7. **Reasoning** The geometry of the positions of the loudspeakers and the listener is shown in the following drawing.

The listener at C will hear either a loud sound or no sound, depending upon whether the interference occurring at C is constructive or destructive. If the listener hears no sound, destructive interference occurs, so

\[d_2 - d_1 = \frac{n\lambda}{2} \quad n = 1, 3, 5, ... \]

(1)

Solution Since \(v = \lambda f \), according to Equation 16.1, the wavelength of the tone is

\[\lambda = \frac{v}{f} = \frac{343 \text{ m/s}}{68.6 \text{ Hz}} = 5.00 \text{ m} \]

Speaker B will be closest to Speaker A when \(n = 1 \) in Equation (1) above, so

\[d_2 = \frac{n\lambda}{2} + d_1 = \frac{5.00 \text{ m}}{2} + 1.00 \text{ m} = 3.50 \text{ m} \]

From the figure above we have that,

\[x_1 = (1.00 \text{ m}) \cos 60.0^\circ = 0.500 \text{ m} \]

\[y = (1.00 \text{ m}) \sin 60.0^\circ = 0.866 \text{ m} \]

Then
Therefore, the closest that speaker A can be to speaker B so that the listener hears no sound is \(x_1 + x_2 = 0.500 \text{ m} + 3.39 \text{ m} = 3.89 \text{ m} \).

33. **SSM** **WWW** **REASONING** The natural frequencies of the cord are, according to Equation 17.3, \(f_n = \frac{nv}{(2\, L)} \), where \(n = 1, 2, 3, \ldots \). The speed \(v \) of the waves on the cord is, according to Equation 16.2, \(v = \sqrt{\frac{F}{(m/L)}} \), where \(F \) is the tension in the cord. Combining these two expressions, we have

\[
\frac{f_n \, v}{2\, L} = \frac{n}{2\, L} \sqrt{\frac{F}{m/L}} \quad \text{or} \quad \left(\frac{f_n \, 2\, L}{n} \right)^2 = \frac{F}{m/L}
\]

Applying Newton's second law of motion, \(\Sigma F = ma \), to the forces that act on the block and are parallel to the incline gives

\[
F - Mg \sin \theta = Ma = 0 \quad \text{or} \quad F = Mg \sin \theta
\]

where \(Mg \sin \theta \) is the component of the block's weight that is parallel to the incline. Substituting this value for the tension into the equation above gives

\[
\left(\frac{f_n \, 2\, L}{n} \right)^2 = \frac{Mg \sin \theta}{m/L}
\]

This expression can be solved for the angle \(\theta \) and evaluated at the various harmonics. The answer can be chosen from the resulting choices.

SOLUTION Solving this result for \(\sin \theta \) shows that

\[
\sin \theta = \frac{(m/L)}{Mg} \left(\frac{f_n \, 2\, L}{n} \right)^2 = \frac{1.20 \times 10^{-2} \text{ kg/m}}{(15.0 \text{ kg})(9.80 \text{ m/s}^2)} \left[\frac{(165 \text{ Hz})2(0.600 \text{ m})}{n} \right]^2 = \frac{3.20}{n^2}
\]

Thus, we have

\[
\theta = \sin^{-1} \left(\frac{3.20}{n^2} \right)
\]

Evaluating this for the harmonics corresponding to the range of \(n \) from \(n = 2 \) to \(n = 4 \), we have
43. **REASONING** According to Equation 11.4, the absolute pressure at the bottom of the mercury is $P = P_{\text{atm}} + \rho gh$, where the height h of the mercury column is the original length L_0 of the air column minus the shortened length L. Hence,

$$P = P_{\text{atm}} + \rho g (L_0 - L)$$

SOLUTION From Equation 17.5, the fundamental ($n = 1$) frequency f_1 of the shortened tube is $f_1 = 1(v/4L)$, where L is the length of the air column in the tube. Likewise, the frequency f_3 of the third ($n = 3$) harmonic in the original tube is $f_3 = 3(v/4L_0)$, where L_0 is the length of the air column in the original tube. Since $f_1 = f_3$, we have that

$$1 \left(\frac{v}{4L} \right) = 3 \left(\frac{v}{4L_0} \right) \quad \text{or} \quad L = \frac{1}{3} L_0$$

The pressure at the bottom of the mercury is

$$P = P_{\text{atm}} + \rho g \left(\frac{2}{3} L_0 \right)$$

$$= 1.01 \times 10^5 \text{ Pa} + (13 \ 600 \text{ kg/m}^3)(9.80 \text{ m/s}^2)\left(\frac{2}{3} \times 0.75 \text{ m} \right) = 1.68 \times 10^5 \text{ Pa}$$

55. **REASONING** The beat frequency produced when the piano and the other instrument sound the note (three octaves higher than middle C) is $f_{\text{beat}} = f - f_0$, where f is the frequency of the piano and f_0 is the frequency of the other instrument ($f_0 = 2093$ Hz). We can find f by considering the temperature effects and the mechanical effects that occur when the temperature drops from 25.0 °C to 20.0 °C.

SOLUTION The fundamental frequency f_0 of the wire at 25.0 °C is related to the tension F_0 in the wire by
Chapter 17 Problems

\[f_0 = \frac{v}{2L_0} = \sqrt{\frac{F_0 / (m/L)}{2L_0}} \]
where Equations 17.3 and 16.2 have been combined.

The amount \(\Delta L \) by which the piano wire attempts to contract is (see Equation 12.2) \(\Delta L = \alpha L_0 \Delta T \), where \(\alpha \) is the coefficient of linear expansion of the wire, \(L_0 \) is its length at 25.0 °C, and \(\Delta T \) is the amount by which the temperature drops. Since the wire is prevented from contracting, there must be a stretching force exerted at each end of the wire. According to Equation 10.17, the magnitude of this force is

\[\Delta F = Y \left(\frac{\Delta L}{L_0} \right) A \]

where \(Y \) is the Young's modulus of the wire, and \(A \) is its cross-sectional area. Combining this relation with Equation 12.2, we have

\[\Delta F = Y \left(\frac{\alpha L_0 \Delta T}{L_0} \right) A = \alpha(\Delta T)YA \]

Thus, the frequency \(f \) at the lower temperature is

\[f = \frac{v}{2L_0} = \sqrt{\left(\frac{F_0 + \Delta F}{m/L} \right) / \left(2L_0 \right)} = \sqrt{\left[\frac{F_0 + \alpha(\Delta T)YA}{m/L} \right] / \left(2L_0 \right)} \]

(2)

Using Equations (1) and (2), we find that the frequency \(f \) is

\[f = f_0 \sqrt{\left[\frac{F_0 + \alpha(\Delta T)YA}{m/L} \right] / \left(F_0 / (m/L) \right)} = f_0 \sqrt{\frac{F_0 + \alpha(\Delta T)YA}{F_0}} \]

\[f = \left(2093 \text{ Hz} \right) \sqrt{\frac{818.0 \text{ N} + (12 \times 10^{-6} / \text{°C})(5.0 \text{ °C})(2.0 \times 10^{11} \text{ N/m}^2)(7.85 \times 10^{-7} \text{ m}^2)}{818.0 \text{ N}}} \]

\[= 2105 \text{ Hz} \]

Therefore, the beat frequency is \(2105 \text{ Hz} - 2093 \text{ Hz} = 12 \text{ Hz} \).