Skip to main content
E-Book

$178.99

Supramolecular Chemistry in Water

Stefan Kubik (Editor)

ISBN: 978-3-527-81493-0 May 2019 244 Pages

Description

Provides deep insight into the concepts and recent developments in the area of supramolecular chemistry in water

Written by experts in their respective field, this comprehensive reference covers various aspects of supramolecular chemistry in water?from fundamental aspects to applications. It provides readers with a basic introduction to the current understanding of the properties of water and how they influence molecular recognition, and examines the different receptor types available in water and the types of substrates that can be bound. It also looks at areas to where they can be applied, such as materials, optical sensing, medicinal imaging, and catalysis.

Supramolecular Chemistry in Water offers five major sections that address important topics like water properties, molecular recognition, association and aggregation phenomena, optical detection and imaging, and supramolecular catalysis. It covers chemistry and physical chemistry of water; water-mediated molecular recognition; peptide and protein receptors; nucleotide receptors; carbohydrate receptors; and ion receptors. The book also teaches readers all about coordination compounds; self-assembled polymers and gels; foldamers; vesicles and micelles; and surface-modified nanoparticles. In addition, it provides in-depth information on indicators and optical probes, as well as probes for medical imaging.

-Covers, in a timely manner, an emerging area in chemistry that is growing more important every day
-Addresses topics such as molecular recognition, aggregation, catalysis, and more
-Offers comprehensive coverage of everything from fundamental aspects of supramolecular chemistry in water to its applications
-Edited by one of the leading international scientists in the field

Supramolecular Chemistry in Water is a one-stop-resource for all polymer chemists, catalytic chemists, biochemists, water chemists, and physical chemists involved in this growing area of research.

Preface xv

1 Water Runs Deep 1
Nicholas E. Ernst and Bruce C. Gibb

1.1 The Control of Water 1

1.2 The Shape of Water 2

1.3 The Matrix of Life as a Solvent 4

1.4 Solvation Thermodynamics 6

1.5 The Three Effects 9

1.5.1 The Hydrophobic Effect 11

1.5.2 The Hofmeister Effect 19

1.5.3 The Reverse Hofmeister Effect 23

1.6 Conclusions and Future Work 24

Acknowledgments 25

References 25

2 Water‐Compatible Host Systems 35
Frank Biedermann

2.1 General Overview 35

2.2 Acyclic Systems 36

2.2.1 Acyclic Molecular Recognition Units 36

2.2.2 Molecular Tweezers 38

2.2.3 Foldamers 39

2.2.4 Compartmentalized Structures Formed by Surfactant‐Like Molecules 40

2.3 Macrocyclic Receptors that Bind Charged Guests 42

2.3.1 Crown Ethers, Cryptands, and Spherands 42

2.3.2 Bambus[n]urils 44

2.3.3 Calix[n]arenes 45

2.3.4 Pillar[n]arenes 48

2.4 Macrocyclic Receptors that (also) Bind Non‐charged Organic Guests 50

2.4.1 Cyclodextrins 50

2.4.2 Cucurbit[n]urils 54

2.4.3 Deep Cavitands 58Contents

2.4.4 Molecular Tubes 62

2.5 Practitioner’s Guidelines for Choosing a Water‐Compatible Host 64

2.5.1 Guest Binding Affinity and Selectivity 64

2.5.2 Availability/Scalability 65

2.5.3 Functionality 65

2.5.4 Solubility 66

2.5.5 Biocompatibility/Toxicity 67

References 67

3 Artificial Peptide and Protein Receptors 79
Joydev Hatai and Carsten Schmuck

3.1 Introduction 79

3.2 Peptide Recognition 79

3.2.1 Calixarenes 80

3.2.2 Guanidiniocarbonyl Pyrroles 80

3.2.3 Cucurbiturils 82

3.2.4 Metal Complexes 84

3.2.5 Phosphonates 86

3.2.6 Thiourea‐Containing Copolymers 87

3.3 Protein Recognition 88

3.3.1 Molecular Tweezer: Huntingtin Protein (htt) 89

3.3.2 Foldamer: Human Carbonic Anhydrase 89

3.3.3 Tetravalent Peptide: β‐Tryptase 90

3.3.4 Semisynthetic Fusicoccin Derivative: 14‐3‐3/Gab2 Protein 91

3.3.5 Ruthenium Complex: Cytochrome C 92

3.3.6 Nitrilotriacetic Acid–Peptide Conjugate: His‐Tag Calmodulin 93

3.3.7 Cucurbit[7]uril: Native Insulin and Human Growth Hormone 95

3.3.8 Phosphonated Calix[6]arene: Cytochrome C 96

3.3.9 p‐Sulfonatocalixarene: Human Insulin Α 96

3.3.10 Multivalent Calixarene: Platelet‐Derived Growth Factor 97

3.4 Sensor Arrays for Proteins 99

3.4.1 Tripodal Peptide‐Containing Receptors: Proteins and Glycoproteins 99

3.4.2 Substituted Porphyrins: Proteins and Metalloproteins 100

3.4.3 Poly(p‐phenyleneethynylene)s: Proteins 101

3.4.4 Chemiluminescent Nanomaterials: Proteins and Cells 103

3.5 Combinatorial Fluorescent Molecular Sensors for Proteins 104

3.5.1 Probe for MMP, GST, and PDGF Protein Families 104

3.5.2 Probe for Amyloid Beta Proteins 107

3.6 Conclusions and Future Directions 108

References 109

4 Recognition, Transformation, Detection of Nucleotides and Aqueous Nucleotide‐Based Materials 115
Isabel Pont, Cristina Galiana‐Rosello, Alberto Lopera, Jorge González‐García, and Enrique García‐España

4.1 Introduction 115

4.2 Nucleotide Structures 118

4.3 Nucleotide Receptors 119

4.3.1 Receptors without Aromatic Units 119

4.3.2 Receptors with Aromatic Units 123

4.3.3 Metal Complexes as Nucleotide Receptors 131

4.3.4 Catalytic Aspects 134

4.4 Nucleotide Sensing 140

4.4.1 General Aspects 140

4.4.2 UV–vis Sensing 140

4.4.3 Fluorescence Sensing 142

4.5 Soft Materials Incorporating Nucleotides, Nucleosides, and Nucleobases 147

4.6 Biomedical Applications 150

4.7 Challenges and Future Perspectives 151

Acknowledgment 152

References 153

5 Carbohydrate Receptors 161
Anthony P. Davis

5.1 Introduction 161

5.2 Organic Molecular Receptors 163

5.2.1 Acyclic Receptors 164

5.2.2 Macrocyclic Receptors 167

5.2.3 Macropolycyclic Cage Receptors 171

5.3 Metal Complexes as Carbohydrate Receptors 178

5.4 Boron‐Based Receptors 180

5.5 Conclusions 184

References 186

6 Ion Receptors 193
Luca Leoni, Antonella Dalla Cort, Frank Biedermann, and Stefan Kubik

6.1 Introduction 193

6.1.1 Potential Applications for Ion Receptors 194

6.1.2 Binding Modes of Ion Receptors 194

6.2 Cation Receptors 197

6.2.1 Neutral Receptors 197

6.2.1.1 Crown Ethers and Cryptands 197

6.2.1.2 Cyclodextrins 198

6.2.1.3 Cucurbiturils 199

6.2.1.4 Cavitands 201

6.2.2 Negatively Charged Receptors 202

6.2.2.1 Cyclophanes 202

6.2.2.2 Cryptophanes 204

6.2.2.3 Calixarenes 204

6.2.2.4 Pillararenes 205

6.2.2.5 Molecular Tweezers 206

6.2.2.6 Acyclic Cucurbiturils 208

6.2.3.1 Metallacycles 209

6.2.3.2 Coordination Cages 210

6.3 Anion Receptors 211

6.3.1 Metal‐Containing Receptors 211

6.3.1.1 Coordination Cages 212

6.3.1.2 Tetraazamacrocycle‐Based Receptors 214

6.3.1.3 Diethylenetriamine‐ and Bis(2‐pyridylmethyl)amine‐Based Receptors 215

6.3.1.4 Tris(2‐aminoethyl)amine and Tris(2‐pyridylmethyl)amine‐Based Receptors 218

6.3.1.5 Miscellaneous 220

6.3.2 Positively Charged Receptors 221

6.3.2.1 Receptors with Quaternary Ammonium Groups 221

6.3.2.2 Amine‐Based Receptors 223

6.3.2.3 Guanidine‐Based Receptors 225

6.3.2.4 Imidazolium‐Based Receptors 227

6.3.3 Negatively Charged Receptors 228

6.3.4 Neutral Receptors 231

6.4 Zwitterion Receptors 236

6.5 Conclusion and Future Challenges 238

References 239

7 Coordination Compounds 249
Anna J. McConnell and Marc Lehr

7.1 Introduction 249

7.2 Organometallic Compounds 249

7.2.1 Macrocycles 251

7.2.2 Cages 252

7.3 Metallomacrocycles 253

7.4 Metallosupramolecular Helicates 255

7.4.1 Transition Metal Helicates 255

7.4.2 Lanthanide Helicates 257

7.5 Metallosupramolecular Bowls and Tubes 260

7.6 Metallosupramolecular Cages 262

7.6.1 Design Considerations 263

7.6.2 Thermodynamics of Guest Binding 263

7.6.3 Cage and Guest Dynamics upon Encapsulation 265

7.6.4 Chiral Recognition 266

7.6.5 Encapsulation of Biorelevant Molecules 266

7.6.6 Stabilization of Encapsulated Species 269

7.6.7 Controlling Reactivity 269

7.6.8 Catalysis 270

7.7 Metal–Organic Frameworks 272

7.8 Challenges and Future Directions 273

8 Aqueous Supramolecular Polymers and Hydrogels 285
Daniel Spitzer and Pol Besenius

8.1 Introduction 285

8.2 Hydrogen‐Bonded Supramolecular Systems 287

8.3 Host–Guest Induced Supramolecular Polymers and Hydrogels 292

8.4 Metal–Ligand Coordinated Systems 296

8.5 π‐Conjugated Systems 301

8.6 Low Molecular Weight Hydrogelator Systems 307

8.7 Peptide‐Based Molecular Amphiphiles and Their Supramolecular Systems 314

8.8 Bioinspired Systems 321

8.9 Challenges and Future Directions 326

References 326

9 Foldamers 337
Morgane Pasco, Christel Dolain, and Gilles Guichard

9.1 Introduction 337

9.2 Discrete Protein‐Like Architectures by Lateral Assemblies of Helical Foldamers 338

9.2.1 Bioinspired Helix Assemblies: Top‐Down Approaches 340

9.2.2 Bioinspired Helix Assemblies: Bottom‐Up Approaches 344

9.3 Helix Duplexes in Aqueous Solution 350

9.4 Assemblies of Extended Chains 355

9.5 Elongated Nanostructures by Self‐Assembly 357

9.6 Applications 359

9.6.1 Host–Guest Interactions With and Within Helix Bundles 359

9.6.2 Self‐Assembling Foldamers Targeting Heparin 362

9.6.3 Catalysis with Self‐Assembled Foldamers 363

9.6.4 Foldamer‐Mediated Protein Oligomerization 364

9.6.5 Nanopores by Insertion of Foldamers into Phospholipid Membranes 366

9.7 Challenges and Future Directions 366

Acknowledgments 367

References 367

10 Vesicles and Micelles 375
Wilke C. de Vries and Bart Jan Ravoo

10.1 Introduction 375

10.2 Building Blocks and Structure of Vesicles and Micelles 376

10.2.1 Conventional Building Blocks and Packing Parameter 376

10.2.2 Driving Forces and Dynamics 379

10.2.3 Nonconventional Building Blocks 382

10.3 Stimulus‐Responsive Vesicles and Micelles 387

10.3.1 Endogenous Stimuli: Redox and pH 387

10.3.1.1 Redox 387

10.3.1.2 pH 389

10.3.2 Exogenous Stimuli: Light and Temperature 391

10.3.2.1 Light 391

10.3.2.2 Temperature 392

10.4 Vesicles and Micelles as Template Structures for Nanomaterials 393

10.4.1 Condensation and Polymerization Reactions Using Template Structures 393

10.4.2 Stabilization of Vesicle and Micelle Structures by Cross‐Linking 394

10.4.3 Polymer Shells Enclosing Vesicle Templates 395

10.5 Molecular Recognition of Vesicles and Micelles in Biomimetic Systems and Nanomaterials 397

10.5.1 Macrocyclic Amphiphiles 397

10.5.2 Carbohydrate and Peptide‐Based Recognition 399

10.5.3 DNA‐Based Recognition 402

10.6 Challenges and Future Directions 404

References 405

11 Monolayer‐Protected Gold Nanoparticles for Molecular Sensing and Catalysis 413
Fabrizio Mancin, Leonard J. Prins, Federico Rastrelli, and Paolo Scrimin

11.1 Introduction 413

11.2 Analytical Techniques 414

11.2.1 Nuclear Magnetic Resonance Spectroscopy 414

11.2.2 Electron Paramagnetic Resonance Spectroscopy 416

11.2.3 Fluorescence Spectroscopy 417

11.2.4 Isothermal Titration Calorimetry 417

11.2.5 Surface‐Enhanced Raman Scattering 418

11.3 Molecular Recognition and Chemosensing of Small Molecules 418

11.3.1 Multivalent Binding Interactions at the Monolayer Surface 419

11.3.2 Binding Pockets in the Monolayer 420

11.3.3 Gold Nanoparticle‐Based Chemosensors 426

11.3.3.1 Indicator Displacement Assays 426

11.3.3.2 NMR Chemosensing 428

11.4 Catalysis by Nanozymes 430

11.5 Controlling Molecular Recognition Processes at the Monolayer 435

11.5.1 Regulatory Mechanisms 435

11.5.2 Adaptive Multivalent Surfaces 438

11.6 Challenges and Future Directions 442

References 442

12 Optical Probes and Sensors 449
Pavel Anzenbacher, Jr and Lorenzo M. Mosca

12.1 Introduction and Lexicon 449

12.2 Brief Fundamentals of Molecular Photoprocesses 451

12.3 Some Comments on the Design of Probes and Sensors 455

12.3.1 General Aspects 455

12.3.2 Fighting with Water 457

12.4 Probes and Sensors for Electroneutral Species 459

12.4.1 Carbohydrates 459

12.5 Probes and Sensor for Cations 462

12.5.1 Alkali and Alkali‐Earth Cations 462

12.5.2 First‐Row Transition Metal Ions 464

12.5.3 Heavy Metal Ions, Particularly Cadmium and Mercury 467

12.6 Probes and Sensors for Anions 469

12.6.1 Fluoride 469

12.6.2 Cyanide 472

12.6.3 Inorganic and Organic Phosphates 473

12.6.4 Carboxylates 482

12.6.5 Other Anions of Interest 487

12.6.6 Sensors for Multiple Anions 487

12.7 Sensing of Biomacromolecules 489

12.8 Challenges and Future Directions 491

References 492

13 Probes for Medical Imaging 501
Felicia M. Roland and Bradley D. Smith

13.1 Medical Imaging 501

13.2 Structure and Supramolecular Properties of Molecular Probes 503

13.2.1 Structure 503

13.2.2 Linkers 503

13.2.3 Reporter Groups 504

13.2.4 Design Aspects 504

13.3 Targeting Groups for Receptors 506

13.3.1 Drug‐Like Molecules 506

13.3.2 Vitamins 507

13.3.3 Peptides 508

13.3.4 Antibodies 508

13.3.5 Aptamers 510

13.4 Signal Enhancement Strategies 511

13.4.1 Intracellular Accumulation 511

13.4.2 Signal Activation by Enzymes 512

13.5 Targeting Cell Surface Biomolecules 513

13.5.1 Anionic Phospholipids 513

13.5.2 Glycans 514

13.5.3 Antigens 515

13.6 Clinical Development 516

13.6.1 Government Approval 516

13.6.2 Multimodal Approaches 518

13.6.3 Theranostic Approaches 519

13.7 Future Role of Supramolecular Chemistry 520

Acknowledgments 521

References 521

14 Supramolecular Catalysis in Water 525
Piet W. N. M. van Leeuwen and Matthieu Raynal

14.1 Introduction 525

14.2 Classification of Supramolecular Catalysts Operating in Water 527

14.2.1 Mass Transfer Promotion through Substrate Sequestration (S1) 529

14.2.2 Catalysis by Confinement (S2) 529

14.2.3 Directed Substrate Reactivity (S3) 531

14.2.4 Construction and Modulation of the Catalytic Structure (S4) 532

14.3 Synthetic Hosts for Catalysis in Water 533

14.3.1 Cyclodextrins (CDs) 536

14.3.2 Cucurbit[n]urils (CBn) 536

14.3.3 Hosts with Aromatic Walls 537

14.3.4 Velcrands 538

14.3.5 Octa‐acid 538

14.3.6 Metallocages 538

14.3.7 Hyperbranched Polymers 539

14.3.8 Dendrimers 539

14.3.9 Micelles 540

14.3.10 Vesicles 541

14.4 Supramolecular Catalysts for the Aqueous Biphasic Hydroformylation Reaction 542

14.5 Supramolecular Catalysts for Other Organometallic Reactions in Water 547

14.6 Future Directions 550

References 551

Index 567