Skip to main content
E-Book

AUD $185.99

*Price and Tax

Product not available for purchase

Unmanned Aircraft Design Techniques

Mohammad H. Sadraey

ISBN: 978-1-119-50862-5 November 2019 568 Pages

E-Book
AUD $185.99
Hardcover
Pre-order
AUD $231.95

Description

Provides a comprehensive introduction to the design and analysis of unmanned aircraft systems with a systems perspective

Written for students and engineers who are new to the field of unmanned aerial vehicle design, this book teaches the many UAV design techniques being used today and demonstrates how to apply aeronautical science concepts to their design. 

Design of Unmanned Aerial Systems covers the design of UAVs in three sections—vehicle design, autopilot design, and ground systems design—in a way that allows readers to fully comprehend the science behind the subject so that they can then demonstrate creativity in the application of these concepts on their own. It teaches students and engineers all about: UAV classifications, design groups, design requirements, mission planning, conceptual design, detail design, and design procedures. It provides them with in-depth knowledge of ground stations, power systems, propulsion systems, automatic flight control systems, guidance systems, navigation systems, and launch and recovery systems. Students will also learn about payloads, manufacturing considerations, design challenges, flight software, microcontroller, and design examples. In addition, the book places major emphasis on the automatic flight control systems and autopilots.

  • Provides design steps and procedures for each major component
  • Presents several fully solved, step-by-step examples at component level
  • Includes numerous UAV figures/images to emphasize the application of the concepts
  • Describes real stories that stress the significance of safety in UAV design
  • Offers various UAV configurations, geometries, and weight data to demonstrate the real-world applications and examples
  • Covers a variety of design techniques/processes such that the designer has freedom and flexibility to satisfy the design requirements in several ways
  • Features many end-of-chapter problems for readers to practice

Design of Unmanned Aerial Systems is an excellent text for courses in the design of unmanned aerial vehicles at both the upper division undergraduate and beginning graduate levels.

Preface

Nomenclature

Acronyms

Chapter 1. Design Fundamentals

1.1. Introduction

1.2. UAV Classifications

1.3. Review of a few Successful UAVs

1.3.1. Global Hawk

1.3.2. RQ-1A Predator

1.3.3. MQ-9 Predator B Reaper

1.3.4. RQ-5A Hunter

1.3.5. RQ-7 Shadow 200

1.3.6. RQ-2A Pioneer

1.3.7. RQ-170 Sentinel

1.3.8. X-45A UCAV

1.3.9. Epson micro-flying robot

1.4. Design Project Planning

1.5. Decision Making

1.6. Design Criteria, Objectives and Priorities

1.7. Feasibility Analysis

1.8. Design Groups

1.9. Design Process

1.10. Systems Engineering Approach

1.11. UAV Conceptual Design

1.12. UAV Preliminary Design

1.13. UAV Detail Design

1.14. Design Review, Evaluation, Feedback

1.15. Safety Analysis

1.15.1. Design Lessons Learned

1.15.2. Likely Failure Modes of Sub-Systems/Components

1.16. UAV Design Steps

Questions

Chapter 2. Preliminary Design

2.1. Introduction

2.2. Maximum Take-Off Weight Estimation

2.3. Weight Buildup

2.4. Payload Weight

2.5. Autopilot Weight

2.6. Fuel Weight

2.7. Battery Weight

2.8. Empty Weight

2.9. Wing and Engine Sizing

2.10. Quadcopter Configuration

Questions

Problems

Chapter 3. Design Disciplines

3.1. Introduction

3.2. Aerodynamic Design

3.3. Structural Design

3.4. Propulsion System Design

3.4.1. General Design Guidelines

3.4.2. Electric Engines

3.5. Landing Gear Design

3.6. Mechanical and Power Transmission Systems Design

3.7. Electric Systems

3.7.1. Fundamentals

3.7.2. Safety Recommendations

3.7.3. Wiring Diagrams

3.7.4. Wire Insulation and Shielding

3.7.5. Batteries

3.7.6. Generator

3.8. Control Surfaces Design

3.9. Safety Analysis

3.9.1. Design Lessons Learned

3.9.2. Likely Failure Modes of Sub-Systems/Components

3.10. Installation Guidelines

3.10.1. GPS/Compass

3.10.2. IMU

3.10.3. Electric Motor

Questions

Problems

Chapter 4. Aerodynamic Design

4.1. Introduction

4.2. Fundamentals of Aerodynamics

4.3. Wing Design

4.3.1. Wing Design Procedure

4.3.2. Airfoil Selection/Design

4.3.3. Wing Design Technique

4.3.4. Wing Design Steps

4.4. Tail Design

4.4.1. Design Procedure

4.4.2. Tail Configuration

4.4.3. Horizontal Tail Design Technique

4.4.4. Tail planform area and tail arm

4.4.5. Tail Airfoil Section

4.4.6. Tail Incidence

4.4.7. Other Horizontal Tail Parameters

4.5. Vertical Tail Design

4.5.1. Parameters

4.5.2. Vertical tail location

4.5.3. Vertical tail moment arm (lvt)

4.5.4. Planform area (Sv)

4.5.5. Incidence (iv)

4.5.6. Other vertical tail parameters

4.5.7. Vertical Tail Design Technique

4.6. Fuselage Design

4.6.1. Fuselage Design Fundamentals

4.6.3. Fuselage Configuration Design and Internal arrangement

4.6.4. Autopilot Compartment

4.6.5. Optimum Length-to-Diameter Ratio

4.6.2. Fuselage Aerodynamics

4.6.6. Lofting

4.6.7. Fuselage Design Steps

4.7. Antenna

4.7.1. Fixed Antenna

4.7.2. Radar Dish Antenna

4.7.3. Satellite Communication Antenna

4.7.3. Antenna Design/Installation

4.8. Aerodynamic Design of Quadcopters

4.9. Aerodynamic Design Guidelines

Questions

Problems

Chapter 5. Fundamentals of Autopilot Design

5.1. Introduction

5.1.1. Autopilot and Human Operator

5.1.2. Primary Subsystems of an Autopilot

5.1.3. Autopilot Design or Selection

5.2. Dynamic Modeling

5.2.1. Modeling Technique

5.2.2. Fundamental Model

5.2.3. Transfer Function

5.2.4. State-Space Representation

5.3. Aerodynamic Forces and Moments

5.3.1. Forces and Moments Equations

5.3.2. Stability and Control Derivatives

5.3.3. Non-dimensional Stability and Control Derivatives

5.3.4. Dimensional Stability and Control Derivatives

5.3.5. Coupling Stability Derivatives

5.4. Simplification Techniques of Dynamic Models

5.4.1. Linearization

5.4.1.1. Taylor Series

5.4.1.2. Direct Technique

5.4.2. Decoupling

5.5. Fixed-Wing UAV Dynamic Models

5.5.1. Nonlinear Fully Coupled Equations of Motion

5.5.2. Nonlinear Semi-Coupled Equations of Motion

5.5.3. Nonlinear Decoupled Equations of Motion

5.5.4. Linear Coupled Equations of Motion

5.5.5. Linear Decoupled Equations of Motion

5.5.6. Reformulated (nonlinear semi-coupled) Equations of Motion

5.5.7. Un-Powered Gliding Equations of Motion

5.6. Dynamic Model Approximation

5.6.1. Pure Pitching Motion Approximation

5.6.2. Pure Rolling Motion Approximation

5.6.3. Pure Yawing Motion Approximation

5.6.4. Longitudinal Oscillatory Modes Approximation

5.7. Quadcopter (Rotary-wing) Dynamic Model

5.7.1. Overall Thrust of four motors

5.7.2. Dynamic Model

5.7.3. Simplified Dynamic Model

5.8. Autopilot Categories

5.8.1. Stability Augmentation

5.8.2. Hold Functions

5.8.3. Navigation Functions

5.8.4. Command Augmentation Systems

5.9. Flight Simulation - Numerical Methods

5.9.1. Numerical Integration

5.9.2. Matlab/Simulink

5.9.3. Hardware-in-the-Loop Simulation

5.10. Flying Qualities for UAVs

5.10.1. Fundamentals

5.10.2. Classes, Categories, and Acceptability Levels

5.10.3. Force Restrictions

5.11. Autopilot Design Process

Questions

Problems

Chapter 6. Control System Design

6.1. Introduction

6.2. Fundamentals of Control Systems

6.2.1. Elements, Concepts and Definitions

6.2.2. Root Locus Design Technique

6.2.3. Frequency Domain Design Technique

6.2.4. Controller Configurations and Control Architectures

6.3. Servo/Actuator

6.3.1. Terminology

6.3.2. Electric Motors

6.3.3. Hydraulic Actuator

6.3.4. Delay

5.3.5. Saturation

6.4. Flight Control Requirements

6.4.1. Longitudinal Control Requirements

6.4.2. Roll Control Requirements

6.4.3. Directional Control Requirements

6.5. Control Modes

6.5.1. Coupled Control Modes

6.5.2. Cruise Control

6.5.3. Pitch-Attitude Hold

6.5.4. Wing Leveler

6.5.5. Yaw Damper

6.5.6. Auto-landing

6.5.7. Turn Coordinator

6.6. Controller Design

6.6.1. PID Controller

6.6.2. Optimal Control - Linear Quadratic Regulator (LQR)

6.6.3. Gain Scheduling

6.6.4. Robust Control

6.6.5. Digital Control

6.7. Autonomy

6.7.1. Classification

6.7.2. Detect (i.e., Sense)-and-Avoid

6.7.3. Automated Recovery

6.7.4. Fault Monitoring

6.7.5. Intelligent Flight Planning

6.8. Manned-Unmanned Aircraft Teaming

6.8.1. Need for Teaming

6.8.2. Teaming Problem Formulation

6.8.3. Decision Making Process

6.8.4. Teaming Communication Process

6.8.5. Teaming Laws

6.9. Control System Design Process

Questions

Problems

Chapter 7. Guidance System Design

7.1. Introduction

7.2. Fundamentals

7.2.1. Guidance Process

7.2.2. Elements of Guidance System

7.2.3. Guidance Components

7.2.4. Target Detection

7.2.5. Moving Target Tracking

7.3. Guidance Laws

7.4. Command Guidance Law

7.5. Proportional Navigation Guidance Law

7.6. Pursuit Guidance Law

7.7. Waypoint Guidance Law

7.7.1. Waypoints

7.7.2. Types of waypoint guidance

7.7.3. Segments of a Horizontal (Level) Trajectory

7.7.4. Waypoint Guidance Algorithm

7.7.4.1. Trajectory smoother

7.7.4.2. Trajectory tracking

7.7.5. UAV Maneuverability Evaluation

7.8. Sense and Avoid

7.8.1. Fundamentals

7.8.2. Sensing Techniques

7.8.3. Collision Avoidance

7.9. Formation Flight

7.10. Motion Planning and Trajectory Design

7.11. Guidance Sensor - Seeker

7.12. Guidance System Design

Questions

Problems

Chapter 8. Navigation System Design

8.1. Introduction

8.2. Classifications

8.3. Coordinate Systems

8.3.1. Fixed and Moving Frames

8.3.2. World Geodetic System

8.4. Inertial Navigation System

8.4.1. Fundamentals

8.4.2. Navigation Equations

8.4.3. Navigation Basic Calculations

8.4.4. Geodetic Coordinates Calculations

8.5. Kalman Filtering

8.6. Global Positioning System

8.6.1. Fundamentals

8.6.2. Earth Longitude and Latitude

8.6.3. Ground Speed versus Airspeed

8.7. Position Fixing Navigation

8.7.1. Map Reading

8.7.2. Celestial Navigation

8.8. Navigation in Reduced Visibility Conditions

8.9. Inertial Navigation Sensors

8.9.1. Primary Functions

8.9.2. Accelerometer

8.9.3. Gyroscope

8.9.4. Airspeed Sensor

8.9.5. Altitude Sensor

8.9.5.1. Radar Altimeter

8.9.5.2. Mechanical Altimeter

8.9.6. Pressure Sensor

8.9.7. Clock/Timer

8.9.8. Compass

8.9.8. Magnetometer

8.9.10. MEMS Inertial Module

8.9.11. Transponder

8.10. Navigation Disturbances

8.10.1. Wind

8.10.2. Gust and Disturbance

8.10.3. Measurement Noise

8.10.4. Drift

8.10.4.1. Drift Due to Rotation of Rotor/Propeller

8.10.4.2. Drift Due to Wind

8.10.5. Coriolis Effect

8.10.6. Magnetic Deviation

8.11. Navigation System Design

8.11.1. Design Requirements

8.11.2. Design Flowchart

8.11.3. Design Guidelines

Questions

Problems

Chapter 9. Microcontroller

9.1. Introduction

9.2. Basic Fundamentals

9.2.1. Microcontroller Basics

9.2.2. Microcontroller versus Microprocessor

9.2.3. Packaging Formats

9.2.4. Modules/Components

9.2.5. Atmel ATmega644P

9.3. Microcontroller Circuitry

9.3.1. Microcontroller circuit board

9.3.2. Electric Motor

9.3.3. Servo Motor

9.3.4. Sensors

9.3.5. Potentiometer

9.3.6. Wiring

9.4. Embedded Systems

9.4.1. Introduction

9.4.2. Embedded Processors

9.4.3. Signal Flow

9.5. Microcontroller Programming

9.5.1. Software Development

9.5.2. Operating System

9.5.3. Management Software

9.5.4. Microcontroller Programing

9.5.5. Software Integration

9.5.6. High-Level Programming Languages

9.5.7. Compiler

9.5.8. Debugging

9.6. Programming in C

9.6.1. Introduction

9.6.2. General Structure of a C program

9.6.3. Example Code - Detecting a Dead LED

9.6.4. Execution of a C Program

9.7. Arduino

9.7.1. Arduino Overview

9.7.2. Arduino Programming

9.7.3. Arduino Uno Board

9.7.4. Open-Loop Control of an Elevator

9.8. Open-Source Commercial Autopilots

9.8.1. ArduPilot

9.8.2. PX4 Pixhawk Autopilot

9.8.3. Micropilot

9.8.4. DJI WooKong Autopilot

9.9. Design Procedure

9.10. Design Project

9.10.1. Problem Statement

9.10.2. Design and Implementation

9.10.3. Arduino Code

9.10.4. Procedure

9.10.5. Matlab Code for Real-Time plotting

9.10.6. System Response and Results

Questions

Problems

Design projects

Chapter 10. Launch and Recovery Systems Design

10.1. Introduction

10.2. Launch Technologies and Techniques

10.2.1. Rocket Assisted Launch

10.2.2. Bungee Cord Catapult Launch

10.2.3. Pneumatic Launchers

10.2.4. Hydraulic Launchers

10.2.5. Air Launch

10.2.6. Hand Launch

10.3. Launcher Equipment

10.3.1. Elements

10.3.2. Ramp/Slipway

10.3.3. Push Mechanism

10.3.4. Elevation Platform

10.3.5 Power Supply

10.4. Fundamentals of Launch

10.4.1. Fundamental Principles

10.4.2 Governing Launch Equations

10.4.3. Wing and Horizontal Tail Contributions

10.4.4. UAV Longitudinal Trim

10.5. Elevation Mechanism Design

10.5.1. Elevation Mechanism Operation

10.5.2. Hydraulic and Pneumatic Actuators

10.6. VTOL

10.7. Recovery Technologies and Techniques

10.7.1. Fundamentals

10.7.2. Net recovery

10.7.3. Arresting line

10.7.4. Skyhook

10.7.5. Windsock

10.7.6. Parachute

10.8. Recovery Fundamentals

10.8.1. Parachute

10.8.2. Impact Recovery

10.9. Launch/Recovery Systems Mobility

10.9.1. Mobility Requirements

10.9.2. Conventional Wheeled Vehicle

10.10. Launch and Recovery Systems Design

10.10.1. Launch and Recovery Systems Selection

10.10.2. Launch System Design

10.10.3. Recovery System Design

Questions

Problems

Design Projects

Chapter 11. Ground Control Station

11.1. Introduction

11.2. GCS Subsystems

11.3. Types of Ground Stations

11.3.1. Handheld Radio Controller

11.3.1.1. General Structure

11.3.1.2. Stick

11.3.1.3. Potentiometer

11.3.2. Portable GCS

11.3.3. Mobile Truck

11.3.4 Central Command Station

11.3.5. Sea Control Station

11.3.6. General GCS

11.4. GCS of a Number of UAVs

11.4.1. Global Hawk

11.4.2. Predator

11.4.3. MQ-5A Hunter

11.4.4. Shadow 200

11.4.5. DJI Phantom

11.4.5. Yamaha RMAX Unmanned Helicopter

11.5. Human-Related Design Requirements

11.5.1. Number of Pilots/Operators in Ground Station

11.5.2. Ergonomics

11.5.3. Features of a Human Pilot/Operator

11.5.4. Console Dimensions and Limits

11.6. Support Equipment

11.6.1. Introduction

11.6.2. Transportation equipment

11.6.3. Power Generator

11.6.4. HVAC System

11.6.5. Other Items

11.7. GCS Design Guidelines

Questions

Problems

Design problem

Chapter 12. Payloads Selection/Design

12.1. Introduction

12.2. Elements of Payload

12.2.1. Payload Definition

12.2.2. Payloads Classifications

12.3. Payloads of a Few UAVs

12.3.1. RQ-4 Global Hawk

12.3.2. MQ-9 Predator B Reaper

12.3.3. RQ-7 Shadow 200

12.3.4. RQ-5A Hunter

12.3.5. DJI Phantom Quadcopter

12.3.6. X-45 UCAV

12.3.7. Yamaha RMAX

12.4. Cargo or Freight Payload

12.5. Reconnaissance/Surveillance Payload

12.5.1. Electro-Optical Camera

12.5.2. Infra-Red Camera

12.5.3. Radar

12.5.3.1. Fundamentals

12.5.3.2. Radar Governing Equations

12.5.3.3. An Example

12.5.3.4. A Few Applications

12.5.4. Lidar

12.5.5. Range Finder

12.5.6. Laser Designator

12.5.7. Radar Warning Receiver

12.6. Scientific Payloads

12.6.1. Classifications

12.6.2. Temperature Sensor

12.7. Military Payloads

12.8. Electronic Counter Measure Payloads

12.9. Payload Installation

12.9.1. Payload Wiring

12.9.2. Payload Location

12.9.3. Payload Aerodynamics

12.9.4. Payload-Structure Integration

12.9.5. Payload Stabilization

12.10. Payload Control and Management

12.11. Payload Selection/Design Guidelines

Questions

Problems

Design problems

Chapter 13. Communications System Design

13.1. Fundamentals

13.2. Data Link

13.3. Transmitter

13.4. Receiver

13.5. Antenna

13.6. Radio Frequency

13.7. Encryption

13.8. Communications Systems of a Few UAVs

13.9. Installation

13.10. Communications System Design

Questions

Problems

Laboratory experiments

Chapter 14. Design Analysis and Feedbacks

14.1. Introduction

14.2. Design Feedbacks

14.3. Weight and Balance

14.3.1. UAV Center of Gravity

14.3.2. Weight Distribution

14.4. Stability Analysis

14.4.1. Fundamentals

14.4.2. Static Longitudinal stability

14.4.3. Dynamic Longitudinal stability

14.4.4. Static Lateral-Directional stability

14.4.5. Dynamic Lateral-Directional stability

14.4.6. Typical Values for Stability Derivatives

14.5. Controllability Analysis

14.5.1. Longitudinal Control

14.5.2. Lateral Control

14.5.3. Directional Control

14.5.4. Typical Values for Control Derivatives

14.6. Flight Performance Analysis

14.6.1. Maximum Speed

14.6.2. Maximum Range

14.6.3. Maximum Endurance

14.6.4. Climb Performance

14.6.4.1. Fastest Climb

14.6.4.2. Steepest Climb

14.6.5. Takeoff Performance

14.6.6. Turn performance

14.7. Cost analysis

Questions

Problems

References 581

Index