and toolbar go with the top window only, which is said to have
“focus” in the desktop. In Figure 2-20, two CSD windows have been opened. One
contains Hello.java and the other contains Hello2.java. If the window in which you want
to work is visible, simply click the mouse on it to bring it to the top. If you have many
windows open, you may need to click the Window menu, then click the file name in the
list of the open files. However, the easiest way to give focus to a window is to click the
window’s button on the windowbar below the CSD window. As described earlier, these
buttons can be reordered by dragging/dropping them on the windowbar. In the figure
below, the windowbar has buttons for Hello and Hello2. Notice that Hello2.java is
underlined both on the windowbar and in the Browse tab to indicate that it has the current
focus. Hello2.java is also displayed in the desktop’s blue title bar.

Figure 2-20. Multiple files open

When Hello2.java has the current
focus in the desktop, the file name is
indicated in jGRASP desktop title
above, as well by underlining in the
Browse tab at left and in the
windowbar below.

30

Getting Started (v1.8)
8/9/2005

2.12 Closing a File
The open files in CSD windows can be closed in several ways.

(1) If the CSD window is maximized, you can close window and file by clicking the
Close button at the right end of the top level Menu.

(2) If the CSD window is not maximized, click the Close button in the upper
right corner of the CSD window itself.

(3) File Menu – Click File – Close or Close All Files.

(4) Window Menu – Click Window – Close All Windows.

In each of the scenarios above, if the file has been modified and not saved, you will be
prompted to Save and Exit, Discard Edits, or Cancel before continuing. After the files
are closed, your Desktop should look like the figure below, which is how we began this
tutorial.

Figure 2-22. Desktop with all CSD Windows closed

31

Getting Started (v1.8)
8/9/2005

2.13 Exiting jGRASP
When you have completed your session with jGRASP, you should always close (or
“exit”) jGRASP rather than let your computer close it when you log out or shut down.
However, you don’t have to close the files you have been working on before exiting
jGRASP. When you exit jGRASP, it remembers the files you have open, including their
window size and scroll position, before closing them. If a file was edited during the
session, jGRASP prompts you to save or discard the changes. The next time you start
jGRASP, it will open your files, and you will be ready to begin where you left off. For
example, open the Hello.java file and then exit jGRASP by one of the methods below.
After jGRASP closes down, start it up again and you should see the Hello.java program
in a CSD window. This feature is so convenient that many users tend to leave a few files
open when they exit jGRASP. However, if a file is really not being used, it is best to go
ahead and close the file to reduce the clutter on the windowbar.

Close jGRASP in either of the following ways:

(1) Click the Close button in the upper right corner of the desktop; or

(2) On the File menu, click File – Exit jGRASP.

2.14 Exercises

(1) Create your own program then save, compile, and run it.

(2) Generate the CSD for your program. On the View menu, turn on Auto Generate
CSD (Settings – CSD Window Settings – then (checkbox) Auto Generate CSD).

(3) Display the line numbers for your program.

(4) Fold up your program then unfold it in layers.

(5) On the Build menu, make sure Debug Mode is ON (indicated by a check box). [Note
that Debug Mode should be ON by default, and we recommend that this be left ON.]
Recompile your program.

(6) Set a breakpoint on the first executable line of your program then run it with the
debugger. Step through each statement, checking the Run I/O window for output.

(7) If you have other Java programs available, open one or more of them, then repeat
steps (1) through (5) above for each program.

32

Getting Started (v1.8)
8/9/2005

2.15 Review and Preview of What’s Ahead
As a way of review and also to look ahead, let’s take a look at the jGRASP toolbar.
Hovering the mouse over a button on the toolbar provides a “tool hint” to help identify its
function. Also, View – Toolbar Buttons allows you to display text labels on the buttons.

While many of these buttons were introduced in this section, some were assumed to be
self-explanatory (e.g., Print, Cut, Copy, etc.). Several others will be covered in the next
section along with Projects and the Object Workbench (e.g., Generate UML, Generate
Documentation, Create Object, and Invoke Method). Section 9 provides an in depth look
at the CSD, which can be read at any time, but is most relevant when control structures
are studied (e.g., selection, iteration, try-catch, etc).

 TIP: Right-click here to turn
menu groups on or off. Open File

Save File

Set Browse Tab to directory of current file

 Print

 Cut Copy Paste Undo last edit

 Generate CSD Remove CSD Toggle Line Number Freeze line numbers

Generate CPG Generate UML Generate Documentation

 Compile Run Run Debug Debug Create Invoke
 Applet Applet Object Method

33

Getting Started with Objects (v1.8)
8/9/2005

3 Getting Started with Objects
If you are an experienced IDE user, you may be able to do this tutorial without having
done the previous tutorial, Getting Started. However, at some point you should read the
previous tutorial and make sure you can do the exercises at the end.

Objectives – When you have completed this tutorial, you should be able to use projects,
UML class diagrams, the Object Workbench, and Viewers in jGRASP. These topics are
especially relevant for an objects first or objects early approach to learning Java.

The details of these objectives are captured in the hyperlinked topics listed below.

3.1 Starting jGRASP

3.2 Navigating to Our First Example Project

3.3 Opening a Project and UML Window

3.4 Compiling and Running the Program from UML Window

3.5 Exploring the UML Window

3.6 Viewing the Source Code in the CSD Window

3.7 Exploring the Features of the UML and CSD Windows

3.7.1 Viewing the source code for a class

3.7.2 Displaying class information

3.7.3 Displaying Dependency Information

3.8 Generating Documentation for the Project

3.9 Using the Object Workbench

3.10 Opening a Viewer Window

3.11 Invoking a Method

3.12 Invoking Methods with Object Parameters

3.13 Invoking Methods on Object Fields

3.14 Invoking Inherited Methods

3.15 Running the Debugger on Invoked Methods

3.16 Creating Objects from the CSD Window

3.17 Creating an Instance from the Java Class Libraries

3.18 Exiting the Workbench

3.19 Closing a Project

3.20 Exiting jGRASP

3.21 Exercises

34

Getting Started with Objects (v1.8)
8/9/2005

3.1 Starting jGRASP
A Java program consists of one or more class files, each of which defines a set of objects.
During the execution of the program, objects can be created and then manipulated toward
some useful purpose by invoking the methods provided by their respective classes. In
this tutorial, we’ll examine a simple program called PersonalLibrary that consists of five
Java classes. In jGRASP, these five Java files are organized as a project.

You can start jGRASP by double clicking on the icon at left. If you are working
on a PC in a computer lab and you don’t see the jGRASP icon on the desktop,
try the following: click Start – Programs – jGRASP

jGRASP

Depending on the speed of your computer, jGRASP may take between 10 and 30 seconds
to start up. The jGRASP virtual Desktop, shown below, is composed of a Control Panel
with a menu across the top plus three panes. The left pane has tabs for Browse, Find,
Debug, and Workbench. The large right pane is for UML and CSD windows. The
lower pane has tabs for jGRASP messages, Compile messages, and Run Input/Output.

Figure 3-1. The jGRASP Virtual Desktop

Browse, Find, Debug,
and Workbench Tabs

CSD and UML
Windows

Message
Tab Pane

35

Getting Started with Objects (v1.8)
8/9/2005

3.2 Navigating to Our First Example Project
Example programs are available in the jGRASP folder in the directory where it was
installed (e.g., C:\Program Files\jGRASP\examples\Tutorials). If jGRASP was installed
by a system administrator, you may not have write privileges for these files. If this is the
case, you should copy the Tutorials folder to one of your own folders (e.g., in your My
Documents folder).

The files shown initially in the Browse tab will most likely be in your home directory.
You can navigate to the appropriate directory by double-clicking on a folder in the
Browse tab or by clicking on the up-arrow as indicated in the figure below. The left-
arrow and right-arrow allow you to navigate back and forward to directories that have
already been visited during the session. The “R” refreshes the Browse pane. In the
example below, the Browse tab is displaying the contents of the Tutorials folder.

Figure 5. The jGRASP Virtual Desktop

To open a
folder

To move up in
the directory

To open a
file

Figure 2. The jGRASP Virtual Desktop

To open a
folder

To move up in
the directory

To open a file, double click on
the file name

To open a
folder

To open a file, double click on
the file name

To move up in
the directory

To open a
folder

To open a file, double click on
the file name

To open a file
double click on the file name

To move up in the directory
click on the UP arrow

To open a folder
double-click on the folder name

Figure 3-2. The jGRASP Virtual Desktop

36

Getting Started with Objects (v1.8)
8/9/2005

3.3 Opening a Project and UML Window
After double-clicking the PersonalLibraryProject folder, the Java source files in the
project as well as the jGRASP project file are displayed in the Browse tab. To open the
project, double-click on the project file (PersonalLibraryProject.gpj), as shown in Step 1
below. After the project is opened, the Browse tab is split into two sections, the upper
section for files and the lower section for open projects as indicated below.

We are now ready to open a UML window and generate the class diagram for the project.
As indicated in Step 2 below, simply double-click on the UML symbol shown beneath
the project name in the open projects section of the Browse tab. Alternatively, on the
desktop menu you can click Project – Generate/Update UML Class Diagram.

After you have opened the UML window, you can compile and run your program in the
traditional way using the toolbar buttons or the Build menu. However, from an objects
first perspective, you can also create objects directly from your classes and place them on
the Workbench and then invoke their methods. Both of these approaches are explored
below.

Figure 3-3. After loading file into CSD Window

Step 2. Open UML Window

Double-click UML symbol

Step 1. Open Project
Double-click project file name

37

Getting Started with Objects (v1.8)
8/9/2005

3.4 Compiling and Running the Program from UML Window
You can compile the files in the UML window by clicking the green plus as indicated
in Step 3 below. Note that the classes in the UML diagram become crosshatched with
red lines when they need to be recompiled. After a successful compile, the classes should
be green again. If at least one the classes in the diagram has a main method, you can also
run the program by clicking the Run button as shown by Step 4. When you compile
or run the program, the respective Compile Messages or Run I/O tab pops open in the
lower pane to show the results.

TIP: Usually the reason for compiling a program is because you have modified or
“added” something, hence the green plus .

Figure 3-4. After loading file into CSD Window

Step 4. Run program Step 3. Compile program

38

Getting Started with Objects (v1.8)
8/9/2005

3.5 Exploring the UML Window
In the figure below, the UML window has been opened for the PersonalLibraryProject
and the class diagram has been generated. Below the toolbar is a panning rectangle
which can be used to move around in the UML diagram. A set of scaling buttons is
located to the right of the panning rectangle. Try clicking each of the scaling buttons one
or more times to see the effect on the UML diagram. Clicking “1” always resets the
diagram to its original size. The Update UML button on the toolbar can be used to
regenerate the diagram in the event any of the classes in the project are modified outside
of jGRASP (e.g., edited or compiled). Just below the UML window is the windowbar
which contains a button for each UML or CSD window that is opened. Clicking the
button pops its window to the top. Windowbar buttons can be reordered by dragging
them around on the windowbar.

Windowbar Update UML Panning Rectangle Scaling Buttons

Figure 3-5. After opening the UML Window

39

Getting Started with Objects (v1.8)
8/9/2005

3.6 Viewing the Source Code in the CSD Window
To view the source code for a class in the UML diagram, simply double-click on the class
symbol, or in the Browse tab, double-click the file name in the Files or Open Projects
sections. Each of these will open the Java file in a CSD window, which is a full-featured
editor for entering and updating your program. Notice that with the CSD window open
the toolbar buttons now include Generate CSD, Remove CSD, Number Lines, Compile,
and Run, as well as buttons for Create Instance and Invoke Method.

Generate a CSD

 Remove CSD Compile Create Instance

Number Lines (on/off) Run Invoke Method

 Generate UML

Figure 3-6. After the CSD is generated

40

Getting Started with Objects (v1.8)
8/9/2005

3.7 Exploring the Features of the UML and CSD Windows
Once you have a UML window open with your class diagram, you are ready to do some
exploring. The steps below are intended to give you a semi-guided tour of some of the
features available from the UML and CSD windows.

3.7.1 Viewing the source code for a class
1. In the UML diagram, double-click on the PersonalLibrary class. This should

open the source file in a CSD window. Notice a button for this CSD window is
added to the windowbar. You should also see a button for the UML window.

2. Review the source code in the CSD window; generate the CSD; fold and unfold
the CSD; turn line numbers on and off. [See next page or Sec 2.5-2.7 for details.]

3. On the windowbar, click the button for the UML window to pop it to the top.
Remember to do this anytime you need to view the UML window.

4. View the source code for the other classes by: (1) double-clicking on the class in
the UML diagram, (2) double-clicking on the class in the Open Projects section of
the Browse tab, or (3) double-clicking on the file name in the upper section of the
Browse tab.

5. Close one or more of the CSD windows by clicking the X in the upper right
corner of the CSD window.

3.7.2 Displaying class information
1. In the UML window, select the Fiction class by left-clicking on it.

2. Right-click on it and select Show Class Info. This should pop the UML Info tab
to the top in the left pane of the Desktop, and you should be able to see the fields,
constructors, and methods of the Fiction class.

3. In the UML Info tab, double-click on the getMainCharacter() method. This
should open a CSD window with the first executable line in the method
highlighted.

4. Close the CSD window by clicking the X in the upper right corner.

3.7.3 Displaying Dependency Information
1. In the UML window, select the arrow between PersonalLibrary and Fiction by

left-clicking on it.

2. If the UML Info tab is not showing in the left pane of the desktop, right-click on
the arrow and select Show Dependency Info. Alternatively, you can click the
UML Info tab near the bottom of the left pane.

3. Review the information listed in the UML tab. As the arrow in the diagram
indicates, PersonalLibrary uses a constructor from Fiction as well as the
getMainCharacter() method.

4. Double-click on the getMainCharacter method. This should open a CSD window
for PersonalLibrary with the line highlighted where the method is invoked.

41

Getting Started with Objects (v1.8)
8/9/2005

3.8 Generating Documentation for the Project
With your Java files organized as a project, you have the option to generate project level
documentation for your Java source code, i.e., an application programmer interface
(API). To begin the process of generating the documentation, click Project – Generate
Documentation. Alternatively, click the Generate Documentation button on the
toolbar. This will bring up the “Generate Documentation for Project” dialog, which asks
for the directory where the generated HTML files are to be stored. The default directory
name is the name of the project with “_doc” appended to it. Thus, for the example, the
default will be PersonalLibaryProject_doc. Using the default name is recommended so
that your documentation directories will have a standard naming convention. However,
you are free to use any directory as the target. Pressing the Default button will get you
back to the default directory in the event a different directory is listed. When you click
Generate on the dialog, jGRASP calls the javadoc utility, included with the JDK, to
create a complete hyper-linked document. The documentation is then opened in a
Documentation Viewer as shown below for PersonalLibaryProject.

Figure 3-7. After generating documentation for PersonalLibaryProject

42

Getting Started with Objects (v1.8)
8/9/2005

3.9 Using the Object Workbench
Now we are ready to begin exploring the Object Workbench. The figure below shows
the UML window opened for the PersonalLibraryProject. Earlier, we learned how to run
the program as an application using the Run button . Since main is a static method, we
can also invoke it directly from the class diagram by right-clicking on PersonalLibary and
selecting Invoke Method. Alternatively, you can select the PersonalLibrary class, and
then click the Invoke Method button on the toolbar. When the Invoke Method dialog
pops up, select and invoke main (without parameters). Try this now.

The focus of this and the next several sections is on creating objects and placing them on
the workbench. We begin by right clicking on the Fiction class in the UML diagram, and
then selecting Create New Instance, as shown in Figure 3-8. Alternatively, select the
Fiction class, and then click the Create Instance button on the toolbar. A list of
constructors will be displayed in a dialog box.

If a parameterless constructor is selected as shown in Figure 3-9, then clicking Create
will immediately place the object on the workbench. However, if the constructor requires
parameters, the dialog will expand to display the individual parameters as shown in

Figure 3-8. Creating an Object for the Workbench

43

Getting Started with Objects (v1.8)
8/9/2005

Figure 3-10. The values for the parameters should be filled in prior to clicking Create.
Be sure to enclose strings in double quotes. In either case, the user can set the name of
the object being constructed or accept the default assigned by jGRASP. Also, the “stick-
pin” located in the upper left of the dialog can be used to make the Create dialog
remain open. This is convenient for creating multiple instances of the same class. If the
project documentation has been generated, clicking the Show Doc button on the dialog
will display the documentation for the constructor selected.

In Figure 3-11, the Workbench tab is shown after two instances of Fiction and one of
Novel have been created. The second object, fiction_2, has been expanded so that the
fields (mainCharacter, author, title, and pages) can be

Figure 3-9. Selecting a constructor

Figure 3-10. Constructor with
parameters

Click on “stick-pin” to keep
dialog open.

viewed. An object can be

triangle for a primitive type (e.g., pages). A green symbol indicates the field is declared

expanded or contracted by double-clicking on its name. Notice that three fields in
fiction_2 are also objects (i.e., instances of the String class); they too can be expanded.

Notice that objects and object fields have various shapes and colors associated with them.
Top level objects are indicated by blue square symbols (e.g., fiction_2). The symbols for
fields declared in an object are either a square for an object (e.g., mainCharacter) or a

44

Getting Started with Objects (v1.8)
8/9/2005

within the class (e.g., mainCharacter in fiction_2, and an orange symbol means the field
was inherited from a super class (e.g., author inherited from Book). Finally, a red border
on a symbol means the field is inaccessible outside the class (i.e., the object was declared
as either private or protected).

Blue square – top Green square with
red border – object

declared in
Fiction, not

Orange square
with red border –
object inherited

from super class,

Orange triangle
with red border –

primitive type
inherited from

level object

accessible outside
Fiction.

not accessible
outside Fiction.

super class, not
accessible outside

Fiction.

Figure 3-11. Workbench with three objects

45

Getting Started with Objects (v1.8)
8/9/2005

46

Figure 3-14 Viewer with Detail View of

nt

.10 Opening a Viewer Window
 separate Viewer window can be opened for

 an

iew on the “pages” field of fiction_2,
which is an int primitive type. Figure 3-14 shows the viewer set to Detail view, which
shows the value of pages in decimal, hexadecimal, octal, and binary. The Detail view for
float and double values shows the internal exponent and mantissa representation used for
floating point numbers. Note that the last view selected will be used the next time a
Viewer is opened on the same class or type. Special presentation views are provided for
instances of array, ArrayList, LinkedList, HashMap, and TreeMap. When running in
Debug mode, a viewer can also be opened on any variable in the Debug tab.

Note that the viewer in Figure 3-12, which contains an object, has an Invoke Method
button

3
A
any object or field of an object on the
workbench. To open a viewer, left-click on
object in the Workbench tab and while holding
down the left mouse button, drag it from the
workbench to the location where you want the
viewer to open. When you start to drag the
object, a viewer symbol should appear to
indicate a viewer is being opened. At a
minimum, a viewer always provides the same
basic view shown on the workbench. However,
some objects will have additional views. For
example, the viewer for a String object will
display its text value fully formatted. Figure 3-
12 shows a viewer on the title field in fiction_2.

Figure 3-13 shows a viewer opened for Basic v

Primitive i

; however the viewers for the ints in Figures 3-13 and 3-14 do not since
primitives have no methods associated with them.

Select view from pull-down list.

Figure 3-13 Viewer with Basic
View of Primitive int

Figure 3-12. Viewer on String title
field of fiction_2 (fiction_2.title)

Getting Started with Objects (v1.8)
8/9/2005

3.11 Invoking a Method
To invoke a method on an object
viewer (see Figure 3-12), click the
Invoke Method button

in a

47

. To invoke a
method for an object on the workbench,
select the object, right click, and then
select Invoke Method. In Figure 3-15,
fiction_2 has been selected, followed by
a right mouse click, and then Invoke
Method has been selected. A list of
visible user methods will be displayed in
a dialog box as shown in Figure 3-16.
You can also display all visible methods
by selecting the appropriate option.

lected and
necessary,

then click . This will execute the

After one of the methods is se
the parameters filled in as

Invoke

Figure 3-15. Workbench with two instances of Fiction

 Figure 3-16. Selecting a method

Getting Started with Objects (v1.8)
8/9/2005

method and display the return value (or void) in a dialog, as well as display any output in
the usual way. If the method updates a field (e.g., setMainCharacter()), the effect of the
invocation is seen in appropriate object field in the Workbench tab. The “stick-pin”
located in the upper left of the dialog can be used to make the Invoke Method dialog
remain open. This is useful when invoking multiple methods for the same object. The
Show Doc button will be enabled if documentation has been generated for the project.

As indicated above, perhaps one of the most compelling reasons for using the workbench
approach is that it allows the user to create an object and invoke each of its methods in
isolation. Thus, with an instance of Fiction on the workbench, we can invoke each of its
three methods: getMainCharacter(), setMainCharacter(), and toStirng(). By carefully
reviewing the results of the method invocations, we can informally test the class without
the need for a driver with a main() method.

3.12 Invoking Methods with Object Parameters
In the example above, we created two instances of Fiction. Instances of any class in the
UML diagram can be created and placed on the workbench. If the constructor requires
parameters that are primitive types and/or strings, these can be entered directly, with any
strings enclosed in double quotes. However, if a parameter requires an object, then you
must create an object instance for the workbench first. Then you can simply drag the
object (actually a copy) from the workbench to the parameter field in the Invoke Method
dialog. You can also use the new operator when entering the value of a parameter.

3.13 Invoking Methods on Object Fields
If you have an object in the Workbench tab pane, you can expand it to reveal its fields.
Recall, in Figure 3-11, fiction_2 had been expanded to show its fields (mainCharacter,
author, title, and pages). Since the field mainCharacter is itself an object of the String

For example, right-click on class, you can invoke any of the String methods.

Figure3-16. Result of
fiction_1. mainCharacter.
toUpperCase()

Figure 3-15. Invoking a String method

48

Getting Started with Objects (v1.8)
8/9/2005

voking Inherited Methods

and then invoke the method from the workbench, the CSD window will pop to the top
when the breakpoint is reached. When this occurs, you can single step through the
program, examining variables in the Debug tab or you can open a separate viewer for a
particular variable as described above in Section 3-10. See the Tutorial entitled “The
Integrated Debugger” for more details.

3.16 Creating Objects from the CSD Window
In addition to creating instances of classes from the UML class diagram as described
above, instances can be created directly from the CSD window for the class it contains.
Figure 3-18 shows a CSD window containing class Fiction. From the menu, select Build
– Java Workbench – Create New Instance. Buttons are also available on the toolbar
for Create New Instance

mainCharacter, select Invoke Method. When the dialog pops up (Figure 3-15), scroll
down and select the first toUpperCase() method and click Invoke. This should pop up
the Result dialog with “NONE” as the return value (Figure 3-16). This method call has
no effect on the value of the field for which it was called; it simply returns the string
value converted to uppercase.

3.14 In
The methods we have invoked thus far were
declared in the class from which we created the
object. An object also inherits methods from its
parents. We now consider an instance of the Novel
class, which inherited several methods from the
Book class in our example. If we right-click on the
novel_1 in the Workbench tab pane (shown below
fiction_2 in Figure 3-11) and select Invoke
Method, the dialog in Figure 3-17 pops up. Since
the default is to list visible user method, toString()
method and the two inherited user methods are
listed. Notice the orange color coding indicating
“inherited” methods similar to the fields on the
workbench. To view other lists of methods, find the
pull-down menu located above the list. A gray
symbol in front of a method indicates it has been
overridden by another method in the category.

3.15 Running the Debugger on Invoked Methods
When objects are on the workbench, the workbench is actually running Java in debug
mode to facilitate the workbench operations. Thus, if you set a breakpoint in a method

 and Invoke Static Method (remember only static methods
can be invoked from a class). You can al the CSD window
even if you have not created a project and UML diagram
quickly create an instance for the workbench and then re 3-
18, the Fiction class has been opened in a CSD window without a project being opened,
and two instances have been placed on the workbench. Figure 3-19 shows a viewer for
f tton

ways create instances from
. This makes it convenient to

 invoke its methods. In Figu

iction_2. Notice the viewer has its own bu for invoking the methods of fiction_2.

Figure 3-17. Invoking a method
for novel_1

To view another category of
method, click here

49

Getting Started with Objects (v1.8)
8/9/2005

Figure 3-18. Creating an Instance from the CSD Window

Click to invoke a static
method. Note that Fiction has
no static methods; try this
with PersonalLibrary and you
should see main in the list).

Figure 3-19. Viewer for
Fiction instance

Click on a viewer opened for an
instance of Fiction (e.g., fiction_2) to
invoke a method for the instance.

Click to create an instance
of the Fiction class.

50

Getting Started with Objects (v1.8)
8/9/2005

51

3.17 Creating an Instance from the Java
Class Libraries

You can create an instance of any class that is available
to your program, which includes the Java class libraries.
Find the Workbench menu at the top of the UML
window. Click Workbench – Create New Instance of
Class. In the dialog that pops up, enter the name of a
class such as java.lang.String and click OK. This
should pop up a dialog containing the constructors for
String. Select an appropriate constructor, enter the
argument(s), and click Create. This places the instance
of String on the workbench where you can invoke any
of its methods as described earlier.

3.18 Exiting the Workbench
The workbench is running
whenever you have objects
on it or if you have invoked
main() directly from the class
diagram. If you attempt to do
an operation that conflicts
with workbench, such as
compiling a class, jGRASP
will prompt you with a

you if it is is it OK to end the Workbench (Figure 3-21). The prompt is to let you know
th op o perform will clear the workbench. You can also clear
or exit the workbench by right-clicking in the Workbench tab pane and selecting
Clear/Exit Workbench.

3.19 Closing a Project
I av open when you exit jGRASP, they will be opened again
when you restart jGRASP. You should close any projects you are not using to reduce
clutter in the Open Projects section of the Browse tab.

Here are three ways to close a project:

(1) From the Desktop menu – Click Project – Close or Close All Projects.

(2) In the Open Projects section of the Browse tab – Right-click on the project name and
t C

A ou close the project as well as when you exit
jG

Figure 3-20. Creating an
instance of String

Figure 3-21. Making sure it is okay to exit the
Workbench

selec lose or Close All Projects.

ll project information is saved when y
RASP.

f you le e one or more projects

at the eration you are about t

message indicating that the
workbench is active and ask

Getting Started with Objects (v1.8)
8/9/2005

.20 Exiting jGRASP

, you should “exit” (or close)
jGRASP rather than leaving it open for Windows to close when you log out or shut down

s you to save or discard the
our files, and you will be ready

3
When you have completed your session with jGRASP

your computer. When you exit jGRASP, it saves its current state and closes all open
files. If a file was edited during the session, it prompt
changes. The next time you start jGRASP, it will open y
to begin where you left off.

Close jGRASP in either of the following ways:

(1) Click the Close button in the upper right c

(2) On the File menu, click File – Exit jGRASP.

When you try to exit jGRASP while a process such as the
will be prompted to make sure it is okay to quit jGRASP.

orner of the desktop; or

 w ning, you orkbench is still run

Figure 3-22. Making sure it is okay to exit

52

Getting Started with Objects (v1.8)
8/9/2005

PersonalLibraryProject2 in the open projects section.

yProject2. After verifying the file was

(2) Ge

3.21 Exercises
(1) Create a new project (Project – New) named PersonalLibraryProject2 in the same

directory folder as the original PersonalLibraryProject. During the create step, add
the file Book.java to the new project.

a. After the new project is created, add the other Java files in the directory to the
project. Do this by dragging each file from the Files section of the Browse tab
and dropping it in

a. Remove a file from PersonalLibrar
removed, add it back to the project.

nerate the documentation for PersonalLibraryPr
 the documentation folder. After the Documentatio

oject2, using the default name
for n Viewer pops up:

b. Click the Methods link to view the methods for the Fiction class.

c. Visit the other classes in the documentation for the project.

3) Close the project.

4) Open the project by double-clicking on the project file in the files section of the
Browse tab.

5) Generate the UML class diagram for the project.

a. Display the class information for each class.

b. Display the dependency information between two classes by selecting the
appropriate arrow.

c. Compile

a. Click the Fiction class link in the API (left side).

(

(

(

 and run the program using the buttons on the toolbar.

d. Invoke main() directly from the class diagram.

e. Cre diagram. Open Novel in a
CSD window, then create two instances of Novel from the CSD window

f. Invoke some of the methods for one or more of these instances.

g. Open an object viewer for one or more String fields of one of the instances.

(6) Open the CSD window for PersonalLibrary.

a. Set a breakpoint on the first executable statement.

b. From the UML window, start the debugger by clicking the Debug button.

c. Step through the program, watching the objects appear in the Debug tab as
they are created.

d. Restart the debugger. This time click “step in” instead of “step”. This should
take you into the constructors, etc.

(7) If you have other Java programs available, repeat steps (1), (2), (5), and (6) above for
each program.

ate three instances of Fiction from the class

53

 Projects (v1.8)
8/9/2005

A p
different directories. When a “project” is created, all information about the project,
includi
extension.

Although p

4 Projects
roject in jGRASP is essentially one or more files which may be located in the same or

ng project settings and file locations, is stored in a project file with the .gpj

rojects are not required to do simple operations such as Compile and Run, to
generat
must organ UML Class Diagrams and the Object

rkbench are discus

Before doing this tutorial, be sure y tarted with
Objects ced there.

Objectives le to create
project

4.2 A

4.3 R

4.4 Gen on for the Project (Java only)

4.5 J n a

4.6 C

4.7 E

e UML class diagrams and to use many of the Object Workbench features, you
ize your Java files in a Project.

Wo sed in Sections 5 and 6. Many users will find projects useful
independent of the UML and Object Workbench features.

Getting Sou have read the tutorial entitled
 since the concept of a jGRASP project is first introdu

 – When you have completed this tutorial, you should be ab
s, add files to them, remove files from them, generate documentation, and close

projects.

The details of these objectives are captured in the hyperlinked topics listed below.

4.1 Creating a Project

dding files to the Project

emoving files from the Project

erating Documentati

ar File Creatio and Extr ction

losing a Project

xercises

54

 Projects (v1.8)
8/9/2005

55

Project
nu, click Project – New – New Standard Project (Figure 4-1) to

ew Project dialog (Figure 4-2), notice the two check boxes (Add Files Now

4.1 Creating a
On the Desktop me
open the New Project dialog. Note that the “New J2ME Project” option should only be
selected if you have installed the Java Wireless Took Kit (WTK) and you plan to develop
a project based on the Java 2 Micro Edition (J2ME).

Within the N
and Open UML Window). Normally, you would want to have the Add Files Now checked
ON so that as soon as you click the Create button, the Add Files dialog will pop up. If
you are working in Java, you may also want to turn ON the Open UML Window option.
This will generate the UML class diagram and open the UML window (see Section 5 for
details).

Figure 4-1. Creating a Project

 Projects (v1.8)
8/9/2005

56

e you want the project to reside and enter the project file

up. As files are added to the project, they will appear under the project name in
the Open Projects section of the Browse tab. When you have finished adding files, click
the Close button on the dialog. You can always add more files to a project later.

Note that when you have multiple projects open, these are all listed in the Open Projects
section of the Browse tab. If you open a UML window for one or more projects and/or if
you open one or more CSD windows for files in projects, then the UML or CSD window
with focus will determine which open project has focus. The project with focus will have
a black square in the project symbol and the project name will be displayed in the title bar
of the jGRASP desktop.

 Navigate to the directory wher
name. It is recommended that the project file be stored in the same directory as the file
containing main. A useful naming convention for a project is ClassnameProject where
Classname is the name of the class that contains main. For example, since the
PersonalLibrary class contains main, an appropriate name for the project file would be
PersonalLibaryProject.

After entering the project file name, click Create to save the project file. Notice the new
project file with .gpj extension is listed in the Files section of the Browse tab. The
project is also listed in the Open Projects section of Browse tab.

If Add Files Now was checked ON when you created the project, the Add Files dialog
will pop

Figure 4-2. New Project window

 Projects (v1.8)
8/9/2005

57

 Drag the file (left click and hold) from the Files section to the

oject. (Figure 4-3).

 project

4.2 Adding files to the Project
The Browse tab is split to show the current file directory in the top part and the open
projects in the lower part as shown in Figure 4-3. After a project has been created and/or
opened, there are several ways to add Java files to the project.

(1) From Browse Tab -
project in the Open Projects section below.

(2) From Browse Tab - Drag the file from the Files section to the UML Window.

(3) In Browse Tab - Right click on the file and select Add to Pr

(4) From CSD window – Click Project – Add files.

You can also select multiple files (holding down the control or shift key), and add or drag
the highlighted files all at once. The files in the project are shown beneath the
name in the Open Projects section of the Browse tab. Double-clicking on the project
name (or single-clicking on the “handle” in front of the project name) will open or close
the list of files in the project.

Figure 4-3. Adding a file to the Project

Open Projects
Section of

Browse Tab

Add Novel.java to an
open project by right-
clicking on file name

in the File section then
selecting

Add To Project

Files Section
of Browse Tab

 Projects (v1.8)
8/9/2005

58

move from Project(s) as

key project does not

4.3 Removing files from the Project
You can remove files from the project by selecting one or more files in the Open Projects
section of the Browse tab, then right clicking and selecting Re
shown in Figure 4-4. You can also remove the selected file(s) by pressing Delete on the

board. Note that removing a file from a delete the file from its
in the
op up

directory, only from the project. However, you can delete a file by selecting it
Files section of the Browse tab, then right-clicking and selecting Delete from the p
menu or by pressing the Delete key. Note that deleting a file is a permanent operation, so
jGRASP warns you accordingly.

Figure 4-4. Removing a file from the Project

 Projects (v1.8)
8/9/2005

59

e Project (Java only)

ended so that your documentation directories will have
a standard naming convention. If the default directory is not indicated, click the Default
button in the dialog. However, you are free to use any directory as the target. Click the
Generate button on the dialog to start the process. jGRASP calls the javadoc utility,
which is included with the JDK, to create a complete hyper-linked document within a few
seconds.

4.4 Generating Documentation for th
Now that you have established a project, you have the option to generate project level
documentation for your Java source code, i.e., an application programmer interface
(API). To generate the documentation for the PersonalLibaryProject, select Project –
Generate Documentation – <PersonalLibaryProject> as shown in the Figure 4-5.
This will bring up the “Generate Documentation for Project” dialog which asks for the
directory in which the generated HTML files are to be stored. The default directory name
is the name of the project with “_doc” appended to it (e.g., PersonalLibaryProject_doc).
Using the default name is recomm

Figure 4-5. Generating Documentation for the Project

 Projects (v1.8)
8/9/2005

60

gure 4-6.
ed in the

The documentation generated for PersonalLibaryProject is shown below in Fi
Note that in this example, even though no JavaDoc comments were includ
source file, the generated documentation is still quite useful. However, for even better
documentation, JavaDoc formal comments should be included in the source code. When
generated for a project, the documentation files are stored in a directory that becomes part
of the project and, therefore, persists from one jGRASP session to the next. Project –
Show Documentation can be used to display the documentation without regenerating it.
However, if any changes have been made to a project source file and the file has been
saved, jGRASP will indicate that the documentation needs to be regenerated. You may
choose to view the documentation anyway or to regenerate the documentation.

Documentation generated for an individual file is stored in a temporary directory for the
duration of the jGRASP session unless the individual file is part of a project for which
documentation has already been generated. In this case, the Generate Documentation
displays the existing documentation rather than generating a temporary documentation
file.

Figure 4-6. Project documentation

 Projects (v1.8)
8/9/2005

61

(2) From the Desktop toolbar - Click Project – Active Project < > – Close.

(3) From the Browse Tab – Right-click on the project file name in the Open Projects
section of the Browse tab and select Close.

All project information is saved when you close the project as well as when you exit
jGRASP. Note that closing a project does not close the files that are currently open. You
can close these individually or all at once with File – Close All Files.

4.7 Exercises
(1) Create a new project called PersonalLibraryProject2 in the same directory folder as

the original PersonalLibraryProject. During the create step, add the file Book.java to
the new project. Close the Add Files dialog.

(2) Add the other Java files in the directory to the project by dragging each file from the
Files section of the Browse tab and dropping the files in PersonalLibraryProject2 in
the open projects section.

(3) Remove a file from PersonalLibraryProject2. After verifying the file was removed,
add it back to the project.

(4) Generate the documentation for PersonalLibraryProject2. After the Documentation
Viewer pops up:

a. Click the Fiction class link in the API (left side).

b. Click the Methods link to view the methods for the Fiction class.

c. Visit the other classes in the documentation for the project.

(5) Close the project.

(6) Open the project by double-clicking on the project file in the files section of the

4.5 Jar File Creation and Extraction
jGRASP provides a utility for the creation and extraction of a Java Archive file (JAR) for
your project. To create a JAR file, click Project – Create Jar File for Project. This
will allow you to create a single compressed file containing your entire project.

The Project – Jar/Zip Extractor option enables you to extract the contents of a JAR or
ZIP archive file.

These topics are described in more detail in jGRASP Help (find using the Index tab).

4.6 Closing a Project
When you exit jGRASP, the projects and files that are currently open on the desktop are
remembered so that the next time you start jGRASP, you can pick up where you left off.
However, to prevent clutter you should close the ones you are no longer using.

(1) From the Desktop toolbar - Click Project – Close All Projects.

Browse tab

 UML Class Diagrams (v1.8)
8/9/2005

or small

ion to providing an architectural view of your program, the UML class
rate

 Members of a Class

5.8 Navigating to Source Code via the Info Tab

5

5 UML Class Diagrams
Java programs usually involve multiple classes, and there can be many dependencies
among these classes. To fully understand a multiple class program, it is necessary to
understand the interclass dependencies. Although this can be done mentally f
programs, it is usually helpful to see these dependencies in a class diagram. jGRASP
automatically generates a class diagram based on the Unified Modeling Language
(UML). In addit
diagram is also the basis for the Object Workbench which is described in a sepa
section.

Objectives – When you have completed this tutorial, you should be able to generate the
UML class diagram for your project, display the members of a class as well as the
dependencies between two classes, and navigate to the associated source code.

The details of these objectives are captured in the hyperlinked topics listed below.

5.1 Opening the Project

5.2 Generating the UML

5.3 Compiling and Running from the UML Window

5.4 Determining the Contents of the UML Class Diagram

5.5 Laying Out the UML Diagram

5.6 Displaying the

5.7 Displaying Dependencies Between Two Classes

5.9 Finding a Class in the UML Diagram

.10 Opening Source Code from UML

5.11 Saving the UML Layout

5.12 Printing the UML Diagram

62

 UML Class Diagrams (v1.8)
8/9/2005

63

e which user classes to include in the UML

5.1 Opening the Project
The jGRASP project file is used to determin
class diagram. The project should include all of your source files (.java), and you may
optionally include other files (e.g., .class, .dat, .txt, etc.). You may create a new project
file, then drag and drop files from the Browse tab pane to the UML window.

To generate the UML, jGRASP uses information from both the source (.java) and byte
code (.class) files. Recall, .class files are generated when you compile your Java program
files. In particular, you must compile your .java files in order to see the dependencies
among the classes in the UML diagram. Note that the .class files do not have to be in the
project file, but they should be in the same directory as the .java files.

project
Open

button.

(2 s section of the Browse tab, double-click the project file.

When opened, the project and its contents appear in the open projects section of the
Br op of the Desktop. If you need
additional help with opening a project, Projects.

The rem created your own project file or that you
wi he examples that are included with jGRASP.

TI ore you can see the dependencies
am ou recompile any file in a project, the
UM

If your project is not currently open, you need to open it by doing one of the following:

(1) On the Desktop tool bar, click Project – Open Project, and then select the
from the list of project files displayed in the Open Project dialog and click the

) Alternatively, in the file

owse tab, and the project name is displayed at the t
 review the previous tutorial on

ainder of this section assumes you have
ll use PersonalLibraryProject from t

P: Remember your Java files must be compiled bef
ong your classes in the UML diagram. When y
L diagram is automatically updated.

 UML Class Diagrams (v1.8)
8/9/2005

64

5.2 Generating the UML
In Figure 5-1 below, PersonalLibraryProject is shown in the Open Projects section of the
Browse tab along with a UML symbol and the list of files in the project. To generate
the UML class diagram, double-click the UML symbol . Alternatively, on the Desktop
menu, click on Project – Generate/Update UML Class Diagram.

The UML window should open with a diagram of all class files in the project as shown
below. You can select one or more of the class symbols and drag them around in the
diagram. In the figure, the class containing main has been dragged to the upper left of the
diagram and the legend has been dragged to the lower center.

The UML window is divided into three panes. The top pane contains a panning
ectangle that allows you to reposition the entire UML diagram by dragging the panning

how

r
rectangle around. To the right of the panning rectangle are the buttons for scaling the
UML: divide by 2 (/2), divide by 1.2 (/1.2), no scaling (1), multiply by 1.2 (*1.2), and
multiply by 2 (*2). In general, the class diagram is automatically updated as required;

ever, the user can force an update by clicking the Update UML diagram button on
the desktop menu.

Figure 5-1. Generating the UML

 UML Class Diagrams (v1.8)
8/9/2005

65

ritance hierarchies and/or other dependencies as in the

 essentially the same

If your project includes class inhe
example, then you should see the appropriate red dashed and solid black dependency
lines. The meaning of these lines is annotated in the legend as appropriate.

5.3 Compiling and Running from the UML Window
The Build menu and buttons on the toolbar for the UML window are
as the ones for the CSD window. For example, clicking the Compile button compiles
all classes in the project (Figure 5-2). When a class needs to be recompiled due to edits,
the class symbol in the UML diagram is marked with red crosshatches (double diagonal
lines). During compilation, the files are marked and then unmarked when done. Single
red diagonal lines in a class symbol indicate that another class upon which the first class
depends has been modified. Clicking the Run button on the toolbar will launch the
program as an application assuming there is a main() method in one of the classes.
Clicking on the Run as Applet button

 as an applet will launch the program as an

applet assuming one of the classes is an applet. Similarly, clicking the Debug button
or the Debug Applet button will launch the program in debug mode. Note that for
running in debug mode, you should have a breakpoint set somewhere in the program so
that it will stop.

Figure 5-2. Compiling Your Program

 UML Class Diagrams (v1.8)
8/9/2005

66

 Settings –
f the diagram by

5.4 Determining the Contents of the UML Class Diagram
jGRASP provides one option to control the contents of your UML diagram, and another
option to determine which elements in the diagram are actually displayed.
UML Generation Settings allows you to control the contents o
excluding certain categories of classes (e.g., external superclasses, external interfaces,
and all other external references). The View menu allows you to make visible (or hide)
certain categories of classes and dependencies that are actually in the UML diagram.
Both options are described below.

Most programs depend on one or more JDK classes. Suppose you want to include these
JDK classes in your UML diagram (the default is to exclude them). Then you will need
to change the UML generation settings in order to not exclude these items from the
diagram. Also, if you do not see the red and black dependency lines expected, then you
may need to change the View settings. These are
described below.

Excluding (or not) items from the diagram - On
the UML window menu, click on Settings –
UML Generation Settings, which will bring up
the UML Settings dialog. Generally you should
leave the top three items unchecked so that they
are not excluded from the UML diagram. Now for
our example of not excluding the JDK classes,
under Exclude by Type of Class, uncheck (turn
OFF) the checkbox that excludes JDK Classes, as
shown in Figure 5-3. Note, synthetic classes are
created by the Java compiler and are usually not
included in the UML diagram. After checking (or
unchecking) the items so that your dialog looks
like the one in the figure, click the OK button.
This should close the dialog and update the UML
diagram. All JDK classes used by the project
classes should now be visible in the diagram as
gray boxes. This is shown in Figure 5-4 after the
JDK classes have been dragged around. To
remove them from the diagram, you will need to
turn on the exclude option. If you want to leave
them in the diagram but not always display them,
see the next paragraph. For more information see
UML Settings in jGRASP Help.

Figure 5-3. Changing the UML
Settings

 UML Class Diagrams (v1.8)
8/9/2005

67

u, click on Making objects in the diagram visible (or not) - On the UML window men
View – Visible Objects, then check or uncheck the items on the list as appropriate. In
general, you will want all of the items on the list in View – Visible Objects checked ON
as shown in Figure 5-4. For example, for the JDK classes and/or other classes outside the
project to be visible, External References must be checked ON. Clicking (checking)
ON or OFF any of the items on the Visible Objects list simply displays them or not, and
their previous layout is retained when they are redisplayed. Note that if items have been
excluded from the diagram via Settings – UML Generation Settings, as described
above, then making them visible will have no effect since they are not part of the
diagram. For more information see View Menu in jGRASP Help.

Figure 5-4. Making objects visible

 UML Class Diagrams (v1.8)
8/9/2005

68

endencies visible

Making dependencies visible - On the UML window menu, click on View – Visible
Dependencies, then check or uncheck the items on the list as appropriate. The only two
categories of dependencies in the example project are Inheritance and Other.
Inheritance dependencies are indicated by black lines with closed arrowheads that point
from a child to a parent to form an is-a relationship. Red dashed lines with open
arrowheads indicate other dependencies. These include has-a relationships that indicate
a class includes one or more instances of another class. Also a class may simply
reference an instance variable or method of another class. The red dashed arrow is drawn
from the class where an object is declared or referenced to the class where the item is
actually defined. In general, you probably want to make all dep . as
indicated in Figure 5-5.

Displaying the Legend - The legend has been visible in each of the UML diagrams
(figures) in this tutorial. To set the options for displaying the legend, click View –

Figure 5-5. Making dependencies visible

 UML Class Diagrams (v1.8)
8/9/2005

69

 is straightforward, and once this is done,

PersonalLibrary class. Remember the project name should reflect the name of this class.
Generally, you want this class near the top of the diagram. Left click on the class symbol
and then, while holding down the left mouse button, drag the symbol to the area of the
diagram you want it, and then release the mouse button. Now repeat this for the other
class symbols until you have the diagram looking like you want it. Keep in mind that
class–subclass relationships are indicated by the inheritance arrow and that these should
be laid out in a tree-down fashion. You can do this automatically by selecting all classes
for a particular class–subclass hierarchy (hold down SHIFT and left-click each class).
Then click Edit – Layout – Tree Down to perform the operation; alternatively, you can
right-click on a selected class or group of classes, then on the pop up menu select Layout
– Tree Down. Finally, right-clicking in the background of the UML window with no
classes selected will allow you to lay out the entire diagram.

With a one or more classes selected, you can move them as a group. Figure 5-5 shows
the UML diagram after the PersonalLibrary class has been repositioned to the top left and
the JDK classes have been dragged as a group to the lower part of the diagram. You can
experiment with making these external classes visible by going to View – Visible
Objects – then uncheck External References.

Here are several heuristics for laying out your UML diagrams:

(1) The class symbol that contains main should go near the top of the diagram.

(2) Classes in an inheritance hierarchy should be laid out tree-down, and then moved
as group.

(3) Other dependencies should be laid out with the red dashed line pointing
downward.

(4) JDK classes, when included, should be toward the bottom of the diagram.

(5) Line crossings should be minimized.

(6) The legend is usually below the diagram.

Legend. Typically, you will want the following options checked ON: Show Legend,
Visible Items Only, and Small Font. Notice that if “Visible Items Only” is checked ON,
then an entry for JDK classes appears in the legend only if JDK classes are visible in the
UML diagram. Experiment by turning on/off the options in View – Legend. When you
initially generate your UML diagram, you may have to pan around it to locate the legend.
Scaling the UML down (e.g., dividing by 2) may help. Once you locate it, just select it
and drag to the location where you want it as described in the next section.

5.5 Laying Out the UML Diagram
Currently, jGRASP has limited automatic layout capabilities. However, manually
arranging the class symbols in the diagram
jGRASP remembers your layout from one generate/update to the next.

To begin, locate the class symbol that contains main. In our example, this would be the

 UML Class Diagrams (v1.8)
8/9/2005

70

, and methods
 is only available when the source code for
, the System class from package java.lang

ages, and title).

5.6 Displaying the Members of a Class
To display the fields, constructors, and methods of a class, right-click on the class, then
select Show Class Info which will pop the UML Info tab to the top in the left tab pane.
Also, in the left tab pane, you can click on the UML Info tab to pop it to the top. Once
the Info tab is on top, each time you select a class its members will be displayed.

 In Figure 5-6, class Fiction has been selected and its fields, constructors
are displayed in the left pane. This information
a class is in the project. In the example below
is an external class, so selecting it would result in a “no data” message. If the only field
you are seeing is mainCharacter, click View – Info – Show Inheritance within Project.
You should now see the fields that are inherited by Fiction (i.e., author, p

Figure 5-6. Displaying class members

 UML Class Diagrams (v1.8)
8/9/2005

71

t Show

PersonalLibrary uses from Fiction. Understanding the dependencies among the classes
in your program should provide you with a more in-depth comprehension of the source
code. Note that clicking on the arrow between PersonalLibary and the PrintStream class
in Figure 5-6 would show that PersonalLibary is using two println() methods from the
PrintStream class. Make the External References visible again and try this.

5.7 Displaying Dependencies Between Two Classes
Let’s reduce the number of classes in our UML diagram by not displaying the JDK
classes. Click View – Visible Objects and uncheck External References. Now to
display the dependencies between two classes, right-click on the arrow, then selec
Dependency Info. You can also click on the UML Info tab to pop it to the top. Once the
Info tab is on top, each time you select an arrow, the associated dependencies will be
displayed.

In Figure 5-7, the edge drawn from PersonalLibrary to Fiction has been selected as
indicated by the large arrowhead. The list of dependencies in the Info tab includes one
constructor (Fiction) and one method (getMainCharacter). These are the resources that

Figure 5-7. Displaying the dependencies between two classes

 UML Class Diagrams (v1.8)
8/9/2005

72

ing to Source Code via the Info Tab
 the class rather

 can contain many classes, it may be difficult to locate a particular

5.8 Navigat
In the Info tab, a green symbol indicates the item is defined or used in
than inherited from a parent class. Double-clicking on a green item will take you to its
definition or use in the source code. For example, clicking on getMainCharacer() in
Figure 5.7 above will open a CSD window for PersonalLibrary with the line containing
getMainCharacter() highlighted as shown in Figure 5-8 below.

5.9 Finding a Class in the UML Diagram
Since a UML diagram
class. In fact, the class may be off the screen. The Goto tab in the left pane provides the
list of classes in the project. Clicking on a class in the list brings it to the center of the
UML window.

5.10 Opening Source Code from UML
The UML diagram provides a convenient way to open source code files. Simply double-
click on a class symbol, and the source code for the class is opened in a CSD window.

Figure 5-8. Opening CSD Window from UML

 UML Class Diagrams (v1.8)
8/9/2005

73

en you should be able to
 group (e.g., email them to your

L Print Preview to see how your
k the Print button in the lower left

e
UML window, and then preview it again.

For details see UML Class Diagrams in jGRASP Help.

5.11 Saving the UML Layout
When you close a project, change to another project, or simply exit jGRASP, your UML
layout is automatically saved in the project file (.gpj). The next time you start jGRASP,
open the project, and open the UML window, you should find your layout intact.

If the project file is created in the same directory as your program files (.java and .class
files), and if you added the source files with relative paths, th
move, copy, or send the project and program files as a
instructor) without losing any of your layout.

5.12 Printing the UML Diagram
With a UML window open, click on File – UM
diagram will look on the printed page. If okay, clic
corner of the Print Preview window. Otherwise, if the diagram is too small or too large,
you may want to go back and scale it using the scale factors near the top right of th

 Object Workbench (v1.8)
8/9/2005

74

objects.

g an instance of the class. One of the most
pelling reasons for using the workbench approach is that it allows the user to create

n object and invoke each of its methods in isolation. That is, being able to invoke the
gram. Some of the examples in this section

ch of these objects, and display the dynamic
.

 in the hyperlinked topics listed below.

6.2 Invoking Static Methods from the UML Window

6.3 Creating an Object for the Workbench

6.4 Invoking a Method

6.5 Invoking Methods with Parameters Which Are Objects

6.6 Invoking Methods on Object Fields

6.7 Selecting Categories of Methods to Invoke

6.8 Opening Object Viewers

6.9 Running the Debugger on Invoked Methods

6.10 Exiting the Workbench

6 The Object Workbench
The Object Workbench, which is tightly integrated with the CSD and UML windows,
provides a useful approach for learning the fundamental concepts of classes and
The user can create instances of any class in the CSD window, the UML window, or the
Java class libraries. When an object is created, it appears on the workbench where the
user can select it and invoke any of its methods. The user can also invoke static (or class)
methods directly from the class without creatin
com
a
methods without the need for a driver pro
were also presented in the section on Getting Started with Objects; however, more detail
is included in this section.

Objectives – When you have completed this tutorial, you should be able to create objects
for the workbench from classes in CSD or UML windows as well as directly from the
Java libraries, invoke the methods for ea
states of these objects by opening object viewers for them

The details of these objectives are captured

6.1 Invoking Static Methods from the CSD Window

 Object Workbench (v1.8)
8/9/2005

he CSD Window
 program as an application by clicking the

6.1 Invoking Static Methods from t
In the tutorial Getting Started, we ran the Hello
Run button . Now let’s see how we can invoke its main method directly by using the
workbench. Since main is a static method, it is associated with the Hello class rather than
an instance of the Hello class; therefore, we don’t have to create an instance for the
workbench. There are two ways to invoke a static method from the CSD window:

a. Click Build – Java Workbench – Invoke Static Method.

b. Click the Invoke Static Method button on the toolbar.

The latter is the easiest way, so click the Invoke Static Method button now. This pops
up the Invoke Method dialog which lists the static method main. After selecting main,
the dialog expands to show the available parameters (Figure 6-2). We can leave the
java.lang.String[] args blank since our main method is not expecting command line

checked ON, all result dialogs
ing the

ain method without clearing the workbench if you are sure this won’t interfere with
ob

arguments to be passed into it.

In Figure 6-2, notice the two check boxes below the String[] args field. The first, Don’t
Show Result Dialog, will be useful when you want to repeatedly invoke a method that has
a void return type or one that you do not care about. When
(e.g., Figure 6-3) will be suppressed. The second check box, Run Without Clear
Workbench, is a special case option for running a main. Normally it is okay to invoke a
m

jects you previously placed on the workbench.

Figure 6-1. Invoking a static method from the Workbench

75

 Object Workbench (v1.8)
8/9/2005

Finally, notice the “stick-pin” in
the upper left corner which is used
to keep the dialog open until you
close it. This will allow you to
click the Invoke button multiple
times.

Now you
main me
Invoke bu

he

are ready to invoke the
thod by clicking the
tton in the lower left

corner of the dialog. Figure 6-3
shows the desktop and the dialog
that pops up with the result:
“Method invocation successful
(void return type).” Recall that
main has a “void” return type. T

Figure 6-2. Invoking main

standard output from the program,
“Hello World!” appears in the Run
I/O tab pane. When the return type
for a method is not void, the dialog
in Figure 6-3 will contain the value
of the return type.

Figure 6-3. The Result dialog from invoking a method

76

 Object Workbench (v1.8)
8/9/2005

h s from the UML Window

ed a project file, Hello_Project, added Hello.java to
L class diagram. To make the class diagram more

y the Java library classes used by the Hello class.
 Settings – then in the dialog, we

ked JDK classes under the Exclude by Type section. As always, feel free to
iscussion below.

ated with the class rather than an instance of the
 the Hello class in the UML diagram, then right-

od. This pops up the Invoke Method dialog which
d in the section above. After selecting main, leave
e Invoke button. The “Result” dialog should pop
lo World!” in the Run I/O tab as shown in Figure

the UML window by using the
Invoke Static method button

6.2 Invoking Static Met od
Figure 6-4 shows that we have creat
the project, and then generated the UM
interesting, we have elected to displa
We did this by selecting Settings – UML Generation
unchec
substitute your own examples in the d

Since main is a static method associ
class, it can be invoked by selecting
clicking and selecting Invoke Meth
lists the static method main as describe
the parameters blank, and then click th
up and you should see the output “Hel
6-5.

You can also invoke the static methods of a class in
Workbench menu or by clicking the on the toolbar.

ic method from a class Figure 6-4. Invoking a stat

77

 Object Workbench (v1.8)
8/9/2005

 Object Workbench (v1.8)
8/9/2005

78

Figure 6-5. Invoking a static method from a class

78

 Object Workbench (v1.8)
8/9/2005

6.3 Creating an Object for the Workbench
Now we move to a more interesting example which contains multiple classes. Figure 6-5
shows the PersonalLibraryProject loaded in the UML window. We could invoke main by
following the procedure described in the preceding section (i.e., right-clicking on
PersonalLibary and selecting Invoke Method or by clicking the Invoke Static method
button on the toolbar. However, in this section we want to create objects and place
them on the workbench. In the next section, we’ll see how to invoke the instance (or
non-static) methods of the objects we’ve placed on the workbench.

So we begin by right clicking on the Fiction class in the UML diagram, and then
selecting Create New Instance, as shown in Figure 6-6. A list of constructors will be
displayed in a dialog box.

If a parameterless constructor is selected as shown in Figure 6-7, then clicking Create
will immediately place the object on the workbench. However, if the constructor requires
parameters, the dialog will expand to display the individual parameters as shown in
Figure 6-8. The arguments (values of the parameters) should be filled in prior to clicking
Create. Remember to enclose String arguments in double quotes.

Figure 6-6. Creating an Object for the Workbench

79

 Object Workbench (v1.8)
8/9/2005

In either case above, the user can set the name of
the object being constructed or accept the default
assigned by jGRASP. Also, the “stick-p

in”
located in the upper left of the dialog can be used to
make the Create dialog “stay up” after you create an
instance. This is handy for creating m ltiple
instances of the same class. Click on th tick-
pin”

u
e “s

 (it should turn darker), then click the Create
button three times and you should see three new
instances appear on the workbench.

In Figure 6-9, the Workbench tab is shown after four instances (or objects) of Fiction
have been created. Notice fiction_2 and fiction_3 have been expanded so that their
respective fields (mainCharacter, author, title, and pages) can be viewed. Since the first
three fields are instances of the String class, they too can also be expanded. You should
also note that mainCharacter is color coded green since it is the only field actually
declared in Fiction. The other fields are color coded orange to indicate they are inherited
from a parent, which in this case is Book. The placement of these fields in Book vs.
Fiction was a design decision. Since not all books have a mainCharacter (e.g., a math
book) but works of fiction almost certainly do, mainCharacter was defined in Fiction.

opriately inherits mainCharacter.

Figure 6-7. Selecting a constructor

Figure 6-8. Constructor with
parameters

Notice that Novel, a subclass (or child) of Fiction, appr

80

 Object Workbench (v1.8)
8/9/2005

-10, fiction_2

6.4 Invoking a Method
To invoke a method for an object on the
workbench, select the object, right click, and then
select Invoke Method. In Figure 6

Figure 6-9. Workbench with four instances of Ficti

on

has been selected, followed by a right mouse
click, and then Invoke Method has been selected.
A list of user methods visible from Fiction will be
displayed in a dialog box as shown in Figure 6-11.
After one of the methods is selected and the
parameters filled in as necessary, click Invoke.
This will execute the method and display the
return value (or void) in a dialog. Other output, if
any, is handled in the usual way. If a method
updates a field (e.g., setMainCharacter()), the Figure 6-10. Selecting a method

81

 Object Workbench (v1.8)
8/9/2005

effect of the invocation is seen in the appropriate object field in the Workbench tab. The
“stick-pin” located in the upper left of the dialog can be used to make the Invoke
Method dialog stay up. This is useful for invoking multiple methods for the same object.
For example, in a graphics program a “move” method could be clicked repeatedly to see
an object move across the display.

As indicated above, perhaps one of the most compelling reasons for using the workbench
approach is that it allows the user to create an object and invoke each of its methods in
isolation. Thus, with an instance of Fiction on the workbench, we can invoke each of its
three methods: getMainCharacter(), setMainCharacter(), and toStirng(). By reviewing
the results of the method invocations, we are essentially testing our class without a driver
program.

6.5 Invoking Methods with Parameters
Which Are Objects

If a method (or constructor) requires parameters that
are primitive types and/or strings, these can be
entered directly. However, if a parameter requires an
object, then you must create an object instance for the
workbench first. Then you can simply drag the object
(actually a copy) from the workbench to the
parameter field in the Invoke Method dialog.

6.6 Invoking Methods on Object Fields
If you have an object in the Workbench tab, you can
expand it to reveal its fields. In Figure 6-9, fiction_2
and fiction_3 are expanded to show their fields

eld mainCharacter is itself an object of the class
ring, any of the String methods can be invoked on

. For example, right-click on mainCharacter in
ction_2, then select Invoke Method. When the

a rather
g
t

is
s
s

as
to

Figure 6-10. Invoking a
String method

(mainCharacter, author, title, and pages). Since the
fi
St
it
fi
dialog pops up (Figure 6-10), you’ll see

Figure 6-11. Result of
fiction_2.mainCharacter.
toUpperCase()

lengthy list of all the methods visible to Strin
objects. Scroll down the list and select the firs
toUpperCase() method, and then click Invoke. Th
should pop up the Result dialog with “HARRY” a
the return value (Figure 6-11). This method call ha
no effect on the value of the field for which it w
called; it simply returns the string value converted
uppercase.

82

 Object Workbench (v1.8)
8/9/2005

user

that the all user defined

the va .

. Click the pull-down
menu on the dialog (see info box for
Figure 6-12) and select “Declared in
superclass Fiction. Notice that the
toString method in figure 6-13 has a
gray bar through its gold method
symbol to indicate that it has been

6.7 Selecting Categories of Methods to Invoke
The Invoke Method dialog provides a
list of categories of method on a drop
down menu. The default category is
“Visible from object name –
methods only.” As the category name
suggests, this list includes methods
defined in the object’s class as well as
those inherited from parent classes.
This category was selected as the
default so
methods could be conveniently
viewed. In this section, we’ll explore

rious categories of methods

Let’s create an instance of Novel by
right-clicking on Novel in the UML
window and then selecting Create
New Instance. On the Create dialog,
choose the parameterless constructor
and click Create. Now you should see
novel_1 on the workbench. Right-
clicking on novel_1 and then selecting
the Invoke Method will open the
Invoke Method dialog as shown in
Figure 6-12. Notice the first two
methods are inherited (gold method
symbols) and the third is defined in
Novel (green method symbol). Now
look back at the Invoke Method dialog
for fiction_2 in Figure 6-10. The same
methods are listed, but all are marked
with green method symbols since those
are defined in the Fiction class. One
should surmise from this that both
Fiction and Novel must have their own
toString method.

Now let’s look at another category of
method on the Invoke Method dialog
for novel_1

 Click pull-down menu
to select a category of

Figure 6-12.
novel_1

 Invoking a method for

methods.

Figure 6-13 M
superclass Fic

ethods declared in
tion

83

 Object Workbench (v1.8)
8/9/2005

h toString
g alled.
d termines
y ur Java
o erridden
t cast the
e method.
his on the
al” check
3, if you
checking

l’s toString
 result shown in

the method
 method is

-15. Notice
ing method
of sequels:

le Methods”
 advanced
accessible
o

o f

d to select
that can be
or novel_1:

bject

 inherits a large number of methods from java.lang.Object. The most
ovel” which includes all available methods.

ategory is “Visible from Novel – user methods

overridden by the toString method defined for

Figure 6-14. Viewing
superclasses for novel_1

Novel. This means that if you select and invoke the
toString method listed in Figure 6-13, t
defined in Novel will be the one that
Remember, it is the object itself that
which method is actually called. In
program, if you wanted to call an
method for an object, you would need
object to the superclass and then call th
jGRASP provides a short cut for doing t
workbench with the “Invoke Non-virtu
box on the dialog. In the example in 6-1
invoke the toString method without the
the box for Invoke Non-virtual, Nove
method is called, and you get the

e
ets c
e
o
v

o

Figure 6-14. However, if you invoke
with the box checked, Fiction’s toString
called, and you get the result in Figure 6
the only difference is that Novel’s toStr
includes one more line of text (“Number
0”) than Fiction’s toString method.

The other two check boxes “Inaccessib
and “Synthetic Methods” are primarily for
users. The first can be used to display in
methods such as inherited private meth
second provides a list of synthetic metho
by the compiler such as access methods f
inner classes.

To wrap up this section, you are invite
among the other categories of methods
displayed on the Invoke Method dialog f

Declared in superclass Book
Declared in superclass java.lang.O
Visible from Novel

Notice that novel_1

Figure 6-15. Viewing
superclasses for novel_1

ds. The
ds created

fields or

inclusive category is “Visible from N
Perhaps now you see why the default c
only.”

84

 Object Workbench (v1.8)
8/9/2005

first field is

uraged to open separate viewers for

6.8 Opening Object Viewers
A separate Viewer window can be opened for any
object (or field of an object) on the workbench. All
objects have a basic view which is the view shown
in the workbench and debug tabs. However, some
objects will have additional views.

The easiest way to open a viewer is to left-click on
an object and drag it from the workbench to the
location where you want the viewer to open. This
will open a “view by name” viewer. You can also
open a viewer by right-clicking on the object and
selecting either View by Value or View by Name.

Figure 6-16 shows an object viewer for the title
field of fiction_3 which is a String object in an
instance of Novel. Formatted is the default “view”
for a String object which is especially useful when
viewing a String object with a large value (e.g., a
page of text). In Figure 6-17, the Basic view has
been selected and expanded to show the gory details
of the String object. Notice the
value[12] which is a character array holding the
actual value of the string. If we open a separate
viewer on value, we have a nice Presentation view
of the array as shown in Figure 6-18. In the next
tutorial, Viewers for Objects and Primitives,
additional Presentation views will be discussed.
You are enco
the objects on the workbench. In addition to
providing multiple views of the object, each viewer
includes an Invoke Method button for the object
being viewed.

Figure 6-16. Viewing a String
Object

Figure 6-17. Basic view of a
string (expanded to see fields)

Figure 6-18. Presentation view of the character
array for "Harry Potter"

85

 Object Workbench (v1.8)
8/9/2005

 Invoked Methods

is actually running the Java Virtual
lass open in a CSD window and set

he method from the workbench, the
t is reached. At this time, you can

mine fields, resume, etc. in the usual way. See the
s.

cts on it. If you attempt to do an
pile a class, switch projects, etc.,

h e
hen you try to exit

12). These prompts are to let you
clear the workbench. You can also
Workbench tab pane and selecting

6.9 Running the Debugger on
When objects are on the workbench, the workbench
Machine (JVM) in debug mode. Thus, if you have a c
a breakpoint in one of its methods and then invoke t
CSD window will pop to the top when the breakpoin
single step through the program, exa
tutorial on “The Integrated Debugger” for more detail

6.10 Exiting the Workbench
The workbench is running whenever you have obje
operation that conflicts with workbench (e.g., recom
jGRASP will prompt you with a message indicating t
and ask you if it is is it OK to end the process (Figure 6-19). W

at the workbench process is activ

jGRASP, you will get a similar message (Figure 6-
know that the operation you are about to perform will
clear or exit the workbench by right-clicking in the
Clear/Exit Workbench.

Figure 6-17. Making sure it is okay to exit

Figure 6-19. Making sure it is okay
Workbench

 to exit the

86

Integrated Debugger (v1.8)
8/9/2005

RASP debugger includes all of
bugger.

7.1 Preparing to Run the Debugger

7.2 Setting a Breakpoint

7.3 Running a Program in Debug Mode

7.4 Stepping Through a Program – the Debug Buttons

7.5 Stepping Through a Program – without Stepping In

7.6 Stepping Through a Program – and Stepping In

7.7 Opening Object Viewers

7.8 Debugging

7 The Integrated Debugger
Your skill set for writing programs would not be complete without knowing how to use a
debugger. While a debugger is traditionally associated with finding bugs, it can also be
used as a general aid for understanding your program as you develop it. jGRASP
provides a highly visual debugger for Java, which is tightly integrated with the CSD and
UML windows, the Workbench, and the Viewers. The jG
the traditional features expected in a de

If the example program used in this section is not available to you, or if you do not
understand it, simply substitute your own program in the discussion.

Objectives – When you have completed this tutorial, you should be able to set
breakpoints and step through the program, either by single stepping or auto stepping.
You should also be able to display the dynamic state of objects created by the program
using the appropriate Object Viewer.

The details of these objectives are captured in the hyperlinked topics listed below.

 a Program

87

Integrated Debugger (v1.8)
8/9/2005

 make sure that programs are being

s allows the debugger to display useful

 program, move the mouse to the line of code and
y a set
r is on

7.1 Preparing to Run the Debugger
In preparation to use the debugger, we need to
compiled in debug mode. This is the default, so this option is probably already turned on.
With a CSD or UML window in focus, click Build on the menu and make sure Debug
Mode is checked. If the box in front of Debug Mode is not checked, click on the box.
When you click on Build again, you should see that Debug Mode is checked. When you
compile your program in Debug Mode, information about the program is included in the
.class file that would normally be omitted. Thi
details as you execute the program. If your program has not been compiled with Debug
Mode checked, you should recompile it before proceeding.

7.2 Setting a Breakpoint
In order to examine the state of your program at a particular statement, you need to set a
breakpoint. The statement you select must be “executable” rather than a simple
declaration. To set a breakpoint in a
left-click the mouse to move the cursor there. Now right-click on the line to displa
of options that includes Toggle Breakpoint. For example, in Figure 7-1 the curso

Figure 7-1. Setting a breakpoint

Figure 7-1. Setting a breakpoint

88

Integrated Debugger (v1.8)
8/9/2005

Book hemingway …), and after Toggle the first executable line in main (which declares

Breakpoint is selected in the options popup menu, a small red stop sign symbol
appears in the left margin of the line to indicate that a breakpoint has been set. To
remove a breakpoint, you repeat the process since this is a toggle action. You may set as
many breakpoints as needed.

You can also set a breakpoint by hovering the mouse over the leftmost column of the line
where you want to set the breakpoint. When you see the red octagonal breakpoint
symbol , you just left-click the mouse to set the breakpoint. You can remove a
breakpoint by clicking on the red octagonal. This second approach is the one most
commonly used for setting and removing breakpoints.

7.3 Running a Program in Debug Mode
After compiling your program in Debug Mode and setting one or more breakpoints, you
are ready to run your program with the debugger. You can start the debugger in one of
two ways:

(1) Click Build – Debug on the CSD window menu, or

(2) Click the Debug button on the toolbar.

 After you start the debug session, several things happen. In the Run window near the
bottom of the Desktop, you should see a message indicating the debugger has been
launched. In the CSD window, the line with the breakpoint set is eventually highlighted,
indicating that the program will execute this statement next. On the left side of the
jGRASP desktop, the Debug tab is popped to the top. Each of these can be seen in
Figure 7-2. Notice the Debug tab pane is further divided into three sub-panes or sections
labeled Threads, Call Stack, and Variables/Eval. Each of these sections can be resized
by selecting and dragging one of the horizontal partitions.

The Threads section lists all of the active threads running in the program. In the
example, the red thread symbol indicates the program is stopped in main, and green
indicates a thread is running. Advanced users should find this feature quite useful for
starting and stopping individual threads in their programs. However, since beginners and
intermediate users rarely use multi-threading, the thread section is closed when the
debugger is initially started. Once the Threads section is dragged open, it remains open
for the duration of the jGRASP session.

The Call Stack section is useful to all levels of users since it shows the current call stack
and allows the user to switch from one level to another in the call stack. When this
occurs, the CSD window that contains the source code associated with a particular call is
popped to the top of the desktop.

The Variables/Eval section shows the de ram in the
Variables tab and provides an easy way to evaluate expressions involving these variables
in the Eval tab. Most of your attention will be focused on the Variables tab where you
can monitor all current values in the program. From the Variables tab, you can also
launch separate viewers on any primitives or objects as well as fields of objects.

tails of the current state of the prog

89

Integrated Debugger (v1.8)
8/9/2005

Threads Section

Call Stack Section

Figure 7-2. Desktop after debugger is started

Highlighted Line When
Stopped at Breakpoint Variables Variables/Eval Section

Figure 7-2. Desktop after debugger is started

Figure 7-2. Desktop after debugger is started

Figure 7-2. Desktop after debugger is started

Figure 7-2. Desktop after debugger is started

90

Integrated Debugger (v1.8)
8/9/2005

91

7.4 Stepping Through a Program – the Debug Buttons

After the program stops at the breakpoint (Figure 7-2), you can use the buttons at the top
of the Debug tab to step out ursor,
pause the current t ff auto step m resume
mode, and suspend new thread. Note that an application program begins at the first
executable statement in the main method. The sequence of statements that is executed
when you run your program is called the control path (or simply path). If your program
includes statements with conditions (e.g., if or while statements), the control path will
reflect the true or false state of the conditions in these statements.

step, step into a method call,
hread, resume, turn on/o

 of a method, run to the c
ode, turn on/off auto

 Clicking the Step button will single step to the next statement. The highlighted line in
the CSD window indicates the statement that’s about to be executed. When the Step
button is clicked, that statement is executed and the “highlighting” is moved to the
next statement along the control path.

 Clicking the Step in button for a statement with a method call that’s part of the user’s
source code will open the new file, if it’s not already open, and pop its CSD window
to the top with the current statement highlighted. The top entry in the Call Stack
indicates where you are in the program. Note that clicking the Step in button for a
statement without a method call is equivalent to clicking Step.

 Clicking the Step out button will take to the statement in the CSD window from
which you previously stepped in. The Call Stack will be updated accordingly.

 Clicking the Run to Cursor button will cause your program to step automatically until
the statement with the cursor L is reached. If the cursor is not on a statement along
the control path, the program will stop at the next breakpoint it encounters or at the
end of the program. The Run to Cursor button is convenient since placing the cursor
on a statement is like setting “temporary” breakpoint.

 Clicking the Pause button suspend the program running in debug mode. Note that if
you didn’t have a breakpoint set in your code, you may have to select the main thread
in the Threads section before the Pause button is available. After the program has
halted, refer to the Call Stack and select the last method in your source code that was
invoked. This should open the CSD window containing the method with the current
line highlighted. Place a breakpoint on the next line and click the step button to
advance through the code.

 Clicking the Resume button advances the program along the control path to the next
breakpoint or to the end of the program. If you have set a breakpoint in a CSD

point is on the control path (i.e., in a
indow will pop to the top when the

breakpoint is reached.

window containing another file and this break
method that gets called), then this CSD w

Integrated Debugger (v1.8)
8/9/2005

 The Auto Step button is used to toggle off and on a mode which allows you to step
repeatedly after clicking the step button only once. This is an ext
feature in that it essentially let’s you watch your program run. Notice

remely useful
 that with this

feature turned on, a Delay slider bar appears beneath the Debug controls. This allows
you to set the delay between steps from 0 t 26 seconds (default is .5 seconds). While
the program is auto stepping, you can stop the program by clicking the Pause

o

button. Clicking the Step button again continues the auto stepping. Remember
after turning on Auto Step , you always have to click the step button once to get
things rolling.

 The Auto Resume button is used to toggle off and on a mode which allows you to
resume repeatedly after clicking the Resume button only once. The effect is that
your program moves from breakpoint to breakpoint using the delay indicated on the
delay slider bar. As with auto step above, you can click the Pause button to
interrupt the e; then clicking the Resume auto resum button again continues the
auto resume.

 The Use Byte Code Size Steps button toggles on and off the mode that allows you to
step through a program in the smallest increments possible. With this feature off, the
step size is approximately one source code statement, which is what most users want
to see. This feature is seldom needed by beginning and intermediate programmers.

 The Suspend New Threads button toggles on and off the mode that will immediately
suspend any new threads that start. With this feature on when the debugging process
is started, all startup threads are suspended as soon as is possible. Unless you are

As
change dyn
wa
The
par
the
exa we will “step” through the
program without “stepping into” any of the method calls, and we will concentrate on the
Va

7.5
Aft
ind
the

writing programs with multiple threads, you should leave the feature turned off.

you move through the program, you can watch the call stack and contents of variables
amically with each step. The integrated debugger is especially useful for

tching the creation of objects as the user steps through various levels of constructors.
 jGRASP debugger can be used very effectively to explain programs, since a major

t of understanding a program is keeping track (mentally or otherwise) of the state of
 program as one reads from line to line. We will make two passes through the
mple program as we explain it. During the first pass,

riable section.

 Stepping Through a Program – without Stepping In
er initially arriving at the breakpoint in Figure 7-2, the Variables/ Settings section
icates no local variables have been declared. Figure 7-3 shows the results of clicking
Step button to move to the next statement. Notice that under Locals in the

riables/Eval section, we nowVa have an instance of Book called hemingway. Objects,
rep
fro
tria
fiel
Str

resented by a colored square, can be opened and closed by clicking the “handle” in
nt of the square object. Primitives, like the integer pages, are represented by colored
ngles. In Figure 7-3, hemingway has been opened to show the author, title, and pages
ds. Each of the String instances (e.g., author) can be opened to show the details of a
ing object, including the character array that holds the actual value of the string.

92

Integrated Debugger (v1.8)
8/9/2005

Sin
obj
sym
Bo
Per
sym
pag
pac c
directory containing it
directory as PersonalLibrary, the protected field pages is accessible to PersonalLibrary.

Af
clan
its

Integrated Debugger (v1.8)
8/9/2005

93

Sin
obj
sym
Bo
Per
sym
pag
pac c
directory containing it
directory as PersonalLibrary, the protected field pages is accessible to PersonalLibrary.

Af
clan
its

ce hemingway is an instance of Book, the fields in hemingway are marked with green
ect or primitive symbols to indicate that they were declared in Book. Notice that the
bols for author and title have red borders since they were declared to be private in

ok to indicate they are inaccessible from the current context of main in
sonalLibrary. The field pages, which was declared to be protected in Book, has a
bol without a red border. The reason for this is somewhat subtle. The protected field
es is accessible in all subclasses of Book as well as in any class contained the Java
kage containing Book. Sin e the PersonalLibrary program is not in a package, the

is considered the “package.” Thus, since Book is in the same

ce hemingway is an instance of Book, the fields in hemingway are marked with green
ect or primitive symbols to indicate that they were declared in Book. Notice that the
bols for author and title have red borders since they were declared to be private in

ok to indicate they are inaccessible from the current context of main in
sonalLibrary. The field pages, which was declared to be protected in Book, has a
bol without a red border. The reason for this is somewhat subtle. The protected field
es is accessible in all subclasses of Book as well as in any class contained the Java
kage containing Book. Sin e the PersonalLibrary program is not in a package, the

is considered the “package.” Thus, since Book is in the same

ter executing the next statement in Figure 7-3, an instance of the Fiction class called
cy is created as shown in Figure 7-4. In the figure, clancy has been opened to reveal

fields. The field “mainCharacter” is green, indicating it is defined in Fiction. The

ter executing the next statement in Figure 7-3, an instance of the Fiction class called
cy is created as shown in Figure 7-4. In the figure, clancy has been opened to reveal

fields. The field “mainCharacter” is green, indicating it is defined in Fiction. The

Figure 7-3. Desktop after hemingway (book) is created

93

Integrated Debugger (v1.8)
8/9/2005

e

other fields (author, title, and pages) are orange, which indicates these fields were
inherited from Book.

As you continue to step though your program, you should see output of the program
displayed in the Run I/O window in the lower half of the Desktop. Eventually, you
should reach the end of the program and see it terminate. When this occurs, the Debug
tab should become blank, indicating that the program is no longer running.

7.6 Stepping Through a Program – and Stepping In
Now we are ready to make a second pass and “step in” to the methods called. Tracing
through a program by following the calls to methods can be quite instructive in th
obvious way. In the object-oriented paradigm, it is quite useful for illustrating the
concept of constructors. As before, we need to run the example program in the debugger

Figure 7-5. After next stepping into the Book constructorep and "clancy" created Figure 7-4. After next st

94

Integrated Debugger (v1.8)
8/9/2005

95

by clicking Build – Debug on the CSD window menu or by clicking the debug button
on the toolbar. After arriving at the breakpoint, we click the Step in button and the

ntry, its CSD
he call to Book’s

different number in your session). You can then step through the constructor in the usual
way, eventually returning to the statement in the main program that called the
constructor. One more step should finally get you to the next statement, and you should
see hemingway in the Variables section with the same id as you saw in the constructor as
it was being built. If you expand hemingway, you should see the red borders are back on
author and title since we’re no longer in book class.

There are many other scenarios where this approach of tracing through the process of
object construction is useful and instructive. For example, consider the case where the
Fiction constructor for “clancy” is called and it in turn calls the super constructor located
in Book. By stepping into each call, you can see not only how the program proceeds
through the constructor’s code, but also how fields are initialized.

Another even more common example is when the toString method of an object is invoked
indirectly in a print statement (System.out.println). The debugger actually takes the user
to the object’s respective toString method.

7.7 Opening Object Viewers
A separate Viewer window can be opened for any primitive or object (or field of an
object) displayed in Variables section of the Debug tab. All objects have a basic view
which is the view shown in the Debug tab. However, when a separate viewer window is
opened for an entry, some objects will have additional
views.

The easiest way to open a viewer is to left-click on an
object and drag it from the workbench to the location
where you want the viewer to open. This will open a
“view by name” viewer. You can also open a viewer
by right-clicking on the object and selecting either
View by Value or View by Name.

Figure 7-6 shows an object viewer for the title field of
hemingway in Figure 7-4, which is a String object in
an instance of Book. Formatted is the default “view”

constructor for class Book pops up in the CSD window (Figure 7-5). Notice the Call
Stack in the Debug tab indicates you have moved into Book from PersonalLibrary (i.e.,
the entry for Book is listed above PersonalLibrary in the call stack). If you click on the
PersonalLibrary entry in the call stack, the associated CSD window will pop to the top
and you see the variables associated with it. If you then click the Book e
window pops to the top and you see the variables associated with t
constructor. In Figure 7-5, the entry for this has been expanded in the Variables section.
The this object represents the object that is being constructed. Notice none of the fields
have a red border since we are inside the Book class. As you step through the
constructor, you should see the fields in this get initialized to the values passed in as
arguments. Also, note the id for this (it is 325 in our example debug session; it may be a

Figure 7-6. Viewing a String
ect Objfor a String object which is especially useful when

Integrated Debugger (v1.8)
8/9/2005

viewing a String object with a large value (e.g., a
page of text). In Figure 7-7, the Basic view has
been selected and expanded to show the details of
the String object. Notice the first field is value[21]
which is a character array holding the actual value
of the string. If we open a separate viewer on value,
we have a nice Presentation view of the array as
shown in Figure 7-8. Notice that the first element
(‘G’) in the array has been selected and this opened
a subview of type character. The subview displays
the ‘G’ and its integral value of 71. If our example
had been an array of strings (e.g., a list of words)
then selecting an array element would have
displayed the formatted view of a String object in
the subview. Presentation view is the default for
arrays. There is also a view called Array Elements
which is quite useful for large arrays.

You are encouraged to open separate viewers for
any of the primitives and objects in the Variables

Figure 7-7. Basic view of a
string (expanded to see fields) section of the Debug tab. In addition to providing

multiple views of the object, each viewer includes
an Invoke Method button for the object being viewed. In the tutorial Viewers for
Objects and Primitives, many other examples are presented along with a more detailed
description of viewers in general.

e Figure 7-8. Presentation View of hemingway.title.valu

96

Integrated Debugger (v1.8)
8/9/2005

sion was only indirectly related to
m your program. It was intended to
ow to step through your program.
 have an idea where in the program
point on a line of code prior to the
rogram gets to the breakpoint, you
 have the correct values. Assuming
the program, watching for the error
of the variables was wrong at the
in the program.

ld of an object. In Figure 7-9, a
ay just after it was created. If you

7.8 Debugging a Program
You have, no doubt, noticed that the previous discus
the activity of actually finding and removing bugs fro
show you how to set and unset breakpoints and h
Typically, to find a bug in your program, you need to
things are going wrong. The strategy is to set a break
line where you think the problem occurs. When the p
can inspect the variables of interest to ensure that they
the values are okay, you can begin stepping through
to occur. Of course, if the value of one or more
breakpoint, you will need to set the breakpoint earlier

You can also set several types of “watches” on a fie
Watch for Access has been set on the title in hemingw
click the Resume button at this point, with no br
program, the next place the program should stop is
conjunction with the println statement

eakpoints set before the end of the
in the toString method of Book in

for hemingway. This is because the title field of

As your programs become more complex, the debugger can be an extremely useful for
both understanding your program and isolating bugs. For additional details, see
Integrated Java Debugger in jGRASP Help.

hemingway is accessed in the statement:
 return("\nAuthor: " + author +
 "\nTitle: " + title +
 "\nPages: " + pages);

Note that setting Watch All for Access on the title field of hemingway sets the watch on
all occurrences of the title field (i.e., in all instances of Book, Fiction, and Novel).

Figure 7-9. Setting a Watch for Access

97

Control Structure Diagram (v1.8)
8/9/2005

8.1 A

8.7 References

8 The Control Structure Diagram (CSD)
The Control Structure Diagram (CSD) is an algorithmic level diagram intended to
improve the comprehensibility of source code by clearly depicting control constructs,
control paths, and the overall structure of each program unit. The CSD is an alternative to
flow charts and other graphical representations of algorithms. The major goal behind its
creation was that it be an intuitive and compact graphical notation that was easy to use
manually and relatively straightforward to automate. The CSD is a natural extension to
architectural diagrams, such as data flow diagrams, structure charts, module diagrams,
and class diagrams.

Objectives – When you have completed this tutorial, you should be able to use and
understand the graphical notations used in the CSD for basic control constructs of
modern programming language, including sequence, selection, iteration, exits, and
exception handling.

The details of these objectives are captured in the hyperlinked topics listed below.

n Example to Illustrate the CSD

8.2 CSD Program Components/Units

8.3 CSD Control Constructs

8.4 CSD Templates

8.5 Hints on Working with the CSD

8.6 Reading Source Code with the CSD

98

Control Structure Diagram (v1.8)
8/9/2005

. The method

8.1 An Example to Illustrate the CSD
Figure 8-1 shows the source code for a Java method called binarySearch
implements a binary search algorithm by using a while loop with an if..else..if statement
nested within the loop. Even though this is a simple method, displayed with colored
keywords and traditional indentation, its readability can be improved by adding the CSD.
In addition to the while and if statements, we see the method includes the declaration of
primitive data (int) and two points of exit. The CSD provides visual cues for each of
these constructs.

Figure 8-1. binarySearch method without CSD

99

Control Structure Diagram (v1.8)
8/9/2005

e CSD has been generated. Although

ly, the two ways to exit from this method are shown explicitly with an
rrow drawn from inside the method through the method stem to the outside.

 the basic CSD constructs. However,
e true utility of the CSD can be realized best when reading or writing larger, more

complex programs, especially when control constructs become deeply nested. A number
of studies involving the CSD have been done and others are in progress. In one of these,
CSD was shown to be preferred significantly over four other notations: flowchart, Nasi-
Schneiderman chart, Warnier-Orr diagram, and the action diagram [Cross 1998]. In a
several later studies, empirical experiments were done in which source code with the
CSD was compared to source code without the CSD. In each of these studies, the CSD
was shown provide significant advantages in numerous code reading activities [Hendrix
2002]. In the following sections, the CSD notation is described in more detail.

Figure 8-2 shows the binarySearch method after th
all necessary control information is in the source text, the CSD provides additional visual
stimuli by highlighting the sequence, selection, and iteration in the code. The CSD
notation begins with symbol for the method itself Þßà followed by the individual
statements coming off the stem as it extends downward. The declaration of primitive
data is highlighted with special symbol í appended to the statement stem. The CSD
constructs for the while statement is represented by the double line “loop” (with break at
the top), and the if statement uses the familiar diamond symbol from traditional
flowcharts. Final
a

While this is a small piece of code, it does illustrate
th

Figure 8-2. binarySearch with CSD

100

Control Structure Diagram (v1.8)
8/9/2005

ponents is
illustrated in the table below.

Component Symbol Notation Box Notation Symbol and Box
Notation

8.2 CSD Program Components/Units
The CSD includes graphical constructs for the following components or program units:
class, abstract class, method, and abstract method. The construct for each component
includes a unit symbol, a box notation, and a combination of the symbol and box
notation. The symbol notation provides a visual cue as to the specific type of program
component. It has the most compact vertical spacing in that it retains the line spacing of
source code without the CSD. The box notation provides a useful amount of vertical
separation similar to skipping lines between components. The symbol and box notation
is simply a combination of the first two. Most of the examples in this handbook use the
symbol notation because of its compactness. CSD notation for program com

class

or

Ada package

ÏÕÖ×
ÏÏ§{
ÏÏ©}

Ï¡¥¥¥¥¥¥¥¥¥
Ï¢
Ï£¤¦¦¦¦¦¦¦¦
ÏÏ§{
ÏÏ©}

Ï¡¥¥¥¥¥¥¥¥¥
ÕÖ×
Ï£¤¦¦¦¦¦¦¦¦
ÏÏ§{
ÏÏ©}

abstract class

ÏØÓì
ÏÏ§{
ÏÏ©}

Ï¡¥¥¥¥¥¥¥¥¥
Ï¢Ï
Ï£¤¦¦¦¦¦¦¦¦
ÏÏ§{
ÏÏ©}

Ï¡¥¥¥¥¥¥¥¥¥
ØÓì
Ï£¤¦¦¦¦¦¦¦¦
ÏÏ§{
ÏÏ©}

 Ï¬¹¹¹¹¹¹¹¹¹
Ï§

Ï¬¹¹¹¹¹¹¹¹¹
Þßà method ÏÞßà

or

function

or

procedure

ÏÏ§{
ÏÏ¨¹¹Ï;
ÏÏ©}

ÏªË¹¹¹¹¹¹¹¹
ÏÏ§{
ÏÏ¨¹¹Ï;
ÏÏ©}

ÏªË¹¹¹¹¹¹¹¹
ÏÏ§{
ÏÏ¨¹¹Ï;
ÏÏ©}

abstract
method

Ï ÛÜÝ

Ï¬¹¹¹¹¹¹¹¹¹
Ï§
Ïª¹¹¹¹¹¹¹¹¹

Ï¬¹¹¹¹¹¹¹¹¹
ÛÜÝ
Ïª¹¹¹¹¹¹¹¹¹

101

Control Structure Diagram (v1.8)
8/9/2005

control.

8.3 CSD Control Constructs
The basic CSD control constructs for Java are grouped in the following categories:
sequence, selection, iteration, and exception handling, as described in the table below.
Note, the semi-colons in the examples are placeholders for statements the language.

Sequence

ÏÏ¨¹¹Ï;
ÏÏ¨¹¹Ï;
ÏÏ¨¹¹Ï;

Sequential flow is represented in the
CSD by a vertical stem with a small
horizontal stem for each individual
statement on a particular level of

S
if

if..els

if..else..if

¹³´if (cond)
Ï¶¾¹¹Ï;

¹³´ (cond)
;

lse
ÏÈ¾

¹³´ f (cond)
Ï6¾¹¹Ï
Ï÷´ (cond)
Ï6¾
Ïö´
ÏÈ¾

For selection statements
True/False condition itself is marked

diamond, just as in a flow
tements to be executed if

e condition is tru arked by a
ding f e

cision diamond.

The control path for a false condition
th a d

 of the diam
sion d
ult cl

 decision statem

e sec
ne with the first e unnecessary

f nest
oided. H weve eep nest g

s desired, th an be
on the line after the else.

election

e

Ï6¾¹¹Ï
Ïö´

if

e
¹¹Ï;

i
;

else if
¹¹Ï;
else
¹¹Ï;

By placing th
li
indentation o
av o
effect i
placed

, the

with a small
chart. The sta
th
solid line lea
de

e are m
rom the right of th

is marked wi
from the bottom
another deci
clause, a defa
the

otted line leading
ond to

iamond, an else
ause, or the end of
ent.

ond if on the same
lse, the
ed if statements is
r, if the d in
e second if c

102

Control Structure Diagram (v1.8)
8/9/2005

(when break is
omitted)

÷¹¹´ a:
;
break;

se b:
ÏÏ6ÏÏ¨¹¹Ï;
Â¹½ÏÏ¾¹¹Ïbreak;
Ï÷¹¹´default:
Ï6ÏÏ¾¹¹Ï;

e 1:
;

½ÏÏ¾¹¹Ïbreak;
÷¹¹´case 2:

;
e 4:

6ÏÏ¨ ;
6ÏÏ¾¹¹Ï;
¶}

pe:
r) is evaluated, and then

ontrol is transferred to the case label

sses
 indicated by the arrow) and

 the end of the switch statement after
e sequence is executed. Notice the

imilarity of the CSD notation for the
 the

owever, the break statement can be

xt

 end of its
equence, which will pass control to

ill
ces in case 3

nd case 4. The diamonds in front of
ase 3 and case 4 have arrows pointing
 each case to remind the user that
ese are entry points for the switch.
hen the break statement precedes
e next case (as in case 1), the arrows

re unnecessary.

Selection
(cont’d)

switch

¹¹´switch(item)
ÏÏ§{

The semantics of the switch statement
are different from those of if
statements. The expr (of integral ty

switch

ÏÏ case
ÏÏ6ÏÏ¨¹¹Ï
Â¹½ÏÏ¾¹¹Ï
ÏÏ÷¹¹´ca

Ï
Ï
ÏÏ¶}

¹¹´switch (expr)
ÏÏ§{
ÏÏ÷¹¹´cas
ÏÏ6ÏÏ¨¹¹Ï
Â¹
ÏÏ
ÏÏ6ÏÏ¨¹¹Ï;
ÏÏ6ÏÏ¨¹¹Ï;
ÏÏ÷¹¹Ãcase 3:
ÏÏ6ÏÏ¨¹¹Ï;
ÏÏ6ÏÏ¨¹¹Ï
ÏÏ÷¹¹Ãcas

¹¹ÏÏÏ
ÏÏ
ÏÏ

int, cha
c
matching the result or to the default
label if there is no match. If a break
statement is placed at the end of the
sequence within a case, control pa
“out” (as
to
th
s
switch and if statements when
break is used in this conventional
way. The reason for this is that,
although different semantically, we
humans tend to process them the same
way (e.g., if expr is not equal to case
1, then take the false path to case 2
and see if they are equal, and so on).
H
omitted as illustrated next.

When the break statement is omitted
from end of the sequence within a
case, control falls through to the ne
case. In the example at left, case 1 has
a break statement at the
s
the end of the switch (as indicated by
the arrow).

However, case 2, case 3, and case 4 do
not use the break statement. The CSD
notation clearly indicates that once the
flow of control reaches case 2, it w
also execute the sequen
a
c
to
th
W
th
a

103

Control Structure Diagram (v1.8)
8/9/2005

while loop
(pre-test)

for loop
(discrete)

(

break in loop

(cond)

(i=0;i<j;i++)
5{
7¹¹Ï;
°}

 a

ber

.

 is

st

Iteration

do loop
post-test)

¹¹±while
ÏÏ5{
ÏÏ7¹¹Ï;
ÏÏ°}

¹¹±for
ÏÏ
ÏÏ
ÏÏ

¹¹®do
ÏÏ5{
ÏÏ7¹¹Ï;
ÏÏ5}
ÏÏòwhile(cond);

¹¹±while (cond)
ÏÏ5{
ÏÏ7¹¹Ï;
ÏÏ7¹³´if (cond)
Â¹ÇÏ¶¾¹¹Ïbreak;
ÏÏ7¹¹Ï;
ÏÏ°}

The CSD notation for the while
statement is a loop construct
represented by the double line, which
is continuous except for the small gap
on the line with the while. The gap
indicates the control flow can exit the
loop at that point or continue,
depending on the value of Boolean
condition. The sequence within the
while will be executed zero or more
times.

The for statement is represented in
similar way. The for statement is
designed to iterate a discrete num
of times based on an index, test
expression, and index increment. In
the example at left, the for index is
initialized to 0, the condition is I < j,
and the index increment is i++. The
sequence within the if will be
executed zero or more times

The do statement is similar to the
while except that the loop condition
at the end of the loop instead of the
beginning. As such, the body of the
loop is guaranteed to execute at lea
once.

The break statement can be used to
transfer control flow out of any loop
(while, for, do) body, as indicated by
the arrow, and down to the statement
past the end of the loop. Typically,
this would be done in conjunction
with an if statement. If the break is
used alone (e.g., without the if
statement), the statements in the loop
body beyond the break will never by
executed.

104

Control Structure Diagram (v1.8)
8/9/2005

Iteration

continue

do
Ï5{

if (cond)
continue;

;
5}
òwhile (cond);

he continue statement is similar to
e break statement, but the loop

, the
uted

(cont’d)

¹¹®
Ï
ÏÏ7¹¹Ï;
ÏÏ7¹³´
ÏÏÔ¹¶¾¹¹Ï
ÏÏ7¹¹Ï
ÏÏ
ÏÏ

T
th
condition is evaluated and if true
body of the loop body is exec
again. Hence, as indicated by the
arrow, control is not transferred out of
the loop, but rather to top or bottom of
the loop (while, for, do).

Exception
Handling

With a return

ìcatch(E)
§ÏÏ§{
§ÏÏ¨¹¹Ï;
§ÏÏ©}
§finally

§{

;

;
}

?finally
§{
¨¹¹Ï;
©}

.

f

 executed not matter how the
 block is exited. In the example at

ft, a return statement causes flow of

.

,

ntrol flow can become
uite counterintuitive. The CSD can
e used to clarify the control flow.

¹¹´try
ÏÏ§{
ÏÏ¨¹¹Ï;
ÏÏ§}
ÏÏ§Ïðî
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ§{
ÏÏ¨¹¹Ï;
ÏÏ©}

¹¹´try
ÏÏ
ÏÏ¨¹¹Ï;
ÏÏ¨¹¹Ï;
ÏÏA¹¹Ïreturn
ÏÏ=}
ÏÏ=Ïðîìcatch(E)
ÏÏ=ÏÏ§{
ÏÏ=ÏÏ¨¹¹Ï
ÏÏ=ÏÏ©
ÏÏ
ÏÏ
ÏÏ
ÏÏ

In Java, the control construct for
exception handling is the try..catch
statement with optional finally clause
In the example at left, if stmt1
generates an exception E, then control
is transferred to the corresponding
catch clause. After the catch body is
executed, the finally clause (if
present) is executed. If no exception
occurs in the try block, when it
completes, the finally clause (i
present) is executed.

The try..catch statement can have
multiple catch clauses, one for each
exception to be handled.

By definition, the finally clause is
always
try
le
control to leave the try block. The
CSD indicates that flow of control
passes to the finally clause, which is
executed prior to leaving the try block
The CSD uses this same convention
for break and continue when these
cause a try block to exited.

When try blocks are nested and break
continue, and return statements occur
at the different levels of the nesting,
the actual co
q
b

105

Control Structure Diagram (v1.8)
8/9/2005

8.4 CSD Templates
In Figure 8-3, the basic CSD control constructs, described above, are shown in the CSD
win e ar d automatically based on the text in the window. In addition
to being yped or file, the text can y
selecting mplat ol bar

dow. Thes e generate
read from a
es on the CSD window to

 t
 Te

be inserted from a list of templates b
.

Figure 8-3. CSD cts generated

Control Constru in CSD Window

106

Control Structure Diagram (v1.8)
8/9/2005

 with the CSD

 as well. However, the CSD may
enerate okay even if your program will not compile. Your program may be
ntactically correct, but not necessarily semantically correct. CSD generation is based

on the syntax of your program.

Enter code in syntactically correct chunks - To reap the most benefit from using the
CSD when entering a program, you should take care to enter code in syntactically correct
chunks, and then regenerate the CSD often. If an error is reported, it should be fixed
before you move on. If the error message from the generate step is not sufficient to
understand the problem, compile your program and you will get a more complete error
message.

“Growing a program” is described it the table below. Although the program being
“grown” does nothing useful, it is both syntactically and semantically correct. More
importantly, it illustrates the incremental steps that should be used to write your
programs.

Step Code to Enter After CSD is generated

8.5 Hints on Working
The CSD is generated based on the source code text in the CSD window. When you
click View – Generate CSD (or press F2), jGRASP parses the source code based on a
grammar or syntax that is slightly more forgiving that the Java compiler. If your program
will compile okay, the CSD should generate okay
g
sy

1. We begin by
entering the code for
a Java class. Note,
the file should be
saved with the name
of the class, which in
this case is MyClass.

public class MyClass

{

}

ÏÕÖ×public class MyClass
ÏÏ§{
ÏÏ©}

2. Now, inside the
class, we enter the
text for a method
called myMethod,
and then re-generate
the CSD by pressing
F2.

public class MyClass

{

 myMethod()

 {

 }

}

ÏÕÖ×public class Hello
ÏÏ§{
ÏÏ§ÏÞßàmyMethod()
ÏÏ§ÏÏ§{
ÏÏ§ÏÏ©}
ÏÏ©}

107

Control Structure Diagram (v1.8)
8/9/2005

 { ÏÏ§ÏÏ§ÏÏ5{

3. Next, inside
myMethod, we enter
a while loop with an
empty statement, and
then re-generate the
CSD by pressing F2.

public class MyClass
{
 myMethod()
 {
 while (true)

ÏÕÖ×public class MyClass
ÏÏ§{
ÏÏ§ÏÞßàmyMethod()
ÏÏ§ÏÏ§{
ÏÏ§ÏÏ¨¹¹±while (true)

 ;
 }
 }
}

ÏÏ§ÏÏ§ÏÏ7¹¹Ï;
ÏÏ§ÏÏ§ÏÏ°}
ÏÏ§ÏÏ©}
ÏÏ©}

8.6 Reading Source Code with the CSD
The CSD notation for each of the control constructs has been carefully designed to aid in
reading and scanning source code. While the notation is meant to be intuitive, there are
several reading strategies worth pointing out, especially useful with deeply nested code.

ading Sequence
he visualization of uential control

low is as follows. Afte
xt state

o left along the
hile this seems trivial,

omes clearer with the if
nesting.

Ïs(1
Ïs(2

Ï¨¹¹Ïs(3

Re
T
f

seq
r statement s(1) is
ment is found by

Ï¨¹¹
Ï¨¹¹executed, the ne

scanning down and t
solid CSD stem. W
its importance bec
statement and deeper

the

);
);
);

Reading Selection

seq
after), we enter the
 by t
, we

), own and
tted line)

t s

condition is false, we read down the
dotted line (the false path) to the else and
then on to s(3). After s(3), again we read
down and to the left until we reach the
next statement on the stem which is s(4).

Ï¨¹¹Ïs(1
Ï¨¹³´if
Ï§Ï6¾¹¹Ï
Ï§Ïö´els
Ï§ÏÈ¾¹¹Ïs(3);
Ï¨¹¹Ïs(4);
Ï§

Now combining the
selection (if.. else),
if statement marked
the condition is true
line to s(2). After s(2
to the left (passing throu
until we reach the nex
vertical stem which is s(4). If the

uence with Ï§
 s(1
he diamond. If
 follow the solid
we read d
gh the do

ment on the tate

);
(cond)
s(2);
e

108

Control Structure Diagram (v1.8)
8/9/2005

Reading Selection with Nesting
(1), we

 a
es
 (passing

ine
n is

(4). If the cond1 is fals
e dotted line (the false f

cond2 is false, we read down the dotted
line to the else and then on to s(3). After
s(3), again we read down and to the left

Ï¨¹¹Ïs(1
Ï¨¹³´if

¾¹³´
6ÏÏ6¾

Ï§Ï6ÏÏö´
Ï§Ï¶ÏÏÈ¾
Ï¨¹¹Ïs(4
Ï§

As above, after s
statement and if cond1
we follow the solid lin
s(2), we read down and
through both dotted l
to the next statement o

 enter the if
cond2 are true,

Ï§
nd
 to s(2). After
to the left
s) until we reach Ï§Ï6

Ï§Ï the stem which
s
th

e, we read down
 path) to s(4). I

);
(cond1)
if (cond2)
¹¹Ïs(2);
else
¹¹Ïs(3);
);

until we reach to the next statement on the
stem which is s(4).

Reading Selection with
Even Deeper Nesting

If cond1, cond2, and cond3 are true, we

If s(4) is executed, we can see
immediately that s(7) follows.

In fact, from rdless of
 it

§

d1)
(cond2)

Ï§Ï6ÏÏ6¾¹³´if (cond3)
Ï§Ï6ÏÏ6ÏÏ6¾¹¹Ïs(2);
Ï§Ï6ÏÏ6ÏÏö´else
Ï6ÏÏ6ÏÏÈ¾¹¹Ïs(3);
Ï6ÏÏö´else

Ï§Ï6ÏÏ¸¾¹³´if (cond4)
¹¹Ïs(4);

5);

follow the solid lines to s(2). Using the
strategy above, we immediately see the
next statement to be executed will be s(7).

If cond1 is true but cond2 is false, we can
easily follow the flow to either s(4) or s(5)
depending on the cond4.

 any statement, rega
the level of nesting, the CSD makes
easy to see which statement is executed
next.

Ï
Ï¨¹¹Ïs(1);
Ï¨¹³´if (con
Ï§Ï6¾¹³´if

Ï§
Ï§

Ï§Ï6ÏÏ¸ÏÏ6¾
Ï§Ï6ÏÏ¸ÏÏö´else
Ï§Ï6ÏÏÈÏÏÈ¾¹¹Ïs(
Ï§Ïö´else
Ï§ÏÈ¾¹¹Ïs(6);
Ï¨¹¹Ïs(7);
Ï§

109

Control Structure Diagram (v1.8)
8/9/2005

ht

per, the CSD
ecomes even more useful.

In addition to saving time in the reading
process, the CSD aids in interpreting the
source co
examples

 s(1);
 if (cond1)

ond3)
;

);

nd4)
);

else
 s(5);

 else
 s(6);
 s(7);

Reading without the CSD
It should be clear from the code at rig
that following the flow of control without
the CSD is somewhat more difficult.

For example, after s(3) is executed, s(7) is
next. With the CSD in the previous
example, the reader can tell this at a
glance. However, without the CSD, the
reader may have to read and reread to
ensure that he/she is seeing the
indentation correctly.

While this is a simple example, as the
nesting becomes dee
b

de correctly, as seen in the
that follow.

 if (cond2)
 if (c
 s(2)
 else
 s(3
 else
 if (co
 s(4

110

Control Structure Diagram (v1.8)
8/9/2005

CorrectReading ly with the CSD

Consider the fragment at right with s(1)
and s(2) in the body of the if statement.

n

s.

After the CSD is generated, the reader ca
see how the compiler will interpret the
code, and add the missing brace

 s(1);
 if (cond)
 s(2);
 s(3);

 ¨¹¹Ïs(1);
Ï ¨¹³´if (cond)
Ï §Ï¶¾¹¹Ïs(2);
Ï ¨¹¹Ïs(3);

Here is another common mistake made

olon after the
ondition was unintended. However, the
SD shows what there rather than what
as intended.

;
 s(2);

 s(3);

Ï ¨¹(¹if (cond);
Ï ¨¹¹Ïs(2);
Ï ¨¹¹Ïs(3);

glaring by the CSD.

Most likely, the semi-c
c
C
w

 if (cond)

Similarly, the CSD provides the correct
terpretation of the while statement.

 Missing braces . . .

 while (cond)
 s(2);
 s(3);

Ï §
ÏÏ¨¹¹±while (cond)
ÏÏ§ÏÏÐ¹¹Ïs(2);
ÏÏ¨¹¹Ïs(3);
ÏÏ§

in

.

Similarly, the CSD provides the correct
terpretation of the while statement.

 Unintended semi-colon . . .

 while (cond);
 s(2);
 s(3);

 Ï§
ÏÏ¨¹¹#while (cond);
ÏÏ¨¹¹Ïs(2);
ÏÏ¨¹¹Ïs(3);Ï

in

111

Control Structure Diagram (v1.8)
8/9/2005

As a final example of reading source code w h the CSD, consider the following program,
which is shown with and w rates control flow when a
break, continue, and retur ach have a finally clause.
Although the flow of control may seem some e, the CSD should make
i ctly

F . R the finally clause is
always executed not matter how the try block is exited. Refer to the output if you need a
hint. The output for FinallyTest is as follows:

1

ly 2
i 1

ÏÏfinally 2
ÏÏfinally 3

reak, continue, an s

it
ithout the CSD. FinallyTest illust

n are used within try blocks that e
what counterintuitiv

t easier to interpret this source code corre

irst read the source code without the CSD

.

ecall that by definition,

ÏÏfinally
ÏÏi 0
ÏÏfinal
ÏÏ

Try-Finally with b d return statement

public class FinallyTest {

 public static void main(String[] args) {
 b:
 try {
 break b;
 }
 finally {

 for(int i = 0; i < 2; i++) {
 System.out.println("i " + i);

 continue;
 }

if(i < 0)
 continue;

 return;
 }
 finally {
 System.out.println("finally 2");
 }
 }
 }

ÏÕ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ§ÏÏ§ÏÏ=}
ÏÏ§ÏÏ§ÏÏ?
ÏÏ nally 1");
ÏÏ
ÏÏ
ÏÏ
ÏÏ i < 2; i++) {
ÏÏ§ÏÏ§ÏÏ§ÏÏ7¹¹ÏSystem.out.println("i " + i);
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ ntinue;
ÏÏ§ÏÏ§ÏÏ§ÏÏ5ÏÏ=
ÏÏ§Â¹ÄÏÏA¹Ï5ÏÏ@¹¹Ïreturn;
ÏÏ§ÏÏ§ÏÏ=ÏÏ5ÏÏ=}
ÏÏ§ÏÏ§ÏÏ=ÏÏ5ÏÏ?finally {
ÏÏ§ÏÏ§ÏÏ=ÏÏ5ÏÏ¨¹¹ÏSystem.out.println("finally 2");
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ n("finally 3");
ÏÏ
ÏÏ
ÏÏ
ÏÏ

 System.out.println("finally 1");
 }

 try {

 try {
 if(i == 0) {

 finally {
 System.out.println("finally 3");
 }
 }

};

Ö×public class FinallyTest {
§
§ÏÞßàpublic static void main(String[] args) {
§ÏÏ§b:
§ÏÏ¨¹¹´try {
§ÏÏ§Â¹A¹¹Ïbreak b;

finally {
§ÏÏ§ÏÏ¨¹¹ÏSystem.out.println("fi
§ÏÏ§ÏÏ©}
§ÏÏ§
§ÏÏ¨¹¹´try {
§ÏÏ§ÏÏ¨¹¹±for(int i = 0;

§ÏÏ§ÏÏ§ÏÏ7¹¹´try {
§ÏÏ§ÏÏ§ÏÏ5ÏÏ¨¹³´if(i == 0) {
§ÏÏ§ÏÏ§ÏÏÔ¹ÏA¹6¾¹¹Ïcontinue;
§ÏÏ§ÏÏ§ÏÏ5ÏÏ=Ï¶Ï}
§ÏÏ§ÏÏ§ÏÏ5ÏÏ>¹³´if(i < 0)
§ÏÏ§ÏÏ§ÏÏÔ¹Ï@¹¶¾¹¹Ïco

§ÏÏ§ÏÏ=ÏÏ5ÏÏ©}
§ÏÏ§ÏÏ=ÏÏ°}
§ÏÏ§ÏÏ=}
§ÏÏ§ÏÏ?finally {
§ÏÏ§ÏÏ¨¹¹ÏSystem.out.printl
§ÏÏ§ÏÏ©}
§ÏÏ©}
§
©};

112

Control Structure Diagram (v1.8)
8/9/2005

[Hendrix 2002] T. D. Hendrix, J. H. Cross, S. Maghsoodloo, and K. H. Chang,
“Empirically Evaluating S re Visualizations: An Experimental
Framework,” IEEE Transactions on Software Engineering, Vol. 28, No. 5, May 2002,
463-477.

In our experience, this code is often misinterpreted when read without the CSD, but
understood correctly when read with the CSD.

8.7 References
[Cross 1998] J. H. Cross, S. Maghsoodloo, and T. D. Hendrix, "Control Structure
Diagrams: Overview and Initial Evaluation," Journal of Empirical Software Engineering,
Vol. 3, No. 2, 1998, 131-158.

caleable Softwa

113

Viewers for Objects and Primitives (v1.8)
8/9/2005

Primitives
uring execution, Java programs usually create a variety of objects from both user and

 these objects only exist during execution, being able to visualize

or objects and primitives are the most recent addition to the software
isualizations provided by jGRASP. The purpose of a viewer is to provide one or more

nd can be opened for any item in the Workbench or Debug tabs.

jectives – When you have completed this tutorial, you should be able to open a viewer
 any object or primitive displayed in the Workbench and/or Debug tabs; select among

the views provided by the viewer, and set the view options in the viewer window.

The details of these objectives are captured in the hyperlinked topics listed below.

9.1 Opening Viewers

9 Viewers for Objects and
D
library classes. Since
them in a meaningful way is an important element of program comprehension. Although
this can be done mentally for simple objects, most programmers can benefit from seeing
more tangible representations of complex objects while the program is running.

Viewers f
v
views of a particular class of objects. When a class does have more than one view
associated with it, you can have multiple viewers open on the same object with a separate
view in each viewer. These viewers are tightly integrated with the workbench and
debugger a

Ob
for

9.2 Selecting Among Views

9.3 Setting the View Options

9.4 Exercises

114

Viewers for Objects and Primitives (v1.8)
8/9/2005

9.1 Opening Viewers

9.2 Selecting Among Views

9.3 Setting the View Options

9.4 Exercises

115

	Overview of jGRASP and the Tutorials
	Installing jGRASP
	Getting Started
	Starting jGRASP
	Quick Start - Opening a Program, Compiling, and Running
	Creating a New File
	Saving a File
	Generating a Control Structure Diagram
	Folding a CSD
	Line Numbers
	Compiling a Program – A Few More Details
	Running a Program - Additional Options
	Using the Debugger
	Opening a File – Additional Options
	Closing a File
	Exiting jGRASP
	Exercises
	Review and Preview of What’s Ahead

	Getting Started with Objects
	Starting jGRASP
	Navigating to Our First Example Project
	Opening a Project and UML Window
	Compiling and Running the Program from UML Window
	Exploring the UML Window
	Viewing the Source Code in the CSD Window
	Exploring the Features of the UML and CSD Windows
	Viewing the source code for a class
	Displaying class information
	Displaying Dependency Information

	Generating Documentation for the Project
	Using the Object Workbench
	Opening a Viewer Window
	Invoking a Method
	Invoking Methods with Object Parameters
	Invoking Methods on Object Fields
	Invoking Inherited Methods
	Running the Debugger on Invoked Methods
	Creating Objects from the CSD Window
	Creating an Instance from the Java Class Libraries
	Exiting the Workbench
	Closing a Project
	Exiting jGRASP
	Exercises

	Projects
	Creating a Project
	Adding files to the Project
	Removing files from the Project
	Generating Documentation for the Project (Java only)
	Jar File Creation and Extraction
	Closing a Project
	Exercises

	UML Class Diagrams
	Opening the Project
	Generating the UML
	Compiling and Running from the UML Window
	Determining the Contents of the UML Class Diagram
	Laying Out the UML Diagram
	Displaying the Members of a Class
	Displaying Dependencies Between Two Classes
	Navigating to Source Code via the Info Tab
	Finding a Class in the UML Diagram
	Opening Source Code from UML
	Saving the UML Layout
	Printing the UML Diagram

	The Object Workbench
	Invoking Static Methods from the CSD Window
	Invoking Static Methods from the UML Window
	Creating an Object for the Workbench
	Invoking a Method
	Invoking Methods with Parameters Which Are Objects
	Invoking Methods on Object Fields
	Selecting Categories of Methods to Invoke
	Opening Object Viewers
	Running the Debugger on Invoked Methods
	Exiting the Workbench

	The Integrated Debugger
	Preparing to Run the Debugger
	Setting a Breakpoint
	Running a Program in Debug Mode
	Stepping Through a Program – the Debug Buttons
	Stepping Through a Program – without Stepping In
	Stepping Through a Program – and Stepping In
	Opening Object Viewers
	Debugging a Program

	The Control Structure Diagram (CSD)
	An Example to Illustrate the CSD
	CSD Program Components/Units
	CSD Control Constructs
	CSD Templates
	Hints on Working with the CSD
	Reading Source Code with the CSD
	References

	Viewers for Objects and Primitives
	Opening Viewers
	Selecting Among Views
	Setting the View Options
	Exercises

