Skip to main content

Introduction to Topology and Geometry, 2nd Edition



Introduction to Topology and Geometry, 2nd Edition

Saul Stahl, Catherine Stenson

ISBN: 978-1-118-54614-7 August 2014 536 Pages

Download Product Flyer

Download Product Flyer

Download Product Flyer is to download PDF in new tab. This is a dummy description. Download Product Flyer is to download PDF in new tab. This is a dummy description. Download Product Flyer is to download PDF in new tab. This is a dummy description. Download Product Flyer is to download PDF in new tab. This is a dummy description.


An easily accessible introduction to over three centuries of innovations in geometry

Praise for the First Edition

“. . . a welcome alternative to compartmentalized treatments bound to the old thinking. This clearly written, well-illustrated book supplies sufficient background to be self-contained.” —CHOICE

This fully revised new edition offers the most comprehensive coverage of modern geometry currently available at an introductory level. The book strikes a welcome balance between academic rigor and accessibility, providing a complete and cohesive picture of the science with an unparalleled range of topics. 

Illustrating modern mathematical topics, Introduction to Topology and Geometry, Second Edition discusses introductory topology, algebraic topology, knot theory, the geometry of surfaces, Riemann geometries, fundamental groups, and differential geometry, which opens the doors to a wealth of applications. With its logical, yet flexible, organization, the Second Edition:

• Explores historical notes interspersed throughout the exposition to provide readers with a feel for how the mathematical disciplines and theorems came into being

• Provides exercises ranging from routine to challenging, allowing readers at varying levels of study to master the concepts and methods

• Bridges seemingly disparate topics by creating thoughtful and logical connections

• Contains coverage on the elements of polytope theory, which acquaints readers with an exposition of modern theory

Introduction to Topology and Geometry, Second Edition is an excellent introductory text for topology and geometry courses at the upper-undergraduate level. In addition, the book serves as an ideal reference for professionals interested in gaining a deeper understanding of the topic.

Related Resources

Preface ix

Acknowledgments xiii

1 Informal Topology 1

2 Graphs 13

2.1 Nodes and Arcs 13

2.2 Traversability 16

2.3 Colorings 21

2.4 Planarity 25

2.5 Graph Homeomorphisms 31

3 Surfaces 41

3.1 Polygonal Presentations 42

3.2 Closed Surfaces 50

3.3 Operations on Surfaces 71

3.4 Bordered Surfaces 79

3.5 Riemann Surfaces 94

4 Graphs and Surfaces 103

4.1 Embeddings and Their Regions 103

4.2 Polygonal Embeddings 113

4.3 Embedding a Fixed Graph 118

4.4 Voltage Graphs and Their Coverings 128

Appendix: 141

5 Knots and Links 143

5.1 Preliminaries 144

5.2 Labelings 147

5.3 From Graphs to Links and on to Surfaces 158

5.4 The Jones Polynomial 169

5.5 The Jones Polynomial and Alternating Diagrams 187

5.6 Knots and surfaces 194

6 The Differential Geometry of Surfaces 205

6.1 Surfaces, Normals, and Tangent Planes 205

6.2 The Gaussian Curvature 212

6.3 The First Fundamental Form 219

6.4 Normal Curvatures 229

6.5 The Geodesic Polar Parametrization 236

6.6 Polyhedral Surfaces I 242

6.7 Gauss’s Total Curvature Theorem 247

6.8 Polyhedral Surfaces II 252

7 Riemann Geometries 259

8 Hyperbolic Geometry 275

8.1 Neutral Geometry 275

8.2 The Upper Half Plane 287

8.3 The HalfPlane Theorem of Pythagoras 295

8.4 HalfPlane Isometries 305

9 The Fundamental Group 317

9.1 Definitions and the Punctured Plane 317

9.2 Surfaces 325

9.3 3Manifolds 332

9.4 The Poincar´e Conjecture 357

10 General Topology 361

10.1 Metric and Topological Spaces 361

10.2 Continuity and Homeomorphisms 367

10.3 Connectedness 377

10.4 Compactness 379

11 Polytopes 387

11.1 Introduction to Polytopes 387

11.2 Graphs of Polytopes 401

11.3 Regular Polytopes 405

11.4 Enumerating Faces 415

Appendix A Curves 429

A.1 Parametrization of Curves and Arclength 429

Appendix B A Brief Survey of Groups 441

B.1 The General Background 441

B.2 Abelian Groups 446

B.3 Group Presentations 447

Appendix C Permutations 457

Appendix D Modular Arithmetic 461

Appendix E Solutions and Hints to Selected Exercises 465

References and Resources 497