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Chapter 6

Synchronous Sequential
Machines

A block diagram of a sequential circuit was shown in the introduction of
Chapter 5. That chapter concentrated on one part of such a circuit: the memory
devices, or flip-flops. Those circuits in which state transitions are controlled, or
synchronized, by a clock are said to be clocked, or synchronous, sequential cir-
cuits. Other sequential circuits exist, called asynchronous circuits, in which state
transitions are not synchronized by a clock. These are less common, although
they do have important applications. We will postpone the discussion of such
circuits to Chapter 7.1

A number of tools are used to describe the behavior of sequential logic cir-
cuits and to analyze and design them. We will introduce and develop such tools
in this chapter. Included are formal procedures for the design of synchronous
machines. Finally, we will concentrate on one class of such circuits and their de-
sign: circuits called counters.

1 BASIC CONCEPTS

The generic description of a problem requiring the design of a synchronous se-
quential logic circuit can be given as follows.

Design a digital circuit whose outputs are to take on specific values after a
specific sequence of inputs has taken place.

Such a problem statement is very broad. What is clear is that

• There are to be certain sequences of inputs to the circuit.

1With or without adjectives to qualify it, the term machine is often used to designate a sequential circuit,
as in the title of this chapter. Because such circuits can have only a finite number of states, they have also
been called finite-state machines. Since finiteness is all that is possible in the physical world, this adjective
is often dropped and the circuits in question are simply called state machines. “Machine” normally has
the connotation of something physical. However, in the present usage, the term refers to an abstract en-
tity described by mathematical, graphical, or tabular means, as we will describe in this chapter.
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• Different sequences of past inputs will constitute different states or condi-
tions of the circuit.

• Specific outputs result only following a specified input sequence.

The general description does not specify whether the output will depend just on
the past inputs or on the latest input as well.

These two possibilities lead to different structures, first explored in the
mid-1950s by two people named Mealy and Moore. As mentioned in Chapter 5,
in Mealy machines the outputs depend both on the present state (resulting from
past inputs) and on the current input. The outputs in Moore machines depend
only on the present state (resulting from past inputs). Attention will be devoted
to both types.

Block diagrams of both Mealy and Moore models of sequential machines
were given in Chapter 5, Figure 1. Somewhat refined versions are shown in
Figure 1 here. The open arrowheads imply multiple variables. For example,
input x stands for the set of variables {x1, x2, ... , xn}. The combinational part of
the circuit is broken down into two separate parts: the state decoder and the
output decoder. The state decoders in both models accept as inputs both pri-
mary (external) inputs and the present state. In the Moore machine, however,
the output decoder accepts only the present state to yield outputs. In the sim-
plest case, there is no output decoder at all; the states themselves are the outputs.
In a given machine, there may be some outputs that are Moore-type outputs and
others that aren’t. Such a machine must be classified as a Mealy machine, since at
least some of its outputs depend not only on the state, but also on the inputs.
Thus, the Mealy machine is the more general (and more common) type.

The behavior of synchronous sequential logic circuits can be described in a
number of ways. At any given clock pulse, the state of the circuit is the present
state. Signals present at the input terminals at that time are the inputs. This

Figure 1 Models of Mealy and Moore machines.
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combination of present state and input results in two things: a transition to the
next state and an output. At the next clock pulse, the process is repeated, except
that the present state is now what the next state was at the preceding clock
pulse. It is possible to conceive of this process as never ending; that is, the “next
state” is never a state that had been previously encountered. In this case, the
machine would be infinite—a peculiar machine indeed. Barring such an un-
likely event, somewhere along the line the next state will be a previously en-
countered state. After this, the machine will retrace its steps over and over; no
new states will be encountered.

Several means are available for illustrating the following sequence:

present state/input → clock pulse → next state/output

One of these means is graphical/diagrammatic; another is tabular. A third ap-
proach utilizes a chart not unlike a flow chart describing an algorithm. All are
treated in this chapter.

State Diagram

The graphical/diagrammatic tool for describing sequential circuit behavior is
known as a linear graph.2 For each state of the circuit, there is a corresponding
node in the graph. (The circle representing the node is made large enough that
the symbol for the state can be written inside.) With the machine in any one
state (node in the graph), at the occurrence of a clock pulse, there will be a state
transition to the next state and there will be an output, both in accordance with
the problem statement. For a single-input machine, two lines emanate from
each node, one each for a 0 and for a 1 input. For two input variables, four lines
emanate from each node, one for each input combination: 00, 01, and so on.
(How many lines will emanate from each node if the number of input variables
is n?) Along each line we write the input value and the corresponding output
separated by a slash. The resulting graph is called a state diagram.

For some state machines it is known from the statement of the problem just
how many distinct states the machine has. However, in general, the number of
possible states is initially unknown. To establish the state diagram, we arbitrar-
ily choose an initial state and label it, say, A. (State names can be anything con-
venient.) A state is identified by unambiguously specifying how it is reached. To
say, for example, that “state S is reached when the input is 1” is inadequate,3 be-
cause the statement does not unambiguously identify it: Does this 1 follow an-
other 1? Is it the first 1 after a string of 0’s? Does this 1 follow a string of two
or more preceding 1’s? One unambiguous specification would be: “State S is
reached by the second of two input 1’s after one or more 0’s.”

Because it is difficult to describe, in the abstract, both the state diagram and
the tabular tool to be discussed next, we will continue this discussion in con-
junction with an example.

2A linear graph is a set of nodes, or vertices (drawn as circles), interconnected by a set of directed lines
(or arcs), that is, lines that have an orientation indicated by an arrowhead.
3Except for a trivial case that will be described shortly.
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EXAMPLE 1

A synchronous sequential machine with a single input line x and a single output line z
is to be designed. The specifications are as follows: the output is to be z = 1 if and only
if the specific input sequence ...0110 occurs at consecutive clock pulses; otherwise z = 0.
(Unless otherwise stated, the most recent bit of a sequence is the one on the right in all
cases.) Suppose, for example, that an input sequence is ...0110110. The first 4 bits iden-
tified constitute an acceptable (that is, output-producing) input sequence. But the fourth
bit starts another acceptable sequence that overlaps with the first. Hence, the output se-
quence will be ...0001001. (Confirm.) Such a machine is called a sequence detector.

Let’s identify our initial state A as the state reached by an input x = 0 regard-
less of the preceding sequence of inputs. It doesn’t matter if the preceding input bit
is 1 or 0 for a 0 input bit to start an acceptable sequence. We start the state diagram
by drawing a node labeled A. Following this, there are two possible strategies:

• We can explore the consequences (next state/output) resulting from each
possible input starting in this state, and continue in this fashion with all the
next states encountered along the way.

• We can assume an acceptable sequence and pursue the consequences (string
of next states and outputs), adding states as needed. Then we return to each
state encountered along the way to fill in the consequences of inputs that are
not part of an acceptable sequence.

The second method is carried out in Figure 2. Starting from state A (reached by
a 0 input), we assume an input sequence 110 to complete an acceptable sequence.
The result is shown in Figure 2b. (Confirm that the two additional states shown must
be introduced along the way. Also confirm each of the steps that follow.)

Starting at each state in Figure 2b, only one of the two possible inputs has been
used so far. Now we fill in the other possibilities. From state A, an input of 0 leads back
to state A/output 0. From state B, an input of 0 also leads back to A/output 0. But what
is the next state if there is an input of 1 while the machine is in state C (which was
reached by an input sequence 011)? It can’t be to any of the three states reached so
far (confirm this), so it must be to a new state D/output 0. The state diagram so far is
shown in Figure 2c. Finally, from this new state, an input of 0 leads back to A/output
0 and an input of 1 leads back to D/output 0. The final diagram is shown in Figure 2d.

Figure 2 State diagram of sequence detector.
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Study the last diagram. A is the state reached by the first bit in an accept-
able sequence. The sequence is aborted if the next input is also 0. Now it is this
last 0 that starts an acceptable sequence. Any number of additional inputs of 0
lead to the same result: the latest 0 becomes the first bit of an acceptable se-
quence. The last state, D, is an acceptable-sequence spoiler; it is reached by an
input of 1 following a sequence ...011. ■

Notice in Figure 2 that all but one of the arcs in the graph are labeled with
an output of 0. A lot of clutter could be avoided if we adopt the convention that
only outputs of 1 will be shown explicitly. When the output associated with a
particular arc is 0 (or 00, 000, etc. for more output variables), henceforth it will
not be shown explicitly on the state diagram.

In constructing a state diagram, there are generally two major decision points:

1. Choosing the initial state
2. When in a particular state, deciding whether the transition resulting from a

particular input is to an existing state or to a new state not yet identified

In some (not all) sequential machines there is a specific reset state; the ma-
chine must be in this state at the starting time. In such cases, the initial state is
predetermined. When there is no reset state, the initial state is chosen arbitrar-
ily, as in the preceding example. Although the problem statement might guide
the choice of initial state, different designers might choose different initial
states.4 No problem. Assuming there are no mistakes, two state diagrams con-
structed with different initial states will be isomorphic; that is, they will become
identical by an appropriate interchange of state names.5

As for the second decision point, a transition to a new state rather than to
an existing state will result in more states in the state diagram. Eventually, a cir-
cuit must be implemented. Generally speaking, more states mean more flip-
flops, though not proportionately more. A circuit with n flip-flops, for example,
will have 2n states. Conversely, then, eight (23) states will require three flip-
flops. But even as few as five states will still require three flip-flops. Thus, if a
state diagram has five states already, increasing the number of states to as many
as eight will not increase the number of flip-flops needed. Thus, introducing
more states in a state diagram may simply mean introducing redundancies;
these might be removable later.

Although in the preceding example we constructed a state diagram that de-
scribes all the state transitions of the desired machine, we still did not complete
a design. Before tackling that task, we turn to the tabular tool for describing the
behavior of a sequential machine.6

4They may also give the states different names, the placement of the nodes might be different, and the
curvatures of the lines joining the nodes might be different. All of these are trivial matters.
5This assumes that no extra states are introduced, as will be described shortly.
6Suppose we reconsider the statement “State S is reached when the input is 1.”The state diagram will then con-
sist of just two states: S is the state reached by an input 1 and, say, T is reached by an input 0. Any other 0 in-
puts while in state T will return the machine to state T. A 1 input will send the machine back to state S. Any
other 1 inputs will keep the machine in state S.Construct a state diagram for yourself.This is a trivial “machine.”
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State Table

A table can be described by its row headings (or names) and its column head-
ings. Its entries occur at the intersections of the rows and columns. To describe
the operation of a synchronous machine, it is customary to choose the row
headings as the present states and the column headings as the inputs.

Since two outcomes (next state, output) result from an input to the circuit
when the circuit is in a particular state, it is conceivable to construct two separate
tables. The entries in one of these would be the circuit outputs—hence it is called
the output table. The entries in the other table would be the next states. Since the
table is intended to show transitions from a present state to a next state, it might
be tempting to call this table a state transition table. But in the preceding chap-
ter, state transition table was the name given to the table that specifies the next
state resulting from inputs to a flip-flop for each present state of the flip-flop. So
we use a different name; it is called simply a state table. In the present usage, the
circuit is not limited to a single flip-flop but encompasses an entire machine.

Remember from Figure 1b that the output of a Moore machine depends
only on the present state. For such a machine, there will be only one output
combination for each input combination; hence, a separate output table makes
more sense. For a Mealy machine, on the other hand, we will combine the state
and output tables into a single table in which the entries are both the next
states and the resulting outputs, separated by a comma.7 This will be illustrated
for Example 1, whose state diagram was obtained in Figure 2. (Of course, once
this table is available, it is always possible to separate the next-state part and
the output part into two separate tables if there is a reason for doing so.)

Constructing a State Table from a State Diagram

Once a state diagram is available, the corresponding state/output table is easily
constructed. The state diagram in Figure 2 has four states. Hence, the corre-
sponding state/output table will have four rows. Starting in any state, the out-
put and the next state can be obtained from the diagram and entered in the
table. The result is given in Figure 3.

Exercise 1 Notice in Figure 2 that state A is reached from each state (includ-
ing A) by an input 0 but with different outputs: 0 from states A, B, D and 1 from
state C. Instead, let’s suppose that state A in the state diagram of Figure 2 is

7It is also sometimes called a flow table.

Figure 3 State table of sequence detector in Example 1 obtained
from its state diagram.

NS,z

PS x = 0 x = 1

A A,0 B,0
B A,0 C,0
C A,1 D,0
D A,0 D,0
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identified as the state reached by an input 0 resulting in an output 1. Now start
from Figure 2a and assume that a 0 input while in state A or state B leads to a
new state E rather than back to A. Complete the resulting state diagram. (You
don’t need to take the following advice, but you won’t get tangled up in cross-
ing lines if you put A, B, and C in a row, with D under C and E under B.) Then,
from the diagram, construct a state table.
Answer8

Examine states A and E in your table from Exercise 1. Both are reached by
an input bit 0. Hence, starting from either state, the next states and outputs
must be the same for each input bit. In this case, these two states can’t be dis-
tinguished from each other. This is the basis for a definition:

Two states are said to be indistinguishable if, for each input combination,
the resulting outputs and next states are the same.

Actually, the next states need not be the same—only indistinguishable, as just
defined.

On this basis, states A and E are indistinguishable. If all E next states in the
table are replaced by A, and row E is eliminated, the table obtained in Exercise
1 will become the same table obtained in Figure 3.

There are formal procedures for extending the concept just defined. We
will pursue this generalization in the following section and discuss ways of re-
ducing the number of rows of a state table. Consequently, in constructing a
state diagram in the design of a sequential circuit, there is no great need to
worry about introducing redundant states; such states can be removed subse-
quently. On the other hand, there is no point in needlessly extending a state ta-
ble, since effort will be needed later to reduce it. When in doubt while
constructing a state table, by all means introduce a new state. However, re-
strain yourself if you are certain that the relevant conditions have already
been identified by an existing state.

EXAMPLE 2

(Note: One of the topics treated in section 4 of Chapter 1 is the Hamming code.
Review it if you need a refresher.) To an n-bit message, an additional k bits are
added, making the parity of the resulting (n + k)-bit string either odd or even—our
choice. In this example, let n = 3 and k = 1; let’s choose odd parity. Suppose that a 4-
bit string is to be received; the first 3 bits constitute the message, and the fourth bit
is always 0 (equivalent to a blank). If the number of 1’s in the 3-bit message is odd,
the parity bit is to remain 0. If the number of 1’s is even, a 1 bit is to be generated

8Now, only one arc of the graph with input 1 enters A (from C/output 1). Four arcs enter E (from A, B,
D, and E, all with 0 in, 0 out. D is a spoiler state, entered by a string of three 1’s starting at A; any fur-
ther 1’s while in state D will keep the state in D. An input 1 while in state E is the first 1 after one or
more 0’s; in that respect, an input 1 while in state E should lead to the same state as a 1 while in state
A, namely, state B. ◆
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and inserted in the fourth position to make the parity of the 4-bit string odd. In ei-
ther case, after the fourth bit, transition is to be to a reset state, in which the machine
is ready to receive the next message sequence. Such a machine is a parity-bit gener-
ator. Our objective is to create a state table.

The first step is to create a state diagram. The machine is to be in the reset state
(say R) when the first bit arrives.The partial state diagram after the first bit is shown
in Figure 4a. There cannot be a 1 output until the parity bit arrives and completes a
4-bit string whose parity is even. At each input, the parity of the input bits up to that
point is either even or odd, so transition is to one of two possible next states: an
even-parity state or an odd-parity state.

The partial diagram after the second message bit is shown in Figure 4b. Why
is it necessary for the next state at the second input bit to be a new state rather
than one of the existing odd-parity or even-parity states, A or B? (Give it some
thought before you look at the footnote.9) Confirm the details of the complete
diagram shown in Figure 4c; for example, show all possible input sequences by
which states E and F are reached. An output of 1 occurs only upon returning to
reset from state E following one of the sequences 0000, 0110, and 1100.

The next step is to construct the flow table from the state diagram. It is
shown in Figure 5. The fourth input bit is never 1; so what will the output be for

9If A can be reached both after a single 0 and after a string 00, for example, then the count of the num-
ber of input bits is lost. Hence, we can’t tell when the third bit has arrived in order to decide whether or
not to generate a 1-bit, nor can we tell when the fourth bit has arrived so as to go back to the reset state.

Figure 4 State diagram of parity-bit generator.

Figure 5 State table for parity-bit generator.
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F R,0 R,×



x = 1 from states E and F? Confirm all the details of this table by reference to
the state diagram. ■

2 STATE ASSIGNMENTS

The preceding section described the initial stage in the design of a Mealy-model
synchronous sequential machine. From a word description of the specifications
of the problem, it consists of constructing a state/output table (possibly after
constructing a state diagram). During this process, it is possible that redundant
states are introduced; consequently, the table might have more states than neces-
sary to perform the desired task. Procedures for eliminating redundant states
would be useful, leading to a reduced table with fewer states that is equivalent,
in some sense, to the original table. Fortunately, such procedures do exist, and we
will discuss them later. For the present, assume that a reduced table is available.

The state of a sequential machine at a given time is the condition in which
past inputs have left it. This information is stored in the flip-flops; the state is,
thus, described collectively by the outputs of the flip-flops. The next step in the
design, then, is to identify the states in the table with specific flip-flop outputs.
That is the subject of concern in this section. We will develop the subject by ref-
erence to the examples in the preceding section.

EXAMPLE 3

The state table derived for the sequence detector in Example 1 was given in Figure 3
and is repeated in Figure 6a.The minimum number of state variables needed for a cir-
cuit implementation of this table is dlog2 4e = 2, where dke denotes the ceiling of k, the
smallest integer not less than k. Let us designate the state variables as y1 and y2. There
are four possible combinations of values of these two variables. How should these four
combinations be assigned individually to each of the four states? Before considering a
general answer to that question, let us arbitrarily make the assignment shown in Figure
6b. (Let’s temporarily neglect the output z and concentrate on the states.) The result is
a table that, for each present combination of state-variable values and each input value,
specifies the next combination of state-variable values. This is a state-transition table.

Note that there are two different orders: the order of listing the states in the
state table (alphabetical) and the order of the combinations of state-variable val-
ues. If the assignment is made so that both orders are maintained, there is no prob-
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Figure 6 State and transition tables for sequence detector.

NS,z

PS x = 0 x = 1

A A,0 B,0
B A,0 C,0
C A,1 D,0
D A,0 D,0

y1
+

y1y2 x = 0 x = 1

00 0 0
01 0 1
11 0 1
10 0 1

y2
+

y1y2 x = 0 x = 1

00 0 1
01 0 0
11 0 1
10 0 1

(y1y2)
+

y1y2 x = 0 x = 1

A➝ 00 00 01
B➝ 01 00 10
D➝ 11 00 11
C➝ 10 00 11

(a) (b) (c) (d)
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lem. For any other assignment, either one or the other order can be maintained,
but not both. It is much more convenient to maintain the order of the value com-
binations than the order of the state names, since the former is directly transfer-
able to a logical map. This is what has been done in Figure 6b; states C and D are
out of alphabetical order, but the value combinations are in logic map order.

For simplicity, the transition table in Figure 6b is separated into two tables in
Figures 6c and 6d, one for each state variable. If we were to implement the design
with D flip-flops, each of these tables would represent the excitation map for one of
the flip-flops; for a D flip-flop, the present input (excitation) is the same as the next
state. Just for pedagogical reasons let’s implement it with JK flip-flops instead.10

The first requirement is to determine logic maps for excitations J and K for each
flip-flop. For this we use the excitation requirements for JK flip-flops given in
Chapter 5, Figure 17, and repeated here in Figure 7a. For each flip-flop, this table gives
the required values of J and K for each transition from a present-state value to a next-
state value. In each case, J and K are to be obtained as the output of a combinational
circuit whose inputs are the circuit input x and present states y1 and y2. This requires
combining the transitions from present to next state in Figures 6c and 6d with the
transition requirements table in Figure 7a. Thus, from state y1y2 = 11 and x = 1, tran-
sition is to y1

+ y2
+ = 11 from Figures 6c and 6d. That is, for both y1 and y2, transition is

from 1 to 1 for x = 1. But from Figure 7a, the requirements for a 1 to 1 transition is

10Only one combinational logic circuit is needed for the excitation when implemention is with D flip-flops.
With JK flop-flops, two circuits are needed, one each for J and K. It is, of course, possible that the circuit re-
quired with a D flip-flop is more complex; nevertheless, with present-day implementations with PLDs, it is
usually preferable to use D flip-flops. Furthermore, JK flip-flops require more chip area in ASIC technology.

Figure 7 Excitation maps for the sequence detector.
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J = × and K = 0. These constitute the content of one square in the logic maps for each
J and K. The completed logic maps are shown in Figures 7b to 7e. (Confirm each of
them and confirm the expressions for J and K given under the maps.)

To complete the implementation, an expression for the output function must be
obtained. From the flow table in Figure 6a the output is 1 for exactly one state (state
C) and one input (x = 0). Since C has the assignment y1y2 = 10, the expression for
the output function is

z = x'y1y2'

The complete implementation is shown in Figure 8. (Confirm it all.) ■

Analysis

Once a sequential circuit has been designed and a logic diagram constructed, how
can we tell that errors have not been made and that the circuit outputs actually sat-
isfy the original specifications? As discussed in relation to combinational circuits in
Chapter 3, a process called verification is carried out. This involves making mea-
surements (of voltage, say) at appropriate points in any circuit (not just logic cir-
cuits) to verify that the actual values are what they are supposed to be theoretically.

Again, as discussed in Chapter 3, there is no point in physically implement-
ing the circuit before verification. Once a paper (or software-generated) se-
quential circuit has been obtained, one can analyze the circuit at various points
to verify that the logic values at these points are indeed the values required by
the design specs. Compared with the process of design, logic-circuit analysis is
rather trivial. One starts at any point in the circuit (gate or circuit outputs, or
MUX, flip-flop, or register inputs) and determines logic expressions for these
variables. This is repeated until expressions for all outputs are obtained. Then
one inserts all possible input values into these expressions. The values obtained
are then compared with what they are supposed to be.

As an example, look back at the sequence-detector design in Figure 8.
Carry out an analysis of the circuit and obtain expressions for the J’s and K’s
and the output z. (Don’t peek at Figure 9 until you have completed it.) The
lines on the time axis in Figure 9 represent the rising edge of the clock signal.
Using these expressions and the transition table of JK flip-flops, and assuming
the input sequence shown on the first line, the values of the other variables are
determined column by column. Note that, when x = 0, the values of the J’s and
K’s do not depend on the states of the flip-flops; hence, the next states in the
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Figure 8 Implementation of the sequence detector.
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first column are based only on x = 0. When x = 1, the values of J1 and K2 do de-
pend on the states (not the next states in the same column but the states in the
previous column). Verify the remaining columns and complete the last three
columns in Figure 9. Verify that the outputs satisfy the specifications.

Exercise 2 Using the information in Figure 9, choose an appropriate scale and
draw a timing diagram that includes the circuit input, the flip-flop inputs, the
next states, and the circuit output. ◆

Rules of Thumb for Assigning States

A number of loose ends in the preceding development remain to be explored.
The first is the simple observation that, when a transition table is obtained after
a state assignment is made, as in Figure 6b, it is not essential to rewrite it in the
form of the individual state variable transition tables, as was done in Figures 6c
and 6d, before constructing the excitation maps. Instead, for each input value,
concentrate on the column corresponding to one of the state variables, say y1,
mentally blocking the others from your perception, and construct the maps di-
rectly from the general transition table. Practice doing that for Figure 6b.

A more important consideration is the following. Given a state table having
k states, the number of state variables needed to implement it is n = dlog2 ke.
An immediate decision is needed as to which of the 2n combinations of state-
variable values should be assigned to each of the k states. For a nontrivial num-
ber of states, many different possibilities exist for this assignment.

Exercise 3 The state table for the sequence detector in Example 1 was given
in Figure 6a. The implementation of the circuit using the assignment in Figure
6b was given in Figure 8. Instead, use the following assignment and find an im-
plementation for the circuit: A: 00, B: 01, C: 11, D: 10. Compare the number of
gates with the number in Figure 8.
Answer11
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Figure 9 Timing table for the implementation in Figure 8.

x 0 1 1 0 1 1 0 0 1 1 1
J1 xy2 0 0 1 0 0 1 0 0
K1 x' 1 0 0 1 0 0 1 1
J2 x 0 1 1 0 1 1 0 0
K2 (xy1)' 1 1 1 1 1 1 1 1
y1

+ 0 0 1 0 0 1 0 0
y2

+ 0 1 0 0 1 0 0 0
z x'y1y2' 0 0 0 1 0 0 1 0

Time



210 Chapter 6 Synchronous Sequential Machines

Short

Even

In general, the choice of assignment will influence the implementation. Different
assignments lead to different maps of flip-flop excitation and output and, hence, to dif-
ferent expressions for excitation functions and output functions. Unfortunately, there
is no general theory on assignments—and so no algorithm—that will result in sim-
plicity of implementation. Experience is the only guide to making a state assignment.

General models of sequential circuits were given in Figure 1. Although the
actual circuit in Figure 8 is quite simple, it illustrates the Mealy model well. The
nonsequential part of the circuit consists of two classes: the combinational circuit
that implements the excitations and the one that implements the output, as ex-
pected. Once state reduction has been carried out (until you learn how, you’ll
have to subcontract it out), the extent of the memory (the number of flip-flops)
is fixed. Economy of implementation, then, is a matter of reducing the number of
IC packages (and gates) in either the state decoder, the output decoder, or both.

Recall that the number of prime implicants and the number of literals in a
prime implicant can be reduced when there are many adjacent minterms. Hence, it
comes down to this: How do we choose state assignments so as to achieve a large
number of adjacencies? Not much in the way of generalities can be deduced from
an examination of Example 3. However, on the basis of a great deal of experience,
some heuristic “rules” have been formulated as guides in making a state assignment
for the case of a single input. Figure 10 lists a number of such rules, in priority order.

For a given state table, it is unlikely that all the adjacencies specified by these
rules can be achieved. When there is a conflict, the higher-priority rules take
precedence. Even if the rules can be fully implemented, they do not guarantee an
optimal assignment. That is, the rules do not constitute an optimal algorithm.

Furthermore, they do not necessarily lead to a unique assignment; it may be
possible for the required adjacencies to be achieved by different assignments.
Even so, the rules will reduce the number of alternatives that must be checked.
Finally, even for the same assignment, the number of logic gates using JK flip-
flops might be different from the number using D or other flip-flops. Notwith-
standing all that, using these rules as a guide is reasonable.

EXAMPLE 4

An application of the assignment rules in the implementation of a sequential ma-
chine is illustrated in the state table shown in Figure 11a. Since there are seven states,

Figure 10 State assignment rules.

1. Two present states should be assigned adjacent codes
if they have the same next state for:
a. Each input combination
b. Different input combinations, if the next state can

also be given adjacent assignments
c. Some input combinations, but not necessarily all

2. For all inputs, codes assigned to the next states for
each present state should be adjacent.

3. Assignments should simplify the output function.
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the circuit will need dlog2 7e = 3 flip-flops. The adjacencies of states called for by the
adjacency rules are shown in Figure 11b. (Don’t fail to confirm these.) It is now a
problem of determining a state assignment so that as many as possible of these adja-
cencies is achieved. To help in this process, an assignment map can be created, as
shown in Figure 11c. This is a map whose coordinates are the three state variables.
Each square in the map corresponds to a combination of state variable values.

The placement of the states in the map is initiated by deciding on the state that
is to have the assignment 000. If there is a reset state in the problem, it is reasonable
to give it this assignment; if not, the choice is arbitrary. Suppose the combination 000
is assigned to state A; then G must have an adjacent assignment. But each cell in the
map has three others adjacent to it; which one is chosen for G depends on which
other adjacencies are needed. In the present example, G is not required to be adja-
cent to any other state, so the placement is very flexible. One possibility is to assign
001 to G. The remaining assignments are made using the same approach, resulting
in the assignment map in Figure 11c.

The next step in the design process is to construct transition and output tables.
This is done using the assignment map and the given state table. The result is shown
in Figure 12a. Let us again assume that JK flip-flops are to be used in the implemen-
tation; refer to Figure 7a for the transition requirements for this flip-flop. From
Figures 7a and 12a, we construct the J and K excitation maps for each flip-flop. The
result for the first flip-flop is shown in Figure 12b. The others are obtained similarly.
Expressions for the excitation and output functions are given in Figure 12c ■

Exercise 4 Construct the output map and the excitation maps for the other two
flip-flops in Example 4 and confirm the expressions given in Figure 12c. ◆

Exercise 5 In Example 4, suppose that the implementation is to use D flip-flops.
Determine the maps for the D excitations and, from these, the state decoder.
Compare the hardware with the case that uses JK flip-flops. ◆

EXAMPLE 5

The objective of this example is to find a good assignment scheme for the state table
in Figure 13a.

Figure 11 Example state table, adjacencies, and assignment map.

(a) (b)

NS,z

PS x = 0 x = 1

A B,1 B,0
B C,0 D,1
C E,1 F,0
D F,0 E,1
E G,0 A,0
F A,0 G,0
G B,0 B,0

Rule Adjacencies

1a AG
1b CD if EF

EF if AG
2 CD, EF, AG
3 AC, BD

(c)

A E

G F

B

C D

00

01

11

10

0 1

y2y3

y1
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The first step is to determine the adjacencies using the adjacency rules; they are
listed in Figure 13b (verify, please). With seven states, the number of state variables
needed is three. Each cell in a three-variable map is adjacent to three other cells, so
each state can be adjacent, at most, to three other states. In a full three-variable map,
a total of 12 adjacencies are thus available. (Confirm this.) There are only seven
states in this example; it turns out that the maximum number of adjacencies present
is nine. From the list of required adjacencies, it is clear that A is required to be ad-
jacent to four other states: G, C, F, and B. Since the lowest-priority adjacency is AB,

Figure 12 Transition table and excitation maps.

Figure 13 State table, required adjacencies, and assignment maps for Example 5.

(c)

(a)

y1
+y2

+y3
+ z

y1y2y3 x = 0 x = 1 x = 0 x = 1

A 000 111 111 1 0
G 001 111 111 0 0

011 — — — —
C 010 100 101 1 0
E 100 001 000 0 0
F 101 000 001 0 0
B 111 010 110 0 1
D 110 101 100 0 1

J2 = y1'

K2 = y3'

J3' = (x' + y1')(x + y1 + y2')

K3 = (x + y1)(x' + y3')

z = x'y1'y3' + xy1y2

(b)(a)

NS,z

PS x = 0 x = 1

A B,0 B,1
B F,0 D,1
C E,1 G,1
D A,0 C,0
E D,1 G,0
F F,0 A,0
G C,1 B,0

Rule Adjacencies

1c AG, BF, CE
2 AC, AF, BC

DF, DG, EG
3 AB, AC, BC

CE, CG, EG

1 × × 1

1 × × 1

× × × ×

1 × × 1

00

01

11

10

00 01 11 10

y2y3

xy1

J1 = 1
(b)

× 1 1 ×

× 1 1 ×

× 1 ×

× ×

00

01

11

10

00 01 11 10

y2y3

xy1

K1 = y2' +x'y3

A C

G E

D B

F

00

01

11

10

0 1

y2y3

y1

(c)

A G

F D

B

C E

00

01

11

10

0 1

y2y3

y1
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that one should be the first to be abandoned. Similarly, the adjacency CG should be
abandoned, since C (and G) cannot be made adjacent to four other states.

Whenever there is a choice, try to achieve those adjacencies at one priority
level that are also required at a lower level. Aside from AB and CG (which we
abandoned), the remaining adjacencies in rule 3 are also required by higher-
order rules.

The number of achievable adjacencies in this example turns out to be nine,
equal to the maximum possible. Figure 13c shows two assignment maps; each
achieves all nine required adjacencies. Using JK flip-flops, the first one can be
implemented with five AND and four OR gates. The second one needs one more
OR gate. ■

Exercise 6 Carry out implementations for the two assignments given in Example
5 and confirm the stated results. Convert to all NAND gates. ◆

3 GENERAL DESIGN PROCEDURE

Each of the elements of a procedure for the design of synchronous sequential
machines has been discussed in preceding sections of this chapter. We are now
ready to consolidate these elements into a general design procedure. We will
illustrate this general procedure by applying it to some specific examples.

Mealy Machine

The Mealy and Moore circuits are models that were shown in Figure 1. When a
sequential circuit design problem is specified in terms of the outputs desired for
specific sequences of inputs, no model is generally specified. For a given design
requirement, it is conceivable to carry out the design based on either model.
That means two different designs (state tables) can be obtained. It also means
that one of the designs can be obtained from the other. In this book we will deal
with both Mealy and Moore machines. The general design procedure for Mealy
machines is given in Figure 14.

Figure 14 Design procedure for Mealy machines.

1. State table: Given the specifications of a problem in natural language, construct a
state table satisfying the specifications, perhaps by first constructing a state diagram.

2. Equivalent reduced table: Use appropriate procedures to determine equivalent states
and to remove redundant states, thus generating an equivalent reduced table.
(Procedures will be considered in the following section.)

3. State assignment: Choose a state assignment.
4. Transition and output tables: Use the assignment to construct these.
5. Excitation maps: Choose a flip-flop type; using the transition table and the excitation

requirements for the chosen flip-flop, construct excitation maps.
6. Excitation functions: Derive expressions for these from the maps.
7. Output functions: Derive expressions for these from the output table.
8. Implementation: Implement the state decoder from the excitation functions and the

output decoder from the output functions.



EXAMPLE 6

A sequential circuit is to be designed having a single input line x and a single
output line z. Starting in a reset state, the circuit receives input sequences con-
sisting of 3-bit binary words. Each input word follows the preceding word with
a delay of one clock period. The circuit must be in the reset state at the begin-
ning of each word. The output is to be z = 1 upon receipt of the third bit of a
word if the total number of level changes (from 0 to 1 or from 1 to 0) is odd
(101, for example, has two level changes while 001 has only one). Such a circuit
is called a change-of-level detector.

As the first step, we’ll obtain the state diagram. Starting from the reset state, no
matter what the third bit is, the circuit is to wait one clock period and return to the
reset state at the fourth clock pulse.That means the third bit of the input word sends
the circuit to a waiting state. Figure 15a shows the state diagram. The reset state is
A and the waiting state is H. (To confirm this diagram, cover the waiting state and
all the lines coming into it and out of it; then describe each of the states reached
after 2 bits in terms of the number of level changes. Confirm the output resulting
from each input that sends the circuit to the waiting state.) The diagram and the
statement of the problem make it clear that each state is unique and there are no
redundant states; no two states are equivalent to each other.

The next step is the state table; this is easily constructed from the state diagram
and is shown in Figure 15b. (Confirm this, please.) Since each state is unique, the
state table cannot be further reduced. The number of flip-flops needed is dlog2 8e =
3. The rules of thumb for adjacency, shown in Figure 16a, lead to the adjacency map
in Figure 16b.

For variety, this time let’s use D flip-flops, for which the present excitation is the
same as the next state. Hence, the entries in the transition table also specify the D
excitations, so logic maps for the D’s can be constructed directly from the transition
tables. Likewise for the output. We will supply the results here, but we expect you to
confirm all this in an exercise. The following expressions result from the maps.

D1 = y2 + xy1' + y1'y3 D2 = y2'y3

D3 = y1'y2'y3' + xy2'y3 z = x'y1 + xy1y2
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Figure 15 State diagram and state table of change-of-level detector.

(b)

NS,z

PS x = 0 x = 1

A B,0 C,0
B D,0 E,0
C F,0 G,0
D H,0 H,1
E H,0 H,1
F H,1 H,0
G H,1 H,0
H A,0 A,0

F

C
B

DE

G
H

(a)

A

1/

1/

1/

0/1

0/

0/1 1/1
1/1

1/

0/

0/0/

0/x/ 1/



The resulting circuit is shown in Figure 17. ■

Exercise 7 Using the transition table in Figure 16c, construct excitation and
output maps. From these, confirm the preceding expressions for the D excita-
tions and the outputs. Verify the implementation in Figure 12. ◆

EXAMPLE 7

A synchronous sequential machine is to have a single input line and a single output line.
The circuit is to receive messages of 5-bit words coded in 2-out-of-5 code. (See Chapter
1 for a description of codes.) The purpose of the circuit is to detect an error in any of the
words.Thus, the output is to become 1 whenever a 5-bit word does not represent a valid
code word. At the end of each word the machine is to return to the reset state.
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y1
+y2

+y3
+ z

y1y2y3 x = 0 x = 1 x = 0 x = 1

A ➝ 000 001 101 0 0
B ➝ 001 110 111 0 0
G ➝ 011 100 100 1 0
F ➝ 010 100 100 1 0
H ➝ 100 000 000 0 0
C ➝ 101 010 011 0 0
E ➝ 111 100 100 0 1
D ➝ 110 100 100 0 1

Rule Adjacencies

1a DE, DF, DG
EF, EG, FG

2 FG, BC, DE
3 DE, FG

Adjacencies not achieved:
DG, EF.

(a) (c)

Figure 16 Adjacency rules, assignment map, and transition table for the change-of-level
detector.

C

C

y1

y3

z

D Q

C
y2

x

D Q

Q
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2
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Figure 17 Implementation of the change-of-level detector.
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State Diagram Let the reset state be labeled R. One possibility for the structure
of the state diagram is a tree, starting at state R. In such a diagram, when the ma-
chine is in any state, each of the two possible input values leads to a new state. Thus,
the state diagram will have 25 = 32 states.That not all of these are independent states
is seen by examining the information that is needed upon receipt of the kth bit:

• How many bits have been received so far?
• How many of these are 1 bits?

Starting with the reset state, after the receipt of the second bit of a word, there
are three possibilities: the number of 1 bits received is 0, 1, or 2. The partial state di-
agram is shown in Figure 18a. The three possibilities identify just three states after
receipt of the second bit. A tree structure would require four states at this point.
Upon receipt of the third bit of the word, there are four possibilities for the number
of 1 bits received to that point—0, 1, 2, and 3—and thus four new states, labeled G,
H, I, J in Figure 18b. Note that no matter what the fourth bit is while at present state
J, the received word will never be in 2-out-of-5 code. Hence, from state J, the next
state will be an error state (for which the letter E is reserved), but the output will
not become 1 until the arrival of the fifth bit, whether a 1 or a 0.

The completed state diagram is shown in Figure 18b; to avoid clutter in the di-
agram, with lines running back to R from each of the states reached after 4 bits, a
second copy of R is provided near these latter states. The two copies of R constitute
the same state.

State Table The next step is to construct the state table from the state diagram.
Do this and confirm the table given in Figure 19a.

Assignment Map The number of flip-flops needed is dlog2 13e = 4.Apply the rules
of thumb for state adjacencies and confirm the list given in Figure 19.An assignment
map that achieves all but one of the adjacencies is given in Figure 19b. It is impos-
sible to achieve all three of the adjacencies required by rule 1. Since two of them are

1/

1/

0/ 0/

B

DA

1/

0/ 0/ 0/

0/0/ 0/

0/ ×/0

×/
HC

1/ 1/1 0/0

1/1

K R

E

G

R
1/ 1/

1/
1/

1/

0/

F

(b)

J

L

I

1/

1/

0/ 0/

B

D

(a)

A

0/

C

R
1/

F

Figure 18 State diagram of error detector in 2-out-of-5 code words.
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(a)

NS,z

PS x = 0 x = 1

R A,0 B,0
A C,0 D,0
B D,0 F,0
C G,0 H,0
D H,0 I,0
E R,1 R,1
F I,0 J,0
G E,0 K,0
H K,0 L,0
I L,0 E,0
J E,0 E,0
K R,1 R,0
L R,0 R,1

Rule Adjacencies

1a EK, EL, KL
1c GJ, IJ
2 AB, CD, DF,

GH, HI, IJ,
EK, EL, KL

3 EK, EL

(c)

y1'y2'y3'y4'

y1y2y3y4 x = 0 x = 1

R ➝ 0000 1100 1110
E ➝ 0001 0000 0000
K ➝ 0011 0000 0000

0010 xxxx xxxx
C ➝ 0100 1011 1010
L ➝ 0101 0000 0000
F ➝ 0111 1000 1001
D ➝ 0110 1010 1000
I ➝ 1000 0101 0001
J ➝ 1001 0001 0001
G ➝ 1011 0001 0011
H ➝ 1010 0011 0101
A ➝ 1100 0100 0110

1101 xxxx xxxx
1111 xxxx xxxx

B ➝ 1110 0110 0111

Figure 19 State table, assignment map, and transition table for example.

Figure 20 Excitation maps for error detector.
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required by lower-priority rules, it is these two that are actually achieved. (Confirm
everything as you go along.)

Transition Table The transition table resulting from the adjacency map is shown
in Figure 19c. Since four state variables imply 16 possible states, and there are actu-
ally only 13, three of the state variable combinations do not correspond to states of
the machine. Hence, we don’t care what the next states resulting from such nonex-
istent present states will be.

Flip-Flop Type, Excitation and Output Functions Assume the use of D flip-flops
in the implementation. The excitation and output maps require five variables. The
excitation maps are shown in Figure 20. Confirm each of these maps and the result-
ing excitation and output expressions that follow. (The output map is simple enough
that it is not shown.)

D1 = y1'y4' + y1'y2y3

D2 = y1y2 + y1'y2'y4' + x'y1y3'y4' + xy1y3y4'

D3 = y1y2y3 + x'y1y2'y4' + xy1y2 + xy1'y3'y4' + xy1y3y4

D4 = y1y2' + xy1y3 + xy2y3y4 + xy1'y2y3'y4'

z = x'y1'y2'y4 + xy1'y3'y4 ■

Moore Machine

As shown in the model in Figure 1b, in a Moore machine the outputs do not de-
pend directly on the inputs. Hence, in the state table of a Moore machine there
is a single output column for each present state, independent of the input. An
example will illustrate some of the features.

EXAMPLE 8

A synchronous state machine is to be designed to serve as an odd-parity checker.
The inputs to be checked for odd parity arrive on an input line x, but the parity is
checked only while the signal on another input line y (a synchronizing input) is 1.
An output z, depending only on the state, is to become 1 when the parity fails to be
odd. A possible sequence of inputs and output are

y: 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0
x: × × × 1 0 1 0 1 1 1 0 1 0 0 × ×
z: - - - 0 0 0 0 1 1 1 1 1 0 - - -

Since the output is to depend only on the state, parity is determined from a
memory of just the last two input x bits. This suggests two flip-flops, let’s say D flip-
flops. A register consisting of two D flip-flops, labeled 1 and 2, is shown in Figure
21a.12 Note that, at any given clock tick, Q1 will have whatever value x had on the
preceding clock tick. Similarly, Q2 will have whatever value Q1 had at the preceding
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clock tick. Using this information, construct three-variable logic maps (x, Q1, and
Q2) for Q1

+ and Q2
+ and confirm that Q1

+ = x and Q2
+ = Q1. Since the output de-

pends only on the state, a logic map for the output will be just a two-variable map
(Q1 and Q2). Draw this map and determine an expression for the output.
Answer13

The requirement that the process will proceed only when y = 1 can be met by
an AND gate with inputs x and y. The input to the first flip-flop will remain 0 when
y = 0, but it will be x when y = 1. The full circuit, including the output decoder, is
shown in Figure 21b. (Please verify.) ■

What was done in this example seems almost like cheating: no state dia-
gram was drawn, no state tables created, no assignments made, and so on. We
have seen that two flip-flops will do the trick and that, hence, there is a maxi-
mum of four states. As an exercise, construct a state table using the assignments
(00, 01, 10, and 11) as state names and construct a separate column for the out-
put, independent of the input. Using this table, confirm the logic maps you pre-
viously constructed.

4 STATE EQUIVALENCE AND MACHINE MINIMIZATION

Exercise 1 in section 1 (and also Example 7) demonstrated that more than one
state diagram (or state table) can be constructed to satisfy the description of a
design problem. If one such table has nine states and another has four, the first
requires twice as many flip-flops in its implementation as the second. But no
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Figure 21 Moore circuit realizing Example 8.
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more information needs to be stored in the first machine than in the second. It
must be that whatever task is performed by some of the nine states is per-
formed also by other states, rendering some of the nine states superfluous.

It would be of great benefit to detect these superfluous states and remove
them, thus leaving a reduced state table. We have already mentioned the pos-
sible reduction in the complexity of the circuit. Once a reduced machine is im-
plemented, what is possibly of even more value is that the reduced complexity
makes verification (the experimental determination of faults in a machine)
considerably simpler. The purpose of this section is to develop procedures for
reducing a given state table to one that carries out the same function with
fewer states.

Distinguishability and Equivalence

A finite-state machine operates by receiving a sequence of input symbols, mak-
ing transitions of state, and emitting output symbols. The input sequence be-
comes transformed into the output sequence. Look back at the state table in
Figure 11 and suppose the circuit is in state B when an input 1 occurs. A transi-
tion is made to state D. We describe this by saying that state D succeeds state B
under an input 1, or that D is the 1-successor of B. Now suppose that the longer
input string 011 arrives when the machine is initially in state A. The final state
reached will be E. (Trace out the sequence of states encountered and verify.) So
E might be called the 011-successor of A. In general,

If input sequence X is applied to a finite-state machine that is in state Si and
the machine makes a final transition to Sj, then Sj is the X-successor of Si.

If the same input sequence X is applied to a machine twice, once when the
machine is in state Si and once when it is in Sj, the two output sequences pro-
duced may or may not be the same. If they are the same, we will not be able to
distinguish the two initial states by means of that particular input sequence.
Now suppose that the output sequence is always the same, starting from each
of the two states, no matter what input sequence is applied. Clearly, the two
states could never be distinguished from each other. This leads to the follow-
ing definition:

Two states Si and Sj in a finite-state machine are equivalent if the same
output sequence is produced in response to an input sequence, starting in
either state, and this is true for every finite input sequence.

If the potential equivalence of two states were to be checked using this de-
finition, a whole career would be needed to check all possible input sequences.
Clearly, a shorter test is needed. Suppose that, when the machine is started in
two different states, the output sequences produced by the same input sequence
are not the same. The two states can then be distinguished. We make the fol-
lowing statement:

Two states Si and Sj of a machine are distinguishable if and only if there exists
at least one finite input sequence that produces different output sequences
starting first from state Si and then from Sj. If the distinguishing sequence has
length k, then the two states are k-distinguishable.
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To illustrate, consider states A and D in the state table given in Figure 22a as
initial states. The outputs are the same for either input of length 1 (0 or 1).
Hence, states A and D are not 1-distinguishable. Now take an input 00, of
length 2. Starting from A, the output is 01, but starting from D, it is 00. Hence,
states A and D are 2-distinguishable. This leads to the following definition:

Two states that are not k-distinguishable are k-equivalent.

The previous definition for equivalence can now be expressed as follows:

Two states of a machine are equivalent if they are k-equivalent for all k.

In the preceding discussion we have concentrated on output sequences in
response to an input sequence. No attention has been paid to the next states
that result along the way. In Figure 22a, for example, we found states A and D
to be 1-equivalent; then we tested an input string of length 2. Suppose, instead,
that we consider the next states after the first input. The next states are not the
same starting from states A and D. Furthermore, it is evident that, using those
next states as present states, the same output does not result for each input.
Hence, the original states A and D are distinguishable.

Let’s pursue this line, using Figure 22b, which is almost the same table as the
one in Figure 22a. Now states A, D, and E are all 1-equivalent. Furthermore, the
next states from A and E are the same for each input. Hence, after the first input
bit, the transition from each of states A and E will be to the same next state; the
outputs thereafter will be exactly the same. Hence, A and E are equivalent.

Machine Minimization

The preceding discussion gives a clue as to how to find the states of a machine
that are equivalent to each other. Starting from an input sequence of length 1, we
group those states that are 1-equivalent. These states are distinguishable from the
others. Next we examine the next states to decide on their distinguishability, and
so on. The details of the process are best described with an example.

EXAMPLE 9

A state table is given in Figure 23a. The objective is to find all groups of equivalent
states and to reduce the table to one having a minimal number of states.

(a) (b)

NS,z

PS x = 0 x = 1

A B,0 D,1
B C,1 D,1
C C,0 A,0
D A,0 C,1

NS,z

PS x = 0 x = 1

A B,0 D,1
B C,1 D,1
C E,0 A,1
D A,0 C,1
E B,0 D,1

Figure 22 Example machines.



In accordance with the plan, we start by identifying those states that are distin-
guishable with an input sequence of length 1. We find that the group of states A, D,
F have the same output for x = 0; they also have the same output for x = 1. Hence,
they are not distinguishable with an input sequence of length 1. Similarly, confirm
that the states B, C, E, G are indistinguishable with an input sequence of length 1.
But these two groups of states are distinguishable from each other. Thus, the total-
ity of all the states in the table can be partitioned into two blocks of states, written
as follows: P1 = {ADF; BCEG}. Within each block, the states are indistinguishable
with an input sequence of length 1, but those in one block are distinguishable from
those in the other.

Next we examine the successor states from all states in each block, one at a
time. If, for each input symbol, the next states from all states in a block are not in
the same block but fall in two distinct blocks, then the two sub-blocks are distin-
guishable. Hence, the original block must be subdivided. Thus, for x = 1, the next
states from the block BCEG are DFFD; these are all in the block ADF. However,
for x = 0, the next states from the block BCEG are CEBA; all except the next state
from state G are in the same block. Hence, block BCEG must be subdivided into
two blocks, BCE and G. The resulting partition is P2 = {ADF; BCE; G}, as shown in
Figure 23b; it is a refined version of P1.

The next states from any one block in partition P2 were found to be in the same
block; hence, these next states will have the same outputs for each input bit. (That’s
because the outputs were the same, even for the larger blocks in partition P1.) These
next states in each block are, then, 1-equivalent. Hence, their predecessor states are
2-equivalent.

The process is now repeated with partition P2. Again we take each block one at
a time and, for each input, examine their next states to see if they fall in the same
new block. (Clearly, blocks containing a single state need not be examined.) For
each input, the next states from the block BCE fall in the same block. This is also
true for x = 0 for block ADF; however, for x = 1, the next states for block ADF are
GBC. These next states are not in the same block; hence, a further refinement of P2
is needed, as shown in Figure 23b. The states in each new block are 3-equivalent.

The process must be repeated on the multistate blocks in partition P3. Go
through the process and confirm that no further refinements of the partition are
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(a) (b) (c)

NS,z

PS x = 0 x = 1

A D,1 G,1
B C,0 D,1
C E,0 F,1
D F,1 B,1
E B,0 F,1
F D,1 C,1
G A,0 D,1

NS,z

PS x = 0 x = 1

A ➝ S1 S3,1 S4,1
BCE ➝ S2 S2,0 S3,1

DF ➝ S3 S3,1 S2,1
G ➝ S4 S1,0 S3,1

P1 = {ADF; BCEG}

P2 = {ADF; BCE; G}

P3 = {A; DF; BCE; G}

P4 = P3

Figure 23 Partitioning and machine minimization.



needed. The states within each block cannot be distinguished; hence, they are equiv-
alent. This final partition is called the equivalence partition. Each of the four blocks
in the equivalence partition constitutes a state of the machine to which each of the
original states in that block is equivalent. If these states are labeled Si, a reduced
state table can be constructed, as shown in Figure 23c. ■

The description of this process is far lengthier than the actual effort involved
in carrying it out.14 Note, in this example, that the reduced machine needs just
two flip-flops in its implementation, whereas the original table required three.

The subject of this section constitutes the second step in the general design
procedure described in the preceding section. As noted earlier, when you ini-
tially construct a state table to satisfy the specifications of a design problem, it
isn’t necessary to spend a lengthy amount of time to ensure that there are no
redundant states. Any redundant states introduced earlier can always be re-
moved in the machine minimization step.15

5 MACHINES WITH FINITE MEMORY SPANS16

What distinguishes sequential circuits from combinational circuits is mem-
ory. The information stored in memory, together with an input sequence, de-
termines an output sequence. But how much past data is it necessary for the
machine to remember? Is it necessary for the machine to remember past in-
puts only, or can its future behavior be determined from the present input
and a memory of past outputs? Or is a memory of both inputs and outputs
neccessary?

We will examine three classes of machines in this section. In the three re-
spective cases, the present output is determined by the present input plus

1. A limited number of the immediately preceding inputs
2. A limited number of the immediately preceding outputs
3. A limited number of the immediately preceding inputs and outputs

The machines are all said to have finite memory spans.
Not all finite-state machines have this characteristic; a machine with a wait-

ing state, for example, does not. It cannot produce an output while in this state,
no matter how long it stays there, even if it receives an acceptable input se-
quence. Each of the three classes of finite-memory machines will be discussed
and implemented in certain specific structures.
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concentrate on the principles.
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concepts apply also to asynchronous machines, and they will be treated in Chapter 7. If you skip Chapter
7, you will also be skipping coverage of incompletely specified synchronous machines.
16This section can be omitted without penalty in terms of preparation for material that follows.



Machines with Finite Input Memory

One possible formal definition of the machines to be discussed in this section is
the following.

A finite-state machine M is said to have finite input memory of memory
span (or order) m if the present state of M can be determined uniquely
from the preceding m input symbols but no fewer than m.

It is clear from the definition that a circuit implementing the memory is an m-
flip-flop shift register in which the last m inputs are stored. The present state
consists of the outputs of the m flip-flops in the register. A canonic implemen-
tation consists of an m-flip-flop shift register and a combinational output de-
coder, as shown in Figure 24.

The shift register in Figure 24 is a serial-to-parallel converter. The input in-
formation arrives sequentially and is stored in the shift register. When the last
bit of an input sequence of appropriate length arrives, both that input and the
previously stored information are applied to the combinational logic at the same
time, in parallel; the logic of the decoder then produces the desired output.

Since the state of a finite-input-memory machine of span m after an m-bit
input sequence is known, the output will become known when the next bit ar-
rives. Hence, such a machine can also be defined as one whose output is deter-
mined by the present input and the preceding input sequence of m bits.

The design procedure for a machine with finite memory span can be sim-
plified if the specifications of the design problem allow us to recognize its na-
ture; only the output decoder needs to be designed.

EXAMPLE 10

A synchronous sequential circuit with a single input line x and a single output line
z is to be designed so as to produce an output z = 1 whenever an input symbol com-
pletes a sequence of 4 identical input bits; the output is to be 0 otherwise.

Just prior to receipt of each input symbol, the machine must remember only the
preceding 3 bits. It then produces a 1 or a 0 on the basis of those 3 bits and the pres-
ent input bit. This, then, is a machine having finite input memory of span 3. Labeling
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Figure 24 Canonic implementation of a finite-input-memory machine.
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the states Q with subscripts 1, 2, and 3, from left to right, the minterms are 0000 and
1111. Hence, the output is easily written as

z = xQ1Q2Q3 + x'Q1'Q2'Q3'

The canonic implementation of the circuit is shown in Figure 25. ■

Although the preceding example included just a single input line, the con-
cept and the canonic implementation apply to any number of input lines. A sep-
arate shift register is needed for each input line.

In addition to the main inputs, some machines have one or more control in-
puts in order to change the instructions for the generation of an output. It is the
present values of those inputs that do the controlling; past control inputs need
not be stored. To illustrate, in the preceding example there might be a control
input xc that, under the previously given conditions of the problem, permits the
output to become 1 only if xc = 1. For xc = 0 the output could be specified as
something else in terms of the main input x and its past values. In the imple-
mentation of the machine, the shift register in Figure 25 would not change; only
the output decoder logic would be modified.

Machines with Finite Output Memory

In the second class of machines being considered, it is the preceding outputs
that are to be remembered rather than the inputs. The definition of this class of
machines is as follows:

A sequential machine M is said to have finite output memory of memory
span (or order) m if the present output of M can be determined from the
present input and the immediately preceding m (but no fewer) output
symbols.

Again the definition makes it clear that the memory can be implemented with
a shift register (left shift) of m flip-flops in which the preceding m outputs are
stored. Then, when the next input symbol arrives, the output is determined by
both this input and the previously stored outputs. The canonical implementa-
tion is shown in Figure 26. The input to the shift register is the most recent out-
put symbol. It is also clear that, if there is more than one output line, the
canonic implementation will require more than one shift register.
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Figure 25 Canonic implementation of Example 10.
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EXAMPLE 11

A single-input, single-output sequential machine is to be designed. For an input x =
1, the output is to equal what the output was two clock periods earlier; and for x =
0, the output should equal what the output was three clock periods earlier.

The most that the machine must remember is three preceding output symbols.
Hence, the desired machine has finite output memory of span 3.An expression for the
output is easily written. If we label the states Q1 to Q3, then when x = 1, the output
should be Q2; and when x = 0 (which means x' = 1), the output should be Q3. Hence,

z = xQ2 + x'Q3

(Verify the values of z when x = 1 and when x = 0.) The implementation is shown in
Figure 27. ■

Exercise 8 From the problem statement in Example 11, draw a logic map for
the output, with the input and the three states as map variables. From the map,
write a minimal sum-of-products expression and confirm the expression in the
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Figure 26 Canonic form of finite-output-memory machine.

Figure 27 Finite-output-memory machine implementing Example 11.
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example. (This implementation does not depend on recognition of the nature of
the circuit as finite-output memory.) ◆

Finite-Memory Machines

The third class of finite-state machines under discussion depends not just on a
fixed number of past inputs or on a fixed number of past outputs, but on both.
The formal definition follows:

A sequential machine M is a finite-memory machine of span m if the
present state can be determined uniquely from the preceding mi (but no
fewer) input symbols and the preceding mo (but no fewer) output symbols;
the span is m = max {mi, mo}.

You might conjecture that a canonic implementation of this machine would merge
the two canonic implementations in Figures 24 and 26 by including two shift registers,
one to store the mi past inputs and one to store the mo past outputs.While such an im-
plementation is possible in some cases, it turns out that it is not universally possible.

Consider a finite-input-memory machine. From the definition just given,
this machine is also a finite-memory machine. That is, if the present state is de-
termined by the first mi input symbols only, knowing also the first mo output
symbols will not detract from this. This finite-memory machine, however, is not
a finite-output-memory machine; it is a finite-memory machine by virtue of
having finite input memory. A similar argument can be made that a machine
with finite output memory is, by virtue of this fact, a finite-memory machine, al-
though not a finite-input-memory machine.

The converse is not true. That is, it is possible for a machine to be a finite-
memory machine without having either finite input memory or finite output
memory. To establish the validity of this claim requires the introduction of sev-
eral additional concepts and algorithms that would take us too far afield. We will
therefore abandon further consideration of the subject here but will provide
some problems at the end of the chapter so you can explore it to some extent.

6 SYNCHRONOUS COUNTERS

We now turn to a class of sequential machines that perform a particular type of
operation. A counter is a sequential machine that, starting at a particular state,
cycles through a fixed sequence of states and then returns to its initial state;
thereafter, it repeats this process. The number of distinct states in the counter
is called its modulo number.

In some cases, the useful information from the counter may be simply the
state it happens to be in. In this case, there is no output decoder circuit and no
other output lines but its flip-flop outputs. In other cases, an output other than
the state may be required. In synchronous counters, the signal that excites the
counter is very often the clock. At other times, other inputs (called control in-
puts) are also provided. (It is also possible for counters to be asynchronous;
such counters will be considered in Chapter 7.)

Counters can be used for a number of purposes.A common purpose is to extend
the time scale—that is, to introduce delay in the inevitable march of the clock. This
is done by producing an output (or control) signal for each k periods of the clock; this
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signal, rather than the clock, then controls the timing of a subsequent operation.
Another purpose of a counter is to produce sequential words in some specific code.
Of course, just plain counting is an important purpose—for example, counting how
many times some process has been carried out. It would be very useful if

• The counter were cleared (set to 0) when first turned on or after it has gone
through its count, or

• The counter were set at some specific value

This is done by external CLEAR and RESET inputs.

Single-Mode Counters

A counter is said to be single mode if the only external input is the clock and the only
outputs are the states—the flip-flop outputs. The counter is described by specifying

• Its modulo number
• The code assigned to the states

The number of flip-flops needed in a counter is implicit in its modulo number.
Thus, a modulo-k counter will require dlog2 ke flip-flops. Modulo-6 or modulo-8
counters, counting in binary or Gray code, will have three flip-flops; in common ter-
minology we call them “3-bit counters.”

If the code in which the counting takes place is specified, there is no point in
giving the states arbitrary names (such as letters of the alphabet) and then later
making a state assignment. Rather, each successive state is given an assignment
on the basis of the code being used. It is convenient to assign the starting state of
the counter the code word 00...0, unless there is some reason not to do so.
(Return to Chapter 1 to review the subject of codes.) As a matter of fact, the state
assignment problem, so important in the machines considered so far, disappears
in a counter. The codes representing the states are specified beforehand.

The number of code words is fixed by the modulo number. Several codes are shown
in Figure 28 for modulo numbers 6 and 8. Starting at code word 00...0, the counter is to
cycle through each code word and return to 00...0 after the last word in each code.

Unit-Distance Counters

After the modulo number of a counter has been specified, the next question that
comes up is, What code should be used in making the successive state assignments?
Perhaps the simplest answer is: binary. The disadvantage of this code is that more
than one bit value changes in a clock period.Thus, in going from 001 to 010, both the
second and the third bits (counting left to right) must change value. This means that
more than one flip-flop output must change simultaneously. If it should happen that
one change occurs even slightly before the other(s), there may be a momentary
transition to the wrong state—or even to an invalid state, one that is not among the
states of the counter. For this reason, a code whose distance is 1 is preferable.17
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The codes in the second and third columns in Figure 28a are unit-distance
codes. Suppose the code in the second column is selected. Since there are no
inputs (besides the clock) and no outputs, there will be no input/output in-
formation in the state diagram. Drawing the state diagram will be left to you
(do it now). Since there is no output decoder, the only other hardware in the
circuit besides the three flip-flops is the state decoder. Since the states are
identified by their assignment in accordance with the code, the resulting
state table is the transition table shown in Figure 29a. Assuming JK flip-
flops, we use the excitation requirements tables in Chapter 5, Figure 17 to
construct the logic maps for the J and K excitations. This is done line by line
in the excitation table for each column. (These tables appear on the inside
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Figure 28 Codes for use in modulo-6 and modulo-8 counters. (a) Modulo-6. (b) Modulo-8.

(a)

(b)

Unit
Binary Distance Creeping One-hot

000 000 000 00000
001 001 100 10000
010 011 110 01000
011 010 111 00100
100 110 011 00010
101 100 001 00001

Binary Gray Creeping One-hot

000 000 0000 0000000
001 001 1000 1000000
010 011 1100 0100000
011 010 1110 0010000
100 110 1111 0001000
101 111 0111 0000100
110 101 0011 0000010
111 100 0001 0000001

Figure 29 Three-bit, modulo-6 counter design.
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cover of the book. You could make yourself a copy and have it
handy so you can consult it without having to hunt in the book
each time you want to use the tables.)

From the excitation requirements in Figure 17, Chapter 5, J =
1 only for the transition from 0 to 1. In the transition table of this
example (for flip-flop 1), this occurs only when Q1Q2Q3 = 010.
Hence, a 1 is entered in the corresponding cell in the logic map for
J1 in Figure 29b. Also, J1 is a don’t-care for a pres-ent state Q1 = 1,
independent of the other states. In addition, all J’s and K’s are
don’t-cares for the present states that never occur (110, 111). All
this confirms the logic map for J1 in Figure 29b.

Exercise 9 Use the same approach to construct the logic maps for
the other J’s and K’s. Confirm your results using Figure 29b. ◆

Exercise 10 From the maps in Figure 29b, construct the combina-
tional hardware of the state decoder. Confirm your circuit with the im-
plementation in Figure 30. ◆

Ring Counters

Another unit-distance code in Figure 28a is the creeping code. A
counter designed to count in this code is called a ring counter. The state
table, which is also the transition table (since the states are identified by
their assignments), is shown in Figure 31a. This time, let’s assume that
D flip-flops are to be used. Then the excitations are the next states.

Exercise 11 Draw logic maps for the D inputs from the transition
table. Confirm using Figure 31b, but only after drawing your own! ◆

It is clear that the output of one flip-flop is the excitation to
the next one, except that the output of the last flip-flop (the tail) is
complemented before becoming the input to the first flip-flop.
(For this reason it is called a twisted-tail counter or some colorful
variation of this.) Hence, this counter is nothing but a serial shift
register with its complemented output fed into its input. For prac-
tice, draw the implementation circuit.
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Figure 30 JK flip-flop implementation of modulo-6 counter.
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Hang-up States

Ring counters have a problem that is not evident from Figure 31. What would hap-
pen if, for some reason, the counter enters one of the unused states (101 or 010;
see Figure 28a)? This could happen when the power is first turned on, for exam-
ple, or as a result of noise in the circuit. Nothing significant would happen if the
next state were not an unused state. In this case, the count would resume on the
next clock pulse. But, on the other hand, if each next state for subsequent clock
pulses is an unused state, the counter will hang up. A state in which a counter
hangs up so that the count cannot proceed is called (surprise!) a hang-up state.

Well, what is the situation in Figure 31? Because of the excitation equa-
tions, if the present state happens to be the unused state Q1Q2Q3 = 010, then
the next state will be Q1

+Q2
+Q3

+ = D1D2D3 = Q3'Q1Q2 = 0'01 = 101; this is the
other unused state. (By going through a similar process, show that the next state
after that will be 010 again.) Once the circuit enters one of the two unused
states, it hangs up and cycles between them; it will never return to the counting
sequence. Hence, this counter would be defective and worthless.

Since the problem is caused by the excitation equations, resulting in a se-
quencing between the unused states, it can be solved by disrupting the excitation
equations. Not all the equations need be modified. If we would like to retain the
use of a shift register, we should concentrate on the excitation equation of only the
first flip-flop. Considering the map for D1, the hang-up problem arose because we
used as a 1 the don’t-care in the 010 position to form a 2-cube. Instead, let’s reas-
sign the value and take it as a 0. Then, the expression for D1 becomes

D1 = Q2'Q3' + Q1Q3'

For the unused present state Q1Q2Q3 = 010, the next state of Q1 will be
Q1

+ = D1 = 0, and so the next state will be 001. We have escaped the hang-up state! 

Exercise 12 Suppose the present state is the other unused state, 101. Using the
new expression for D1 and the old ones for D2 and D3, determine the next state
and discuss whether the hang-up state is escaped. ◆

The ring counter design incorporating the preceding change is shown in
Figure 32. It is a self-correcting design in that the hang-up states have been
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Figure 31 Transition table and excitation maps for twisted-tail ring counter.
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avoided. The worst-case cost of this design is a two-clock-pulse delay in the count
if the counter inadvertently enters one of the two hang-up states. Although indi-
vidual flip-flops have been shown, an MSI shift register is appropriate for the im-
plementation.

Multimode Counters

A counter is called a multimode counter if it has, in addition to the clock, ex-
ternal inputs and, possibly, external outputs besides the state outputs. It is “mul-
timode” because the counting sequence might depend not only on the clock but
also on some other control signals. Likewise, special output lines besides the
flip-flop outputs may be provided.

Such a counter might be used, for example, in a system in which a number
of consecutive operations are to be performed. Only when one operation is
completed is the next one to start. So a control signal indicating the end of a
particular operation will increase the count, thus causing a transition to the
state in which the counter should remain while the next operation is performed.
Completion of this next operation again generates a signal that increases the
count. When the last operation in the system is completed, the state should re-
vert to the initial, or reset, state. Along the way, while a specific operation is
being performed and the machine is in some particular state, the occurrence of
some circumstance before the operation is completed may require returning to
an earlier count rather than advancing. The number of operations to be per-
formed will determine the counter’s modulo number.

Modulo-6 Up-Down Counter

We will now consider an example of a multimode counter. Besides the clock, a
synchronous counter is to have one input line, x. The count is to increase by one
when x = 0 and to decrease by one when x = 1. Assume that six operations are
to be controlled, so the modulo number is 6. Suppose, also, that the creeping
code is to be used. In this example, although there is an input besides the clock,
there are no other outputs besides the flip-flop outputs.

Note from the creeping code in Figure 28a that, from any count (state), the
count advances following x = 0 and regresses following x = 1. Draw the state
(transition) diagram before peeking at Figure 33a; then confirm it. The transi-
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Figure 32 Self-correcting modulo-6 ring counter.
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tion table is easily constructed from the transition diagram; do it yourself be-
fore confirming it in Figure 33b.

Assuming the use of D flip-flops, the excitations are the next states. The
next step is to construct the logic maps for the excitations from the transition
table; do this before you peek at Figure 34a. The final step is the implemen-
tation. Carry this out and then confirm it using Figure 34b.

7 ALGORITHMIC STATE MACHINES

Two tools were used early in this chapter for describing a sequential machine: state di-
agrams and state tables. Both of these are useful. In this section we will describe an-
other tool of great utility. Review Example 1 (a single-input, single-output circuit) and
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Figure 33 State table and transition table for a modulo-6 up-down counter.
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Figure 2, where state diagrams were introduced. Starting at any state, the arrival of an
input sends the machine to one of the possible next states, depending on the input.
This wording is reminiscent of the condition block in a flow chart representing an al-
gorithm. Indeed, a diagram resembling a program flow chart can be created that con-
tains the same information conveyed by either the state diagram or the state table.

Basic Principles

Review the statement of, and state diagram for, Example 1 early in the chapter.
With the machine in any specific state, the arrival of an input bit requires a de-
cision concerning the output to be emitted and the state to which the machine
is to be directed. In the state diagram of Figure 2, the condition is shown as a
directed line leaving each circle representing a state. A flow chart must include
analogues of

• Circles representing states
• Directed lines leading to the next states with specified outputs

Remember that a sequential circuit is referred to as a state machine (short
for finite-state machine). Since the problem statement for the design of a state
machine is like an algorithm, the machine is also called an algorithmic state ma-
chine, or ASM. A flow chart, called an ASM chart, can be constructed that de-
scribes the operation of an algorithmic state machine. A flow chart describing
any algorithm includes a condition box where a decision has to be made; this is
the familiar diamond shape shown in Figure 35a or the variation of it in Figure
35b. It is called the decision box. The lines leading out from a decision box are
the exit paths.

In an ASM flow chart, the circle enclosing a state in a state diagram is re-
placed by a rectangle called the state box, as shown in Figure 32c. Instead of
writing the state name inside, as in the state diagram, both the state name and
its binary code are written above the rectangle. (In a Moore machine, outputs
are associated with each state; hence, in that case, the appropriate output is
written inside the state box.) Note that the two boxes described so far exist in
all ASM charts.

In Mealy machines the output depends on both the input and current
state. In this case another box is used in the chart, called a conditional out-
put box. To distinguish it from a state box, an oval shape is used, as shown in
Figure 32d.

In a state machine, a tick of the clock initiates action, whether a new input
is present or not. Starting at each state, decisions must be made as to the state
transitions and the output. A basic unit in an ASM chart can be thought of as
consisting of a single state box and all other decision and conditional boxes
whose exit path leads to another state. Such a unit is called an ASM block. So
an ASM chart is simply an interconnection of such ASM blocks. Each state to
which a transition is made is the beginning point of another block. For clarity,
it often helps to encircle the individual blocks (using dashed lines), but doing
so adds nothing to the chart. The important entities are the state, condition, and
conditional output boxes; whether or not these combinations of boxes are en-
circled to delineate an ASM block is secondary.
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EXAMPLE 12

An ASM chart is to be constructed for an automatic garage-door opener. Let x be the
input signal resulting from a sensor actuated by a physical switch; the output is z. The
value of x toggles when the switch is activated. The output signal z controls the mecha-
nism that opens and closes the garage door; z also toggles. A low-frequency clock syn-
chronizes the system. Assuming the garage door is closed, when the switch is activated
the input becomes 1 and the machine changes state at the next clock edge.The next time
the switch is activated, the input signal goes to 0. In response to this input the output
goes to 0 at the next clock edge. We seek an ASM chart to describe this simple system.

The machine has two states: open and closed. An ASM block starting from the
closed state is shown in Figure 36a. It does not indicate how this state is reached.After
the “open” input signal is received, the output 1 is emitted.That means the garage door
should open, so the next state is the “open” state. The next time the switch is actuated,
the input toggles (x = 0), and so does the output (z = 0). The “closed” state is reached
when x = 0 while in the open state. Figure 36b shows the completed chart. ■

The utility of ASM charts is not evident from this simple example. To get on
with something more substantial, let’s return to Example 1 at the very beginning of
this chapter, describing the sequence detector.

EXAMPLE 13

In Example 1, the output z is to become 1 only after receipt of the input sequence
...0110, independent of the sequence that precedes it. (Look over that example
before going on.) There are two possibilities: Either the most recent 0 bit in the
preceding sequence forms the first bit of an acceptable sequence (the overlap-
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Figure 35 Boxes in ASM charts. (a), (b) Decision box. (c) State box. (d) Conditional output box.
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ping possibility), or the machine returns to a reset state and we start over.
Obviously the design will be different in the two cases. Example 1 dealt with the
overlapping case.

Let state S1 be the state arrived at by an x = 0 input. The first two blocks are
shown in the partial ASM chart in Figure 37a. If the input is 0 while the machine is
in either of the first two states, transition is back to the initial state, as shown. The
completed ASM chart is shown in Figure 37b. While in state S3, receipt of an input
x = 1 will spoil the acceptable sequence and will send the machine to a state where
it will stay for each consecutive x = 1. It escapes from this state to the initial state
with an input x = 0. However, if x = 0 while the machine is in state S3, it will emit an
output of 1 and will also return to S1. ■

EXAMPLE 14

ASM charts are particularly useful when there are a large number of inputs (state
diagrams are unreasonable to use with three or more inputs). Consider the design
of a traffic light controller for an intersection that is normally busy during the day
and not very busy at night.There is a preferred direction to maintain the light green,
but during the day the intersection is busy enough that the car detection sensors are
not used. During the day the traffic light moves through a fixed sequence of green,
yellow, and red for the same duration in both directions. During the night the signal
for the preferred direction stays green unless a car is detected in the nonpreferred
direction. The preferred direction is north/south.
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Figure 36 ASM chart for a garage-door opener.
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The traffic light controller has four inputs: one sensor input to detect the pres-
ence of a car on the nonpreferred route, one time-of-day input to signal day or night,
and two timing inputs to determine the minimum duration of a green signal in a
given direction and the duration of the yellow signal. The controller has six outputs,
one for each color signal (green, yellow, and red) in each direction (north/south and
east/west). The controller can be thought of as running two algorithms depending on
the time of day, so the time-of-day input determines which algorithm is executed.The
only difference between operation during the day and night is that the car presence
sensor is used during the night to decide whether or not to maintain the light green
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in the preferred direction. The ASM chart describing the system is shown in Figure
38. Before you look it over, try creating one yourself and confirm your version by
comparison. ■

8 ASYNCHRONOUS INPUTS

Recall from Chapter 5 that circuit implementations of state machines must sat-
isfy the setup (tsu) and hold (th) time requirements of flip-flops. Excitation sig-
nals must be stable for a time period tsu before the clock transition and must be
held for a time period th after the clock transition. Signals generated within the
state machine are not a concern, since the delay of a flip-flop is typically longer
than the hold time, and the clock-cycle time can be increased to provide suffi-
cient margin to ensure that the setup time is honored. If a faster cycle time is
required, then the next state and output decoders must be redesigned to de-
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Figure 38 ASM chart for Example 14.
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crease the delay.
Signals produced outside the state machine may or may not be synchro-

nized by the same clock. They may be signals from a sensor, switch, keyboard,
or communications channel. These signals switch at arbitrary times, so there is
no guarantee that they will honor the setup and hold time requirements of the
flip-flops. When these flip-flop requirements are violated, the state transition is
unpredictable. The flip-flop can enter an undefined state (a voltage level be-
tween low and high) for a short period of time before switching (unpredictably)
to a defined state (0 or 1). The undefined state is called a metastable state. A
typical flip-flop remains in the metastable state for a short period of time, but
the stable state it reaches after metastability cannot be predicted. This can
cause a state machine to make an erroneous state transition.

To decrease the probability that an asynchronous input will cause an er-
roneous state transition, adding an extra flip-flop, as shown in Figure 39, can
synchronize the signals. In this circuit the first flip-flop can enter metastabil-
ity, but it will very likely reach a stable state before the next clock event.
Thus, the probability that the output of the second flip-flop has a valid state
is very high (much higher than if only one flip-flop were used to synchronize
the signal).

Asynchronous Communication (Handshaking)

It is sometimes necessary for two synchronous sequential circuits with different
clocks to communicate data to one another. The two systems could be two com-
puters, a computer and an input or output device, or even a CPU and memory.
This communication is asynchronous, so a simple protocol is required to ensure
that the data is transmitted properly. The protocol used for asynchronous com-
munication is commonly referred to as handshaking. Each of two indepen-
dently clocked machines M1 and M2 that communicate with one another uses a
sequence of signals to request data from, or send data to, the other machine.

Thus, M1 and M2 have control signals and data signals passing between them.
The machine that initiates the communication (say, M1) sends a request signal to
the other machine, M2; it also sends a control signal indicating the desire to read
or write data to machine M2. For a read request, M2 responds with an acknowl-
edge signal when the data is ready for M1. For a write request, M1 must make the
data available before sending the request to M2. M1 holds that data on the data
connection until M2 responds with an acknowledge signal. Communication from
M2 to M1 works in a similar manner. The connections required to implement this
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Figure 39 Synchronizing asynchronous inputs to a state machine.
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Figure 41 The timing diagram for a write operation from M1 to M2.

Figure 42 ASM charts for an asynchronous read request from machine M1 to M2.



protocol are shown in Figure 40. The timing diagram for M1 to write (or send)
data to M2 is shown in Figure 41.

Exercise 13 Draw the timing diagram for M1 to read (or receive) data from M2. ◆

The sequence of control signals required for communication between ma-
chines M1 and M2 is produced by a sequence of state transitions within the ma-
chines themselves. ASM charts for a read request from M1 to M2 are shown in
Figure 42.

CHAPTER SUMMARY AND REVIEW

This chapter introduced the design of sequential circuits of the synchronous va-
riety. To describe how transitions from one state to another take place, we de-
veloped the tools of state diagrams, state tables, and algorithmic state machines.
We introduced the class of sequential circuits called counters. Topics included
the following:

• Mealy model and Moore model of a sequential machine
• State diagrams, translation of a performance specification into a state dia-

gram, verifying the state diagram
• State table, construction of a state table from a state diagram or directly from

a problem specification
• Difference between a reset state and an initial state
• Assignment of binary values to states
• Analysis of sequential circuits
• State transition and output tables
• Choice of flip-flop type in design
• Flip-flop excitation maps
• Implementation of sequential circuits from excitation maps
• Distinguishability and equivalence of states
• Minimization of machines
• Machines with finite memory spans:

• Finite-input-memory machines
• Finite-output-memory machines
• Finite-memory machines

• Single-mode synchronous counters:

• Unit-distance counters
• Ring counters

• Hang-up states
• Multimode counters
• Algorithmic state machines
• ASM charts
• Condition box
• State box
• Conditional output
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• ASM block
• Synchronizing machines with asynchronous inputs
• Asynchronous communications—handshaking

PROBLEMS

Many of the problems that follow require the design of a sequential machine. The design process
involves several steps.As you study the chapter, you may wish to tackle early sections of each prob-
lem before you have studied everything necessary to complete the design. You can then return to
each problem as you learn each successive step. Save the early parts of the solution as you go along.

1 A synchronous sequential circuit having a single input x and a single output z is to be de-
signed. The output z is to become 1 upon completion of the input sequence 0101, whether it
forms part of an overlapping string (such as 00010101) or not.

a. Construct a state diagram and a state table.
b. Construct an appropriate state assignment map.
c. Assume the use of JK flip-flops and construct a transition table.
d. Construct excitation and output maps.
e. Draw the diagram of the resulting circuit.
f. Repeat parts c, d, and e but with D flip-flops. Compare the complexity of the circuits.

2 The output z of a single-input, single-output synchronous sequential circuit is to become 1
whenever the input sequence is either 1101 or 1001. (Overlapping sequences are to yield mul-
tiple outputs.) Carry out the six parts of the design specified in Problem 1.
3 Use the same conditions as Problem 2 except that the circuit is to return to a reset state
upon emitting a 1 output. (What does that do to overlapping input sequences?)
4 Carry out all design parts specified in Problem 1 for each of the following specifications.

a. The output of a single-input, single-output machine is to be z = 1 if the present input
x is the XOR of its preceding two values.

b. The output is z = 0 when consecutive input bits of 0 are of even length and consecu-
tive input bits of 1 are of odd length.The output is to be z = 1 whenever there is a dis-
crepancy in this pattern.

c. The output becomes z = 1 whenever the input bit is the logical product of its previ-
ous two values.

5 The input sequence of a single-input, single-output sequential machine is made up of con-
secutive 4-bit words. Each word is an entity; words are not formed by overlapping strings.The
output is to be 1 whenever the number of 1 bits in a word is odd. Carry out all parts of the
design specified in Problem 1.
6 Repeat Problem 5 except that, besides having an odd number of 1 bits, the output becomes
1 only if the 4-bit word starts with a 1. Carry out all parts of the design specified in Problem 1.
7 Construct a state table for the parity-bit generator described in Example 2 directly from
the problem description, without reference to the state diagram. Compare with Figure 4.
8 A parity-bit generator is to receive 4-bit coded messages followed by a blank space (a 0).
A parity bit of 1 is to be generated and inserted into the blank space if and only if the parity
(the number of 1’s) of the preceding 4 bits is odd.

a. Construct a state diagram and a state table for this parity-bit generator.
b. Test your diagram to verify that, starting from the reset state, it gives the correct out-

put for various 4-bit messages.
c. Carry out the remaining parts of the design specified in Problem 1.
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9 A sequential machine has been found to have three states, A, B, and C; there are, then, just
two state variables. Specify three different assignments of 2-bit code words to the three states,
such that any other assignment amounts to either interchanging the two state variables, in-
verting either variable, or both.
10 After assigning the combination 000 to state A in Example 4, the adjacency AG can be
satisfied by assigning G to one of two other squares in the assignment map besides 001.
Choose another square to satisfy this adjacency; then use the adjacency rules to obtain an as-
signment different from the one in Example 4.

a. Complete the implementation, using JK flip-flops, and compare the complexity of the
state and output decoders with that obtained in Example 4.

b. Find an implementation using D flip-flops; again compare the complexity.

11 In Example 6 start from the transition table in Figure 16c and assume that implementa-
tion is to be carried out with JK flip-flops. Construct logic maps for the J and K excitations,
determine the excitation functions, and draw the resulting sequential circuit diagram.
Compare the complexity with that of the implementation using D flip-flops in Figure 17.
12 In Example 6 (the change-of-level detector), sets of adjacencies called for by the rules of
thumb are {DE, DF, EF} and {DG, EG, DE}. Only two of the adjacencies in each set can be
achieved. In Example 6, the unachieved adjacencies were chosen to be DG and EF. Suppose,
instead, that the unachieved adjacencies are taken to be DF and EG, all others being achieved.

a. Construct the resulting assignment map.
b. Again assume implementation is with D flip-flops; construct the transition and out-

put tables.
c. Construct the excitation maps for the D flip-flops.
d. Using the preceding results, draw the diagram of the resulting circuit.
e. Compare the amount of hardware with the circuit in Example 6 (Figure 17).

13 A single-output sequential machine has a data input x and two control inputs c2 and c1.
The output is to equal the input but delayed by one, two, three, or four clock pulses, as de-
termined by the control-input code c2c1 = 00, 01, 10, 11, respectively. Write an expression for
the output function and design the circuit, explaining each step.
14 A 4-bit serial-in, parallel-out right-shift shift register with asynchronous preset has its initial
state preset at y3y2y1y0 = 1101, where y0 is the state of the flip-flop at the input of the register.There
is no external input except the clock, the register’s excitation coming from the state decoder only.
The desired output sequence is 110111001000; it repeats after these 12 bits. Design the combina-
tional logic (state decoder) as a minimal circuit.An appropriate diagram is shown in Figure P14.

Problems 243

Short

Even

Figure P14

4-bit
shift

register

combinational
logic

C

D

output
y3

z
y2
y1
y0

15 The same structure as the circuit in Figure P14 is to be used, but this time the excitation
of the shift register is to be

D = y1y3 + y2y4 +y3y4

Assume that the initial state of the shift register has been set at 0101. Find the output se-
quence from the shift register.



16 A combinational logic circuit is to be designed with a single output, D. This output is to
become the input to a D flip-flop.

a. Suppose that this circuit has two inputs, J and K. Design the circuit so that, together
with the D flip-flop, it constitutes a JK flip-flop.

b. Suppose, instead, that the combinational logic circuit has a single input labeled T.
Design the circuit so that, together with the D flip-flop, it constitutes a toggle flip-
flop.

17 A synchronous sequential circuit has two input lines, x1 and x2, and an output line, z. The
data line is x1 and x2 is a reset line. Whenever x2 = 1, the circuit is reset. When x2 becomes 0,
the first 4 bits on the message line constitute a message word. The output is to become 1 if
the message received is 1010. At the end of the fourth bit of any word received when x2 = 0,
the circuit is to enter a waiting state, where it remains until it is reset and where the output is
0 for any input bits after the fourth bit.

a. Construct a state diagram and a state table.
b. Carry out the rest of the design and implement it using JK flip-flops.
c. Construct a timing diagram showing the clock and the inputs and outputs.

18 Repeat Problem 17 if the message is to be 1100, using

a. D flip-flops
b. JK flip-flops

19 Repeat Problem 18 if the word length is 5 bits and the message is to be 11011.
20 Design a sequential machine that is to have all of the following characteristics:

No 2 consecutive output bits can be 1.
The output bit cannot be 1 upon receipt of the second of 2 consecutive input 0 bits.
The output will be 1 if either of 2 consecutive input bits is 1, unless it conflicts with the

first requirement.

A possible input/output sequence, for example, is the following:

x: 0010101111010000
z: -010101010101000

21 Design a single-input, single-output synchronous sequential circuit that is to have the fol-
lowing characteristics.

No 3 consecutive output bits can be 1.
The output will be 1 if, of 3 consecutive input bits, just two are 1, unless it conflicts with

the first requirement.

A possible input/output sequence, for example, is the following:

x: 000011010111001010110110
z: - - 0001100110100010110110

22 Design a sequential machine for which the output becomes 1 if and only if just 1 of the
following 3 bits is a 1: the present input bit and the last 2 output bits. A possible input/output
sequence, for example, is the following:

x: - - 001011011100101001001
z: 11010100010000110110110
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23 A sequential machine having the following properties is to be designed. It has two inputs:
x and c, a control input. When c = 0, the machine returns to a reset state A, independent of x.
With the machine in reset state A, whenever c = 1, the values of x at the next three clock
pulses will constitute a binary word. An output of z = 1 is to occur at the third bit if and only
if all 3 bits are the same: 000 or 111. Otherwise the output is to be 0. The state entered by the
machine at the third bit of an input word is a waiting state. The machine does not leave this
state until c = 0 occurs, at which time it is reset.

a. Construct a state diagram and state table for this machine.
b. If possible, reduce this table to one having the fewest states.
c. Carry out the necessary steps to arrive at excitation equations, assuming the machine

is to be implemented with D flip-flops. Then draw the corresponding circuit diagram.
d. Repeat part c for the case where the machine is to be implemented with JK flip-flops.

24 a. Given the state table in Figure P24, assume the following input sequence with the
machine initially in state A:

10011101011001

Determine the resulting output sequence.
b. Obtain a minimal reduced state table equivalent to the given one, letting new state A

be the block in which the old state A appears.
c. Again starting in state A of the reduced table, assume the same input sequence and

find the resulting output sequence. Compare the result with the one in part b. Are
you surprised?
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NS,z

PS x = 0 x = 1

A B,0 G,0
B B,1 H,1
C F,1 D,0
D B,0 H,0
E F,1 D,0
F F,0 C,1
G E,0 A,0
H E,0 A,0

25 a. Design a single-input, single-output synchronous sequential circuit that produces an
output of 1 whenever there is an odd number of 1’s in the latest three input symbols.

b. Draw several timing diagrams, assuming different combinations of inputs.

26 Design a single-input, single-output synchronous sequential circuit that generates an out-
put of 1 whenever the latest 4 input symbols correspond to a binary number that is

a. A multiple of 3
b. A multiple of 5
c. A multiple of either 3 or 5

27 Data appearing on a line synchronized with a clock should never have three or more con-
secutive 0’s or four or more consecutive 1’s.

a. Design a sequential circuit that will detect such sequences and generate an output of
1 whenever they occur.

b. Construct appropriate timing diagrams for different combinations of inputs.



28 The output of a synchronous sequential circuit is to be the same as the input but delayed
by three or four clock periods under the control of a second input, c. The delay is to be three
clock periods when c = 0 and four clock periods when c = 1.

a. Design the circuit.
b. Construct timing diagrams for the two cases.

29 A synchronous sequential circuit has two input lines, w and x, and a single output line, z.
Let W = w2w1w0 and X = x2x1x0 be 3-bit sequences on the input lines representing binary
numbers, the most recent bits being w2 and x2. The output is to be 1 whenever W ≥ X.

a. Design the circuit.
b. Draw timing diagrams for several input word combinations.

30 A synchronous sequential circuit has two data inputs a and b, a control input c, and a sin-
gle output z. The output is 0 except that z = 1 under either of two conditions:

c = 0 and a and b had identical values two clock periods earlier
c = 1 and a = b' three clock periods earlier

a. Design the circuit.
b. Construct a timing diagram, showing the clock, input, and output signals for the two

values of c.

31 A single-input, single-output synchronous sequential circuit is to generate an output of 1
whenever x has the same value it had three clock periods earlier; otherwise the output is to be 0.

a. Design the circuit.
b. Construct timing diagrams showing the clock, input, and output signals for the two

cases.

32 A single-input, single-output synchronous sequential circuit is to generate an output of 1
whenever any of the following input sequences occurs: 011, 1001, 11011. The output is to be 0
otherwise.

a. Design the circuit.
b. Draw timing diagrams for the possible input sequences, showing the clock, input, and

output signals.

33 A single-input, single-output machine is to have outputs as follows:

z(t) = z(t  – 1)z(t  – 2) when x(t) = 0

z(t) = z(t  – 3) when x(t) = 1

If this machine has a finite memory span, specify its class and obtain a canonic implementation.
34 Modify Problem 33 by introducing a control input, c. The output specified in Problem 33
is to be obtained when c = 1. When c = 0, on the other hand, the output is to be 1 whenever
the last 2 input bits are identical. Obtain a canonical implementation.
35 For each of the following machines, determine if it is a finite-memory machine. If it is, de-
termine its type (finite-input-memory, finite-output-memory, or neither) and its order.

a. Serial parity generator: The machine receives data bit-serially on its input and indi-
cates on its output if the total number of 1’s received so far is even or odd.

b. Serial adder: The machine has two inputs and receives two binary numbers bit-serially
on these input lines, least significant bit first. When bits of weight 2i (for some i) are
being received, the output is to be the sum bit of the same weight.
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c. Serial multiplier by a constant: The machine receives a binary number bit-serially on
its input, least significant bit first, and multiplies it by a fixed constant k (which need
not be a power of 2).When an input bit of weight 2i is being received, the output must
be the product bit of the same weight.

d. Divisible-by-k indicator: The machine receives a binary number bit-serially on its
input, least significant bit first, and indicates its divisibility by a fixed constant k that
is not a power of 2. The output is 1 if and only if the binary number received up to
that clock period (including the current input) is divisible by k.

e. Repeat part d assuming that k is a power of 2.
f. Repeat part d assuming that the binary number is received most significant bit first.
g. Repeat part e assuming that the binary number is received most significant bit first.

36 Sequential machines M1 and M2 are finite-input-memory of order m1 and m2, respectively.
A new machine M is obtained by cascading M1 with M2. That is, the output of M1 is the input
of M2. The input and output of M are, respectively, the input of M1 and the output of M2.
Determine if M is a finite-input-memory machine and, if it is, determine its order.
37 M1 and M2 are finite-input-memory machines of order m1 and m2, respectively.A new ma-
chine M is obtained as follows. The inputs of M1 and M2 are tied together and constitute the
input to M. The outputs of M1 and M2 are brought out separately and together form the out-
put of M. Determine if M is a finite-input-memory machine and, if it is, determine its order.
38 Sequential machines M1 and M2 are finite-output-memory machines of order m1 and m2,
respectively. A new machine M is constructed as in Problem 37. Determine if M is a finite-
output-memory machine and, if it is, determine its order.
39 Odd-length counters do not have unit-distance codes, but almost do, having only one transi-
tion (usually the pivotal one in the middle of the count) in which more than 1 bit must change.

a. Design a self-correcting modulo-m ring counter, where m = 5.
b. Repeat for m = 7.
c. Repeat for m = 9.

40 The creeping code is a 5-bit code for decimal digits generated as follows.The code for digit
0 is 00000. The code for any digit di is obtained from the code for the preceding digit di−1 by
first setting the msb of di equal to the complement of the lsb of di−1, and then setting the lower
4 bits of di equal to the upper 4 bits of di−1, in the same order. (See the section in Chapter 1
on codes.)

a. Using D flip-flops, design a synchronous modulo-10 counter that counts in creeping
code; draw the circuit.

b. Modify the design so that the circuit has an output z = 1 whenever the count is either
4 or 7.

41 A multimode counter has one pulse input line x that is synchronized with the clock and
two level output lines f and g that respond to the rising edge of the clock. Level changes on
the input line are separated by at least four clock periods. The operation of the counter is to
be as follows:

f becomes 1 at each clock pulse.
g becomes 1 two clock pulses later.
f goes to 0 at the next clock pulse after g becomes 1.
g goes to 0 at the next clock pulse after f goes to 0.

a. Construct a timing diagram showing the clock waveform and the waveforms of x, f,
and g.

b. Design the counter using a distance-1 code and draw the circuit.
c. Design the counter using the creeping code, making sure that it is self-correcting.
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42 The schematic diagram of a universal left/right shift register is shown in Chapter 5, Figure
24; this one is a 4-bit register.

a. Draw a transition diagram (a state diagram whose states are already assigned codes)
for a 3-bit universal register. Starting in any state, either a 0 or a 1 can be shifted ei-
ther to the left or to the right. Hence, there will be four arcs leaving each node, indi-
cated by 0L, 0R, 1L, and 1R.

b. Notice how a standard ring counter sequence of length 4 and a twisted-tail ring
counter sequence of length 6 are generated from this transition diagram.

c. Design a decoder circuit for a 3-bit universal register so that the combined circuit
with a schematic similar to Figure 24 in Chapter 5 is a modulo-m counter, starting
with 000. Take

• m = 4 (two possibilities) 
• m = 5 (four possibilities) 
• m = 6 (six possibilities)
• m = 7 (two possibilities)
• m = 8 (four possibilities)

d. Draw a transition diagram for a 4-bit universal register and notice how a standard
ring counter sequence of length 5 and a twisted-tail ring counter sequence of length
8 are generated from this.

e. Design a decoder circuit for a 4-bit universal register so that the entire circuit in
Figure 24 in Chapter 5 is a modulo-m counter starting with 0000. Take m = 8; how
many possible sequences of length 8 are there?

f. Repeat e for m = 9.

43 Suppose that the counter implemented by JK flip-flops in Figure 30 is to be implemented
by T flip-flops, obtained from JK flip-flops by setting J = K.

a. Find the excitation maps (maps of T) of the three flip-flops.
b. From these, determine the state decoder.
c. Compare the hardware requirements with those using the JK flip-flops.

44 A state machine, with two inputs A and B and a single output C, is to be designed. The
output is to become 1 only if the number of input 1’s since the machine was reset is an exact
multiple of 4. It doesn’t matter on which input line a 1 occurs.

a. Construct a state diagram. (As you go about this task, think of the following things.
Is 0 a multiple of 4? With the machine in a particular state, what difference in next
state and output would there be for inputs AB = 01 or 10? To what state would the
machine go if, having already received three 1’s, the next input is AB = 11? In such
an event, what would the output be?)

b. How many different assignments are possible? Select an appropriate assignment.
c. Assume the use of D flip-flops and construct excitation maps.
d. Write expressions for the excitations and the output.
e. Draw a circuit implementing these expressions.
f. If you want, try another assignment and repeat parts c, d, and e. Compare the two re-

alizations. Was this fun?

45 For each table in Figure P45, the overall objective is to construct a minimal reduced table
equivalent to the original one.

a. Partition the states so that all states in a partition are 1-equivalent.
b. Refine the partitions so that all states in the new partitions are 2-equivalent.
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c. Continue refining the partitions until an equivalence partition is obtained.
d. Construct a reduced state table with each final partition as a state.
e. Compare the number of flip-flops needed in implementing both the original tables

and the reduced tables.
f. Implement each reduced table using JK flip-flops.
g. Repeat f using D flip-flops.
h. Using D flip-flops, implement the table in Figure P45b before reduction. Compare

the number of flip-flops and circuit complexity for the two implementations.
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Figure P45

NS,z

PS x = 0 x = 1

A A,0 C,0
B D,1 A,0
C F,0 F,0
D E,1 B,0
E G,1 G,0
F C,0 C,0
G B,1 H,0
H H,0 C,0

(a) (b)

NS,z

PS x1x2 = 00 x1x2 = 01 x1x2 = 11 x1x2 = 10

A B,0 G,1 C,1 D,0
B A,1 E,0 D,1 G,1
C H,0 G,1 A,1 C,0
D H,0 G,1 C,1 D,0
E C,1 H,0 D,1 C,1
F D,1 H,0 C,1 G,1
G H,1 G,1 A,1 F,0
H D,1 E,0 A,1 G,1

46 A state machine has a single input N and a single output D. Four-bit messages arrive at
the input. The purpose of the circuit is to detect when a 4-bit message is not a BCD word.
That is, D = 1 whenever the 4-bit word is not a decimal number in BCD code. Assume that
the circuit returns to its initial (reset) state at the end of each 4-bit word.

a. Construct a state diagram and a state table. (Confirm that your diagram produces the
correct outputs.)

b. By partitioning, reduce the table to a minimum.
c. Choose two 4-bit words, one that is and one that isn’t a decimal number in BCD code.

Draw timing diagrams for these two cases.

47 Modify Problem 46 as follows. The 4-bit words are not consecutive; when the last bit of a
word is received, the machine enters a waiting state. While it is in this state, the signal that an-
other 4-bit word is coming is the appearance of 3 consecutive 1 bits. Upon receipt of the third
1 bit, the machine enters the reset state, ready for the next 4-bit message.

a. Construct a new state diagram and a new state table.
b. Reduce the state table by partitioning the states.

48 a. Design a synchronous BCD counter. (It might be called a modulo-10 counter.) The
only input is the clock. Draw a timing diagram that includes the clock and all flip-flop
output waveforms.

b. Modify the design for a counter that is to be just one decade of a decimal BCD
counter. That is, each decade is to represent a decimal digit in the 10k position of a
decimal number.

49 A certain binary signal consists of a periodic sequence of pulses having the same width as
the clock pulse, synchronized with the clock. For a certain application, it is expected that the
number of bits in a string of 0’s is odd and the number of 1’s is even. A state machine is to be



designed to detect errors from this configuration. That is, z = 1 whenever an even string of 0’s
or an odd string of 1’s is detected.

a. Construct a state diagram and a state table. (Think about how the machine will know
that a string of like bits has ended.)

b. If your table is not minimal, reduce it.
c. Make an “optimal” state assignment and construct a transition table.
d. Assume the use of D flip-flops and write expressions for the excitations.
e. Draw a circuit diagram implementing these expressions.

50 A synchronous sequential circuit has two input lines, x1 and x2, and two output lines, z1 and
z2.At each clock tick, the combination x1x2 constitutes a 2-bit binary number. If the present value
of the input number is less than its immediately preceding value, then the outputs are z1z2 = 10.
If the present value is greater than the preceding value, then z1z2 = 01. If it is the same, z1z2 = 00.

a. Design the circuit.
b. Draw timing diagrams for the three cases.

51 Five-bit words arriving on a line are expected to be messages in 2-out-of-5 code. However,
there may be errors. A synchronous machine is to be designed whose output is 1 only when
the fifth bit is received and the completed word is not a valid word in 2-out-of-5 code. The 5-
bit words are consecutive; as soon as one 5-bit word is completed, the circuit should be ready
to receive the first bit of the next word.

a. Construct a state diagram. (Hint: To how many distinct states can the circuit make a
transition for each incoming bit after the first?) 

b. Construct a state table.
c. Make an appropriate state assignment and construct a transition table.
d. Assuming the use of D flip-flops, obtain expressions for the excitation and output

functions.
e. Construct timing diagrams for the clock, the input bits, and the resulting output.

52 a. A synchronous sequential machine has one input line x and one output line z. The
machine is intended to receive a binary number of unknown length on the input line,
with the least significant bit first, and to indicate on z its divisibility by 5. That is, for
any time t, z(t) = 1 if and only if the binary number x(t) ... x(0) is divisible by 5.
Construct a state table for such a machine and minimize the number of states.

b. Generalize part a: If divisibility by a number p is to be detected, where p is a known
constant, determine a tight upper bound in terms of p on the number of states needed
in the machine.

c. Repeat part a assuming that the most significant bit is received first.
d. Repeat part b assuming that the most significant bit is received first.

53 Figure P53 shows a schematic diagram of a synchronous modulo-10 counter whose states
are 0–9.The Q3–Q0 outputs represent the count. If CE (“count enable”) is 1, then the counter
increments to the next state at the next clock pulse. Otherwise it retains the current count.
The output TC is 1 if and only if the count is 9.

The objective of this problem is to design a modulo-1016 counter by stringing together
several modulo-10 counters. It is claimed that the CE inputs to the modulo-10 counters in the
string are analogous to the carry inputs to the full adders in a multibit adder, and hence, the
carry-lookahead principles can be used in designing the modulo-1016 counter.
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a. Derive the generate and propagate expressions for a modulo-10 counter.
b. Suppose 4-bit lookahead units of the type shown in Figure 8, Chapter 4, with inputs

P1–P4, G1–G4, and C1 and outputs C2–C5 are available. Using these and the modulo-
10 counters (and no other logic) design a lookahead modulo-1016 counter.

c. Obtain a modulo-1016 counter by replacing the lookahead units in the answer to b by
only AND gates.

54 a. Design a modulo-2 (2-bit) binary counter using D flip-flops. The counter goes through
the sequence 00 01 10 11 00 ... . The machine is also to have an output line that emits a
1 at the count 11.

b. Draw an appropriate timing diagram.

55 A state machine is to have a single input line and a single output line. The output is to re-
main 0 until the last bit of either of the sequences ...0000 or ...1111 occurs, at which time the
output becomes 1.

a. Construct a state diagram and a state table; then reduce the table to one having the
fewest states.

b. Construct an ASM chart.
c. Assuming implementation with D flip-flops, construct the transition tables and, from

these, construct a circuit implementation.

56 A certain state machine is to have the function of detecting when an incoming string of 7
bits is not the biquinary code for a decimal digit. The machine has two inputs: DATA and
CONTROL. DATA consists of 7-bit words that are to represent the decimal digits in biquinary
code. CONTROL is a signal that initiates an examination of DATA.When CONTROL = 0 for
one or more clock ticks, the output remains 0. When CONTROL becomes 1 and stays 1, the
machine is to examine the next 7 bits in DATA. Meanwhile the output remains 0; it becomes
1 only if the seventh bit completes a word that is not a decimal digit in biquinary code.

a. Construct a state table for this machine.
b. Assuming the use of D flip-flops, construct transition tables. Using these tables, de-

sign a circuit implementation.

57 A sequential comparator, with two input lines x and y and a single output line z, is to be
designed. X (xnxn−1xn−2) is a 3-bit word on line x and, similarly, Y (ynyn−1yn−2) is a 3-bit word
on line y. Taking X and Y as 3-bit binary numbers, the output is to be 1 only if X ≥ Y.

a. Construct a state diagram and a state table for this machine.
b. Assume D flip-flops are to be used. Construct transition tables and, from these, a cir-

cuit implementation.
c. Repeat b using JK flip-flops.
d. Someone suggested implementing the circuit with two parallel-read shift registers

and some combinational logic. Carry out this suggestion.

58 The objective of this problem is to design a Moore-model modulo-8 up-down counter.
(Modulo-8 means that the machine counts from 0 to 7 in binary.“Up-down” means that when
the count advances from 7 (111) it goes to 0 (000), and when it drops from 0 it goes to 7.)
Besides the clock, the machine is to have a single input, x. When x = 0, the count will drop by
1 from its present value and, when x = 1, the count will increase by 1 from its present value,
both occurring at the clock tick. Assume that D flip-flops are to be used and that there is no
output decoder, the states being the outputs of the flip-flops taken as a binary number.

a. Draw a diagram showing the three flip-flops and the state decoder as a rectangle.
(Can you identify the nature of this machine?)

b. Construct a transition table directly rather than using arbitrary names for the states
and making a state assignment later; use the binary values of the count to identify the
present and next states.
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c. Construct logic maps for each next state.
d. Design the state decoder and complete the implementation.
e. Using arbitrary times of input changes relative to the clock, draw timing diagrams

showing the clock pulses, the input, and the flip-flop outputs.

59 The objective is to design a modulo-8 up-down counter with a single input x and three
output lines. The binary number represented by the outputs z2z1z0 is the count. It is to in-
crease by 1 when x = 1 and decrease by 1 when x = 0. Design the circuit.
60 The purpose is to design a 3-bit binary up counter with no other inputs but the clock. At
each clock tick, the counter cycles through the sequence 000, 001, 011, 111, 101, 100, after
which it repeats the sequence. The other two possible states are not to occur.

a. Using the state codes as state “names,” construct a state table directly. Decide how to
handle the entries corresponding to the rows of combinations that are not to occur.

b. Assuming the use of D flip-flops, the next state for each position in any row is the
same as the required value of D. Construct logic maps for the required value of D in
terms of the present states. From these, write an expression for each D.

c. Construct the circuit diagram to implement the counter.
d. Draw a timing diagram, showing waveforms for the clock and for the outputs of the

three flip-flops.
e. Now assume toggle (T) flip-flops are to be used. From the excitation requirements

for T flip-flops in Figure 17, Chapter 5, construct new logic maps for each T and con-
struct a circuit diagram implementing the counter. Compare this with the implemen-
tation using D flip-flops. Show if there will be any changes in the timing diagrams.

61 a. Repeat Problem 60 if the counter sequence is to be the following: 000, 010, 001, 011,
101, 100, 000, ….

b. Repeat Problem 60 if the counter sequence is to be the following: 000, 011, 111, 101, 001.

62 The state table in Figure P62a is to be implemented with two Lemon flip-flops.
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Figure P62

NS,z

PS x = 0 x = 1

A C,0 B,1
B A,0 A,0
C A,0 D,0
D C,0 A,1

NS,z

PS x = 0 x = 1

A C,0 B,0
B A,1 C,1
C B,0 D,0
D C,1 C,0

(a) (b)

a. Using the results of Problem 18 in Chapter 5, specify all possible state assignments,
justifying your response.

b. Choose one of the possible assignments and carry out a circuit implementation.
c. Repeat part b for a different assignment. Are there reasons for selecting one possi-

ble implementation over the other?
d. Repeat each part for the state table shown in Figure P62b.

63 A counter is to have a single 1-bit control input C. When C = 0, the 3-bit counter is to se-
quence through the binary code. When C = 1, it is to sequence through the Gray code.

Binary code: 000 001 010 011 100 101 110 111 → 000
Gray code: 000 001 011 010 110 111 101 100 → 000

The only outputs are the flip-flop outputs representing the states.



a. Construct a state diagram, labeling the states by their 3-bit codes. Show the transi-
tions to the appropriate next states for each C.

b. Draw an ASM chart for the counter.
c. Suppose the present state is 000 when the control input takes on the following se-

quence.

C: 1 1 0 0 0 1 0 0 0 1 1

Construct a table with the input as column 1, the present-state code as column 2 and
the next-state code as column 3.

d. Draw a circuit implementing the counter.

64 A synchronous sequential circuit has a single output z and two inputs, x and r. The output
is a delayed version of the x input under the control of r. When r = 1, the output equals what
the x input was three clock periods earlier.When r = 0, the output equals what the x input was
two clock periods earlier. Design the circuit using appropriate flip-flops. Show and explain all
intermediate steps.
65 A state machine has a single output and—besides the clock—three inputs: a data input x
and the outputs of a modulo-4 counter c1 and c0. The output of the machine is to equal the
data input but delayed by a number of clock periods determined by the count c1c0: the delay
in output is one clock period at count 00, two clock periods at count 01, and so on.

a. Use whatever you need (state diagram, state table, logic maps, etc.) to arrive at an ex-
pression for the output. Explain your reasoning.

b. Find an implementation of the circuit.

66 A customer has placed an order from your engineering design shop for a single-input, single-
output synchronous sequential machine. The output is to become 1 whenever, starting at some
time, the number of input 1’s exceeds the number of input 0’s. An example is

x: 0 1 1 0 1 1 0 0 ...
z: 0 0 1 0 1 1 1 0 ...

Either (a) provide a statement as to why such a machine is impossible or (b) construct a state
diagram of a machine that satisfies this requirement. In the latter case, construct a state table
and implement it.
67 A synchronous sequential circuit is to have three inputs: A, B, and C. The single output z
is to be 0 except for the following possible inputs:

z = 1 when C = 0 and A and B had identical values two clock periods earlier.
z = 1 when C = 1 and A and B had opposite values three clock periods earlier.

Obtain an implementation of the circuit and discuss its nature.
68 a. In Example 7, use the expressions for the flip-flop excitations and the output z on

page 218 to construct a circuit realization.
b. Analyze the resulting circuit to verify the original expressions.
c. If these expressions cannot be verified by your circuit, repeat part a until verification

is achieved.

69 Design a modulo-8 up-down counter. The count is to appear in BCD code on three out-
put lines as z2z1z0.
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