Skip to main content

Transition Metal-Dinitrogen Complexes: Preparation and Reactivity

E-Book

€135.60

*VAT

Transition Metal-Dinitrogen Complexes: Preparation and Reactivity

Yoshiaki Nishibayashi

ISBN: 978-3-527-34427-7 January 2019 510 Pages

Description

A comprehensive book that explores nitrogen fixation by using transition metal-dinitrogen complexes

Nitrogen fixation is one of the most prominent fields of research in chemistry. This book puts the focus on the development of catalytic ammonia formation from nitrogen gas under ambient reaction conditions that has been recently repowered by some research groups. With contributions from noted experts in the field, Transition Metal-Dinitrogen Complexes offers an important guide and comprehensive resource to the most recent research and developments on the topic of nitrogen fixation by using transition metal-dinitrogen. The book is filled with the information needed to understand the synthesis of transition metal-dinitrogen complexes and their reactivity. This important book:

-Offers a resource for understanding nitrogen fixation chemistry that is essential for explosives, pharmaceuticals, dyes, and all forms of life
-Includes the information needed for anyone interested in the field of nitrogen fixation by using transition metal-dinitrogen complexes
-Contains state-of-the-art research on synthesis of transition metal-dinitrogen complexes and their reactivity in nitrogen fixation
-Incorporates contributions from well-known specialists and experts with an editor who is an innovator in the field of dinitrogen chemistry

Written for chemists and scientists with an interest in nitrogen fixation, Transition Metal-Dinitrogen Complexes is a must-have resource to the burgeoning field of nitrogen fixation by using transition metal-dinitrogen complexes.

Preface xi

About the Editor xiii

1 Overviews of the Preparation and Reactivity of Transition Metal–Dinitrogen Complexes 1
Yoshiaki Tanabe and Yoshiaki Nishibayashi

1.1 Introduction 1

1.2 Biological Nitrogen Fixation 4

1.3 Historical Background of Transition Metal–Dinitrogen Complexes 9

1.4 Coordination Chemistry of Transition Metal–Dinitrogen Complexes 13

1.4.1 Coordination Patterns of Dinitrogen and Mononuclear Transition Metal–Dinitrogen Complexes 13

1.4.2 Multinuclear Transition Metal–Dinitrogen Complexes 16

1.5 Chemical Activation and Reactivity of Dinitrogen Using Transition Metal Complexes 21

1.5.1 Protonation of Transition Metal-bound Dinitrogen 21

1.5.2 Cleavage of Transition Metal-bound Dinitrogen 25

1.5.3 Reaction of Transition Metal-bound Dinitrogen with Dihydrogen 26

1.5.4 Functionalization of Transition Metal-bound Dinitrogen 29

1.5.5 Electrochemical and Photochemical Conversion of Dinitrogen Using Transition Metal Complexes 31

1.6 Catalytic Conversion of Dinitrogen into Ammonia Using Transition Metal Complexes 34

1.6.1 Catalytic Formation of Ammonia or Hydrazine Using Molybdenum Complexes 34

1.6.2 Catalytic Formation of Ammonia or Hydrazine Using Transition Metal Other than Molybdenum (Iron, Ruthenium, Osmium, Cobalt, and Vanadium) Complexes 40

1.6.3 Catalytic Transformation of Hydrazine into Ammonia 45

1.6.4 Catalytic Formation of Silylamine 47

1.7 Conclusion and Perspectives 50

References 51

2 Group 4 Transition Metal–Dinitrogen Complexes 79
Hidetake Seino and Yuji Kajita

2.1 Introduction 79

2.2 Preparation of Group 4 Transition Metal–Dinitrogen Complexes 80

2.2.1 Dinitrogen Complexes of Bis(cyclopentadienyl)titanium Derivatives 80

2.2.2 Dinitrogen Complexes of Bis(cyclopentadienyl)zirconium and Bis(cyclopentadienyl)hafnium Derivatives 89

2.2.3 Other Dinitrogen Complexes Based on Cyclopentadienyl Ligands 98

2.2.4 Dinitrogen Complexes Supported by σ-donor Ligands 100

2.2.5 Heterobimetallic Dinitrogen Complexes 109

2.3 Reactions of Group 4 Transition Metal–Dinitrogen Complexes 112

2.3.1 Protonation 112

2.3.2 Reduction 115

2.3.3 Reactions with Hydrogen 120

2.3.4 Reactions with Si—H and B—H Bonds 129

2.3.5 Reactions with Alkyl Halides and Their Equivalents 131

2.3.6 Reactions with Alkynes 136

2.3.7 Reactions with Carbon Dioxide and Cumulenes 138

2.3.8 Reactions with Carbon Monoxide 142

2.3.9 Dinitrogen Ligand Substitution 148

2.4 Conclusion and Perspectives 151

2.5 Addition After Acceptance of this Manuscript 151

References 152

3 Group 5 Transition Metal-Dinitrogen Complexes 159
Leila M. Duman and Lawrence R. Sita

3.1 Introduction 159

3.2 Preparation of Group 5 Metal N2 Complexes 160

3.2.1 Vanadium 160

3.2.2 Niobium 174

3.2.3 Tantalum 178

3.3 N≡N Bond CleavageWithin Group 5 Metal N2 Complexes 187

3.3.1 Vanadium 188

3.3.2 Niobium 192

3.3.3 Tantalum 197

3.4 Nitrogen Fixation Mediated by Group 5 Transition-metal N2 Complexes 201

3.4.1 Vanadium 202

3.4.2 Niobium 204

3.4.3 Tantalum 206

3.5 CPAM Group 5 Bimetallic (μ-η1:η1-N2) Complexes 206

3.6 Conclusions and Perspectives 212

References 214

4 Group 6 Transition Metal–Dinitrogen Complexes 221
NicolasMézailles

4.1 Introduction 221

4.2 Preparation of Group 6 Transition Metal–Dinitrogen Complexes 222

4.2.1 End-on Dinitrogen Complexes from N2 222

4.2.1.1 Arene and Phosphine Ligands 222

4.2.1.2 Thioether Ligands 226

4.2.1.3 Nitrogen and Cp Ligands 226

4.2.2 End-on Bridging Dinitrogen Complexes from N2: Synthesis and N2 Splitting 228

4.3 Stoichiometric Reactions of Group 6 Transition Metal–Dinitrogen and Metal–Nitrido Complexes 234

4.3.1 N—H Bond Formation 234

4.3.2 N—C Bond Formation 238

4.3.3 N-element Bond Formation 241

4.4 Catalytic Reactions of Group 6 Transition Metal–Dinitrogen Complexes 247

4.4.1 Catalytic Formation of N2H4/NH3 from NonisolatedM–N2 Complexes 247

4.4.2 Catalytic Formation of N(SiMe3)3 247

4.4.3 Catalytic Formation of NH3 251

4.5 Chemistry of Cr Complexes 259

4.6 Conclusion and Perspectives 261

References 263

5 Toward N—NBond Cleavage: Synthesis and Reactivity of Group 7 Dinitrogen Complexes 271
Elon A. Ison

5.1 Synthesis of Group VII N2 Complexes 271

5.1.1 Syntheses of Terminal N2 Complexes 271

5.1.2 Reactivity of Terminal N2 Complexes 275

5.1.2.1 Synthesis of Bridged N2 Complexes by Reaction with Lewis Acids 276

5.1.2.2 Alternative Syntheses of Bridged N2 Complexes 279

5.2 Cleavage and Functionalization of N2 Bonds 280

5.2.1 Generation of Diazomethane from CpMn(CO)2N2 280

5.2.2 Cleavage of N2 in the Coordination Sphere of Rhenium 281

5.3 Conclusions and Future Outlook 281

References 282

6 Group 8 Transition Metal–Dinitrogen Complexes 285
Adam D. Piascik and Andrew E. Ashley

6.1 Introduction 285

6.2 Preparation of Group 8 Transition Metal–Dinitrogen Complexes 288

6.2.1 Ligand Substitution 288

6.2.2 Precursor Reduction 292

6.2.3 Other Methods 296

6.3 Stoichiometric Reactions of Group 8 Transition Metal–Dinitrogen Complexes 297

6.3.1 Substitution Reactions and Lability of Bound N2 297

6.3.2 Cleavage and Functionalization of Coordinated N2 301

6.3.3 Other Stoichiometric Reactivity 309

6.4 Catalytic Reactions of Group 8 Transition Metal–Dinitrogen Complexes 311

6.4.1 Early Results and Fe Bis(diphosphine) Systems for Catalytic N2 Fixation 311

6.4.2 Catalytic NH3 Production by EPR 3-supported Systems 313

6.4.3 Catalytic N2 Fixation by Other Systems 317

6.4.4 Other Catalytic Reactions of Group 8 M–N2 Complexes 319

6.5 Conclusion and Perspectives 327

References 328

7 Group 9 Transition Metal–Dinitrogen Complexes 337
Connie C. Lu and Steven D. Prinslow

7.1 Cobalt–Dinitrogen Complexes 337

7.1.1 Monodentate Phosphine Donors 338

7.1.1.1 CoH(N2)(PR3)3 and Related Co(I) Complexes 338

7.1.1.2 Cobaltate Complexes: [Co(N2)(PR3)3]− 342

7.1.2 Tripodal Polyphosphine Ligands 345

7.1.2.1 Tris(phosphine) Ligands 345

7.1.2.2 Tris(phosphino)borate Ligands 346

7.1.2.3 Trisphosphine Systems with an Apical Main Group Donor 347

7.1.2.4 Trisphosphine Systems with an Apical Transition Metalloligand Donor 350

7.1.3 Ligands with Exclusively Nitrogen Donors 355

7.1.3.1 Tris(pyrazoyl)borate (Tp) Ligands 355

7.1.3.2 β-diketiminate Ligands 356

7.1.3.3 Bis(α-imino)pyridine Ligands 358

7.1.4 N-heterocyclic Carbene Ligands 359

7.1.5 Pincer Ligands 360

7.1.5.1 Monoanionic PNP-Type and PBP-Type Ligands 361

7.1.5.2 Pincer Ligands with N/P Donors 363

7.1.5.3 N-heterocyclic Carbene-Based Pincer Ligands 365

7.1.6 Other Assorted Ligands 367

7.1.7 Analysis and Summary of Cobalt–Dinitrogen Complexes 369

7.2 Rhodium–Dinitrogen Complexes 370

7.2.1 Early Rh–N2 Complexes 370

7.2.2 Phosphine Ligands 372

7.2.3 Ligands with Exclusively Nitrogen Donors 374

7.2.3.1 Bis(α-imino)pyridine Ligands 374

7.2.3.2 β-diketiminate Ligands 375

7.2.4 Pincer Ligands 375

7.2.4.1 PCP Pincer Ligands 376

7.2.4.2 PNP Pincer Ligands 378

7.2.4.3 Other Pincer Ligands 380

7.2.5 N-heterocyclic Carbene Ligands 380

7.2.6 Summary of Rhodium–Dinitrogen Complexes 381

7.3 Iridium–Dinitrogen Complexes 381

7.3.1 Early Ir–N2 Complexes 382

7.3.2 Phosphine Ligands 383

7.3.3 Ligands with Exclusively Nitrogen Donors 385

7.3.3.1 Tris(pyrazoyl)borate (Tp) Ligands 385

7.3.3.2 β-diketiminate Ligands 386

7.3.4 Pincer Ligands 386

7.3.4.1 PNP-Type Pincer Ligands 386

7.3.4.2 PCP- and PSiP-Type Pincer Ligands 388

7.3.5 N-heterocyclic Carbene Ligands 390

7.3.6 Miscellaneous 391

7.3.7 Summary of Iridium–Dinitrogen Complexes 391

7.4 Group 9 Catalysts for N2 Functionalization 392

7.4.1 Cobalt-Based Catalysts 392

7.4.1.1 Dinitrogen Silylation 393

7.4.1.2 Dinitrogen Fixation 395

7.4.2 Outlook for Rhodium and Iridium Catalysts 396

Acknowledgments 396

References 396

8 Group 10 and 11 Transition Metal–Dinitrogen Complexes 403
Ricardo B. Ferreira and Leslie J. Murray

8.1 Introduction 403

8.2 Group 10 Transition Metal–Dinitrogen Complexes 405

8.2.1 Nickel 405

8.2.1.1 Interaction of Dinitrogen with Nickel Surfaces 406

8.2.1.2 Matrix-Assisted Isolation of Binary or Ternary Compounds 406

8.2.1.3 Coordination Compounds 408

8.2.1.4 Structural Relationships and Comparisons 420

8.2.2 Palladium and Platinum 422

8.3 Group 11 Transition Metal–Dinitrogen Complexes 423

8.3.1 Copper 423

8.3.1.1 Matrix-Assisted Isolation of Binary or Ternary Compounds 423

8.3.1.2 Coordination Compounds 425

8.3.1.3 Structural Relationships and Comparisons 427

8.3.2 Silver and Gold 429

8.4 Conclusion and Perspectives 430

References 431

9 Group 3 Transition Metal, Lanthanide, and Actinide–Dinitrogen Complexes 441
Yoshiaki Tanabe

9.1 Introduction 441

9.2 Preparation and Characterization of Group 3 Transition Metal, Lanthanide, and Actinide–Dinitrogen Complexes 443

9.2.1 Overviews of Preparation, Structures, and Characterization of Group 3 Transition Metal, Lanthanide, and Actinide–Dinitrogen Complexes 443

9.2.2 Preparation and Structures of Side-on-Bound {(N2)2−}-Bridged Dinuclear Group 3 Transition Metal, Lanthanide, and Actinide–Dinitrogen Complexes 443

9.2.3 Preparation and Structures of Side-on-bound {(N2)3−}-Bridged Dinuclear Group 3 Transition Metal and Lanthanide Complexes 456

9.2.4 Preparation and Structures of {(N2)4−}-Bridged Dinuclear, Trinuclear, and Tetranuclear Lanthanide and Actinide–Dinitrogen Complexes 457

9.2.5 Preparation and Structures of End-on-Bound Group 3 Transition Metal, Lanthanide, and Actinide–Dinitrogen Complexes 460

9.3 Reactivity and Property of Group 3 Transition Metal, Lanthanide, and Actinide–Dinitrogen Complexes 462

9.3.1 Cleavage, Protonation, and Functionalization of Dinitrogen upon Group 3 Transition Metal, Lanthanide, and Actinide–Dinitrogen Complexes 462

9.3.2 Group 3 Transition Metal–Dinitrogen Complexes as Mediators for the Transformation of Small Molecules 466

9.3.3 {(N2)3−}-Bridged Dinuclear Group 3 Transition Metal and Lanthanide Complexes as Single-Molecule Magnets 468

9.4 Conclusion and Perspectives 469

References 470

Index 475