Skip to main content

Handbook of Composites from Renewable Materials, Volume 6, Polymeric Composites

Hardcover

CAD $330.00

Handbook of Composites from Renewable Materials, Volume 6, Polymeric Composites

Description

The Handbook of Composites From Renewable Materials comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of these advanced materials. The handbook covers a multitude of natural polymers/ reinforcement/ fillers and biodegradable materials. Together, the 8 volumes total at least 5000 pages and offers a unique publication.

This 6th volume Handbook is solely focused on Polymeric Composites. Some of the important topics include but not limited to: Keratin as renewable material for developing polymer composites; natural and synthetic matrices; hydrogels in tissue engineering; smart hydrogels: application in bioethanol production; principle renewable biopolymers; application of hydrogel biocomposites for multiple drug delivery; nontoxic holographic materials; bioplasticizer - epoxidized vegetable oils-based poly (lactic acid) blends and nanocomposites; preparation, characterization and adsorption properties of poly (DMAEA) – cross-linked starch gel copolymer in waste water treatments; study of chitosan crosslinking hydrogels for absorption of antifungal drugs using molecular modelling; pharmaceutical delivery systems composed of chitosan; eco-friendly polymers for food packaging; influence of surface modification on the thermal stability and percentage of crystallinity of natural abaca fiber; influence of the use of natural fibers in composite materials assessed on a life cycle perspective; plant polysaccharides-blended  ionotropically-gelled alginate multiple-unit systems for sustained drug release; vegetable oil based polymer composites; applications of chitosan derivatives in wastewater treatment; novel lignin-based materials as a products for various applications; biopolymers from renewable resources and thermoplastic starch matrix as polymer units of multi-component polymer systems for advanced applications; chitosan composites: preparation and applications in removing water pollutants and  recent advancements in biopolymer composites for addressing environmental issues.

Preface xxi

1 Keratin as Renewable Material to Develop Polymer Composites: Natural and Synthetic Matrices 1
Flores-Hernandez C.G., Murillo-Segovia B., Martinez-Hernandez A.L. and Velasco-Santos C

1.1 Introduction 1

1.2 Keratin 2

1.2.1 Feathers 5

1.2.2 Hair and Wool 8

1.2.3 Horn 9

1.3 Natural Fibers to Reinforce Composite Materials 11

1.4 Keratin, an Environmental Friendly Reinforcement for Composite Materials 11

1.4.1 Synthetic Matrices 11

1.4.1.1 Petroleum-Based Polymers Reinforced with Chicken Feathers 13

1.4.1.2 Synthetic Matrices Reinforced with Hair or Wool 18

1.4.1.3 Synthetic Matrices Reinforced with Horn 20

1.4.2 Natural Matrices 20

1.4.2.1 Natural Matrices Reinforced with Chicken Feathers 21

1.4.2.2 Natural Matrices Reinforced with Hair or Wool 24

1.5 Conclusions 25

References 26

2 Determination of Properties in Composites of Agave Fiber with LDPE and PP Applied Molecular Simulation 31
Norma-Aurea Rangel-Vazquez and Ricardo Rangel

2.1 Introduction 31

2.1.1 Lignocellulosic Materials 31

2.1.1.1 Fibers 32

2.1.1.2 Agave 33

2.1.1.3 Chemical Treatment of Fibers 34

2.1.2 Composites 35

2.1.3 Polymers 35

2.1.3.1 Polyethylene 37

2.1.3.2 Polypropylene (PP) 39

2.1.4 Molecular Modelation 39

2.1.4.1 Classification 40

2.1.4.2 Properties 42

2.2 Materials and Methods 44

2.2.1 Geometry Optimization 44

2.2.2 Structural Parameters 44

2.2.3 FTIR 45

2.2.4 Molecular Electrostatic Potential Map 45

2.3 Results and Discussions 48

2.3.1 Geometry Optimization 48

2.3.2 Deacetylation of Agave Fiber 49

2.3.3 Structural Parameters 50

2.3.4 FTIR 50

2.3.5 Molecular Electrostatic Potential Map (MESP) 54

2.4 Conclusions 54

References 55

3 Hydrogels in Tissue Engineering 59
Luminita Ioana Buruiana and Silvia Ioan

3.1 Introduction 59

3.2 Classification of Hydrogels 60

3.3 Methods of Hydrogels Preparation 61

3.4 Hydrogels Characterization 63

3.4.1 Mechanical Properties 64

3.4.2 Chemical-Physical Analysis 64

3.4.3 Morphological Characterization 64

3.4.4 Swelling Behavior 65

3.4.5 Rheology Measurements 65

3.5 Hydrogels Applications in Biology and Medicine 66

3.5.1 Hydrogel Scaffolds in Tissue Engineering 66

3.5.2 Hydrogels in Drug Delivery Systems 70

3.6 Concluding Remarks 73

References 74

4 Smart Hydrogels: Application in Bioethanol Production 79
Lucinda Mulko, Edith Yslas, Silvestre Bongiovanni Abel, Claudia Rivarola, Cesar Barbero and Diego Acevedo

4.1 Hydrogels 79

4.2 History of Hydrogels 80

4.3 The Water in Hydrogels 81

4.4 Classifications of Hydrogels 81

4.5 Synthesis 82

4.6 Hydrogels Synthesized by Free Radical Polymerization 83

4.7 Monomers 84

4.8 Initiators 84

4.9 Cross-Linkers 84

4.10 Hydrogel Properties 85

4.11 Mechanical Properties 87

4.12 Biocompatible Properties 87

4.13 Hydrogels: Biomedical Applications 88

4.14 Techniques and Supports for Immobilization 89

4.15 Entrapment 89

4.16 Covalent Binding 90

4.17 Cross-Linking 91

4.18 Adsorption 91

4.19 Hydrogel Applications in Bioethanol Production 92

4.20 Classification of Biofuels 92

4.21 Ethanol Properties 93

4.22 Ethanol Production 95

4.23 Feedstock Pretreatment 95

4.24 Liquefaction and Saccharification Reactions 97

4.25 Fermentation Process 97

4.26 Continuous or Discontinuous Process? 98

4.27 Simultaneous Saccharification and Fermentation (SSF) Processes 98

4.28 Yeast and Enzymes Immobilized 99

References 100

5 Principle Renewable Biopolymers and Their Biomedical Applications 107
İlayda Duru, Oznur Demir Oğuz, Hayriye Oztatlı, Duygu Ceren Arıkfidan, Hatice Kaya, Elif Donmez and Duygu Ege

5.1 Collagen 107

5.2 Elastin 111

5.3 Silk Fibroin 114

5.4 Chitosan 116

5.5 Chondroitin Sulfate 119

5.6 Cellulose 121

5.7 Hyaluronic Acid 123

5.8 Poly(L-lysine) 126

References 128

6 Application of Hydrogel Biocomposites for Multiple Drug Delivery 139
S.J. Owonubi, S.C. Agwuncha, E. Mukwevho, B.A. Aderibigbe, E.R. Sadiku, O.F. Biotidara and K. Varaprasad

6.1 Introduction 140

6.2 Sustained Drug Release Systems 142

6.3 Controlled Release Systems 143

6.3.1 Half-Life of the Drug Formulation 143

6.3.2 Absorption 143

6.3.3 Metabolism 143

6.3.4 Dosage Size 144

6.3.5 pH Stability and Aqueous Stability of the Drug Formulation 144

6.3.6 Barrier Co-Efficient 144

6.3.7 Stability 144

6.4 Polymeric Drug Delivery Devices 146

6.5 Multiple Drug Delivery Systems 147

6.5.1 Supramolecules and In Situ-Forming Hydrogels 149

6.5.2 Layer-By-Layer Assembly 150

6.5.3 Interpenetrating Polymer Networks (IPNs) 150

6.5.4 Application of Hydrogels for Multiple Drug Delivery 151

6.5.5 Cancer Treatments 151

6.5.6 Diabetes Treatments 152

6.6 Tissue Engineering 153

6.6.1 Self-Healing 154

6.6.2 Molecular Sensing 155

6.7 Conclusion 155

References 155

7 Non-Toxic Holographic Materials (Holograms in Sweeteners) 167
Arturo Olivares-Perez

7.1 Introduction 167

7.2 Sugars as Holographic Recording Medium 168

7.2.1 Classification and Nomenclature 168

7.2.2 Monosaccharides/Glucose and Fructose 169

7.2.2.1 Glucose 169

7.2.2.2 Fructose 171

7.2.2.3 Disaccharides Sucrose 171

7.2.2.4 Polysaccharides, Pectins 174

7.2.2.5 Sweeteners Corn Syrup 175

7.3 Photosensitizers 176

7.3.1 Dyes 177

7.3.2 Dyes as Sensitizers 177

7.4 Sucrose Preparation and Film Generation 179

7.4.1 UV-Visible Spectral Analysis 180

7.4.2 Replication of Holographic Gratings is Sucrose 181

7.4.2.1 Holographic Code 181

7.4.2.2 Soft Mask 181

7.4.2.3 Thermosensitive Properties Through Mask 181

7.4.2.4 Replication 182

7.4.2.5 Diffraction Efficiency 183

7.4.3 Sucrose With Dyes 185

7.4.3.1 Sugar UV-Visible Spectral Analysis 185

7.4.3.2 Holographic Replicas 186

7.4.3.3 DE Sugar Tartrazine and Erioglaucine Dye 187

7.5 Corn Syrup 188

7.5.1 Holographic Replicas of Low and High Frequency 189

7.5.2 DE Corn Syrup 191

7.6 Hydrophobic Materials 192

7.6.1 Hydrophobic Mixture of Pectin Sucrose and Vanilla 192

7.6.2 UV-Visible Spectral Analysis 192

7.6.3 Holographic Replicas 192

7.6.4 DE Hydrophobic Films PSV 193

7.7 PSV with Dyes 194

7.7.1 UV-Visible Spectral Analysis 194

7.7.2 DE Films PSV and Erioglaucine 194

7.8 Pineapple Juice as Holographic Recording Material 195

7.8.1 Characterization of Pineapple Juice 196

7.8.2 Generation of Pineapple Films 196

7.8.3 Replication Technique 196

7.8.4 DE Pineapple Film 196

7.9 Holograms Made with Milk 198

7.9.1 Low-Fat Milk Tests 198

7.9.2 DE Milk Gratings 198

7.9.2.1 Gravity Technique 198

7.9.2.2 Spinner Technical 199

7.10 Conclusions 200

Acknowledgements 200

References 200

8 Bioplasitcizer Epoxidized Vegetable Oils–Based Poly(Lactic Acid) Blends and Nanocomposites 205
Buong Woei Chieng, Nor Azowa Ibrahim and Yuet Ying Loo

8.1 Introduction 205

8.2 Vegetable Oils 207

8.3 Expoxidation of Vegetable Oils 209

8.4 Poly(lactic acid) 211

8.5 Poly(lactic acid)/Epoxidized Vegetable Oil Blends 213

8.5.1 Poly(lactic acid)/Epoxidized Palm Oil Blend 213

8.5.2 Poly(lactic acid)/Epoxidized Soybean Oil Blend 217

8.5.3 Poly(lactic acid)/Epoxidized Sunflower Oil Blend 219

8.5.4 Poly(lactic acid)/Epoxidized Jatropha Oil Blend 220

8.6 Polymer/Epoxidized Vegetable Oil Nanocomposites 223

8.7 Summary 227

References 227

9 Preparation, Characterization, and Adsorption Properties of Poly(DMAEA) – Cross-Linked Starch Gel Copolymer in Wastewater 233
Sudhir Kumar Saw

9.1 Introduction 233

9.2 Experimental Procedure 237

9.2.1 Materials 237

9.2.2 Instrumentation 237

9.2.3 Preparation of Cross-Linked Starch Gel 238

9.2.4 Preparation of Poly(DMAEA) – Cross-Linked Starch Gel Graft Copolymer 238

9.2.5 Determination of Nitrogen 239

9.2.6 Experimental Process of Removal of Heavy Metal Ions 239

9.2.7 Removal of Dyes 240

9.2.8 Recovery of the Prepared Copolymer 240

9.3 Results and Discussion 240

9.3.1 Effect of pH 240

9.3.2 Effect of Extent of Grafting on Metal Removal 242

9.3.3 Effect of Adsorbent Dose Used 243

9.3.4 Effect of Treatment Time on the Metal Removal 243

9.3.5 Effect of Agitation Speed 244

9.3.6 Effect of Temperature 245

9.3.7 Recovery of Starch 247

9.3.8 Removal of Dyes 247

9.3.9 Adsorption Kinetics 248

9.3.10 Adsorption Isotherm 249

9.4 Conclusions 250

Acknowledgement 251

References 251

10 Study of Chitosan Cross-Linking Genipin Hydrogels for Absorption of Antifungal Drugs Using Molecular Modeling 255
Norma Aurea Rangel–Vazquez

10.1 Introduction 255

10.1.1 Polymers 255

10.1.1.1 Properties 256

10.1.2 Natural Polymers 257

10.1.2.1 Chitosan 258

10.1.3 Hydrogels 260

10.1.3.1 Applications 261

10.1.4 Antifungals 261

10.1.4.1 Classification 261

10.1.4.2 Fluconazole 262

10.1.4.3 Voriconazole 263

10.1.4.4 Ketoconazole 263

10.1.5 Molecular Modeling 264

10.2 Methodology 265

10.2.1 Geometry Optimization (ΔG) 265

10.2.2 Bond Lengths 265

10.2.3 FTIR 267

10.2.4 MESP 269

10.3 Results and Discussions 269

10.3.1 Gibbs Free Energy 269

10.3.2 Bond Lengths 270

10.3.3 FTIR 271

10.3.4 MESP 274

10.3.5 HOMO/LUMO Orbitals 275

10.5.4 Conclusions 281

References 282

11 Pharmaceutical Delivery Systems Composed of Chitosan 285
Livia N. Borgheti-Cardoso, Fabiana T.M.C. Vicentini, Marcilio S.S. Cunha Filho and Guilherme M. Gelfuso

11.1 Introduction 285

11.2 Chitosan Micro- and Nanoparticles 286

11.2.1 Oral Applications 287

11.2.2 Topical Formulations 288

11.2.3 Ocular Delivery Systems 289

11.3 Bioadhesive Chitosan Hydrogels 291

11.3.1 Ocular Gel Formulations 292

11.3.2 Topical Formulations 293

11.4 Chitosan Topical/Transdermal Films 295

11.5 Chitosan as Coating Material to Produce Lipid Capsules, Liposomes, Metallic and Magnetic Nanoparticles 296

11.6 Oral Beads Based on Chitosan for Controlled Delivery of Drugs 298

11.7 Conclusion 300

Acknowledgement 300

References 300

12 Eco-Friendly Polymers for Food Packaging 309
Sweetie R. Kanatt, Shobita. R. Muppalla and S.P. Chawla

12.1 Introduction 309

12.2 Sources of Biopolymers 311

12.2.1 Polymers Extracted from Biomass 311

12.2.2 Polysaccharides 312

12.2.2.1 Starch 312

12.2.2.2 Corn Starch 313

12.2.2.3 Cassava Starch 314

12.2.2.4 Potato Starch 314

12.2.2.5 Konjac Glucomannan 314

12.2.2.6 Starch Modifications 314

12.2.3 Cellulose 315

12.2.3.1 Cellulose Derivatives 316

12.2.4 Gums 316

12.2.4.1 Guar Gum 316

12.2.4.2 Locust Bean Gum 317

12.2.4.3 Gum Arabic 318

12.2.4.4 Pectin 318

12.2.4.5 Chitin and Chitosan 319

12.2.5 Proteins 319

12.2.5.1 Zein 320

12.2.5.2 Wheat Gluten 321

12.2.5.3 Soy Protein 321

12.2.5.4 Whey Protein and Casein 321

12.2.5.5 Collagen 322

12.2.6 Lipids 322

12.2.7 Polymers Obtained from Microbial Sources 323

12.2.7.1 Agar 323

12.2.7.2 Alginate 323

12.2.7.3 Carrageenan 324

12.2.7.4 Gellan 324

12.2.7.5 Pullulan 325

12.2.7.6 Xanthan 325

12.2.7.7 Bacterial Cellulose 326

12.2.7.8 Polyhydroxyalkonates (PHA) 326

12.2.8 Polymers Synthesized from Bio-Derived Monomers 326

12.2.8.1 Polylactic Acid (PLA) 326

12.3 Properties of Biopolymer Packaging Films 327

12.3.1 Physical Properties 327

12.3.1.1 Permeability 327

12.3.1.2 Oxygen Transmission Rate (OTR) 328

12.3.1.3 Water Vapor Transmission Rate (WVTR) 329

12.3.1.4 Carbon Dioxide Transmission Rate (CO2TR) 330

12.3.2 Mechanical Properties 330

12.3.3 Thermal Properties 331

12.3.4 Degradation 332

12.3.4.1 Biodegradation 332

12.4 Composite Films 333

12.5 Bionanocomposites 335

12.6 Methods for Film Processing 335

12.6.1 Casting 336

12.6.2 Extrusion 336

12.6.3 Injection Molding 336

12.6.4 Blow Molding 337

12.6.5 Thermoforming 337

12.6.6 Foamed Products 337

12.7 Applications of Biopolymers in Food Packaging 338

12.7.1 Biodegradable Packaging Material 338

12.7.2 Active Packaging 338

12.7.3 Biopolymers as Edible Packaging 339

12.7.3.1 Edible Coating 339

12.7.3.2 Fruits and Vegetables 340

12.7.3.3 Flesh Foods 341

12.7.3.4 Seafoods 341

12.7.3.5 Meat and Meat Products 341

12.7.3.6 Eggs 341

12.7.3.7 Nuts 342

12.7.3.8 Dairy Products 342

12.7.4 Edible Films 343

12.7.4.1 Fruits and Vegetables 343

 12.7.4.2 Flesh Foods 343

12.7.5 Intelligent Packaging 344

12.8 Conclusion and Future Prospects 344

References 345

13 Influence of Surface Modification on the Thermal Stability and Percentage of Crystallinity of Natural Abaca Fiber 353
Basavaraju Bennehalli, Srinivasa Chikkol Venkateshappa, Rama Devi Punyamurthy, Dhanalakshmi Sampathkumar and Raghu Patel Gowdru Rangana Gowda

13.1 Introduction 353

13.2 Materials and Methods 355

13.2.1 Materials 355

13.2.2 Alkali Treatment of Abaca Fiber 355

13.2.3 Acrylic Acid Treatment of Abaca Fiber 356

13.2.4 Acetylation of Abaca Fiber 356

13.2.5 Benzoylation of Abaca Fiber 356

13.2.6 Permanganate Treatment of Abaca Fiber 356

13.2.7 Fourier Transform Infrared Spectroscopy (FTIR) 356

13.2.8 Thermogravimetric Analysis (TGA) 356

13.2.9 X-Ray Diffraction Analysis (XRD) 357

13.3 Results and Discussion 357

13.3.1 Chemical Treatment of Fibers 357

13.3.2 IR Spectra of Fibers 358

13.3.3 Thermogravimetric Analysis (TGA) 361

13.3.4 X-Ray Diffraction Analysis (XRD) 369

13.4 Conclusions 373

References 373

14 Influence of the Use of Natural Fibers in Composite Materials Assessed on a Life Cycle  Perspective 377
Hugo Carvalho, Ana Raposo, Ines Ribeiro, Paulo Pecas, Arlindo Silva and Elsa Henriques

14.1 Introduction 377

14.2 Composite Materials: An Overview 379

14.2.1 Composites Design 380

14.2.2 Fiber-Reinforced Composites and Natural Fibers 380

14.2.3 World Production of Natural Fibers 381

14.3 Methodology 382

14.4 Case Study: Bonnet Component 383

14.4.1 Boundary Conditions and Loading 384

14.4.2 Materials 384

14.4.3 Technical Requirements 385

14.4.4 Design Specifications 387

14.5 Life Cycle Stages 389

14.5.1 Raw Material Acquisition 389

14.5.2 Transport 389

14.5.3 Manufacturing Phase 390

14.5.4 Use Phase 391

14.5.5 End of Life Phase 391

14.6 Results 391

14.6.1 Economic Dimension Evaluation 391

14.6.2 Environmental Dimension Evaluation 392

14.6.3 Technical Results 392

14.6.4 Global Evaluation 394

14.6.4.1 Sensitivity Analysis to the Life Cycle Stages 394

14.7 Conclusion 395

References 396

15 Plant Polysaccharides Blended Ionotropically Gelled Alginate Multiple Unit Systems for Sustained Drug Release 399
Dilipkumar Pal and Amit Kumar Nayak

15.1 Introduction 399

15.2 Plant Polysaccharide in Sustained Release Drug Delivery 401

15.3 Alginates and Their Ionotropic Gelation 402

15.4 Various Plant Polysaccharides-Blended Ionotropically-Gelled Alginate Microparticles/Beads 406

15.4.1 Locust Bean Bum-Alginate Blends 406

15.4.2 Gum Arabic-Alginate Blends 411

15.4.3 Tamarind Seed Polysaccharide-Alginate Blends 412

15.4.4 Okra Gum-Alginate Blends 417

15.4.5 Fenugreek Seed Mucilage-Alginate Blends 421

15.4.6 Ispaghula Husk Mucilage-Alginate Blends 423

15.4.7 Aloe Vera Gel-Alginate Blends 424

15.4.8 Sterculia Gum-Alginate Blends 425

15.4.9 Jackfruit Seed Starch-Alginate Blends 428

15.4.10 Potato Starch-Alginate Blends 430

15.5 Conclusion 431

References 431

16 Vegetable Oil-Based Polymer Composites: Synthesis, Properties and Their Applications 441
Shubhalakshmi Sengupta and Dipa Ray

16.1 Introduction 441

16.2 Vegetable Oils 442

16.2.1 Composition and Structure of Vegetable Oils 442

16.2.2 Properties of Vegetable Oils 443

16.3 Vegetable Oils Used for Polymers and Composites 444

16.3.1 Synthesis of Polymeric Materials from Vegetable Oils 444

16.3.2 Modification of Vegetable Oils and Their Use in Composites 447

16.3.2.1 Epoxidized Vegetable Oils and Their Composites 447

16.3.2.2 Maleated Vegetable Oils and Their Composites 454

16.3.3 Cationic Polymerization of Vegetable Oils and Their Composites 460

16.4 Free Radical Polymerization of Vegetable Oils and Their Composites 465

16.5 Application Possibilities and Future Directions 465

References 466

17 Applications of Chitosan Derivatives in Wastewater Treatment 471
Taslim U. Rashid, Md. Sazedul Islam, Sadia Sharmeen, Shanta Biswas, Asaduz Zaman, M. Nuruzzaman Khan, Abul K. Mallik, Papia Haque and Mohammed Mizanur Rahman

17.1 Introduction 471

17.2 Chitin and Chitosan 473

17.2.1 Sources of Chitin and Chitosan 474

17.2.2 Extraction of Chitosan 474

17.2.3 Properties of Chitosan 475

17.2.3.1 Degradation 477

17.2.3.2 Molecular Weight 477

17.2.3.3 Solvent Properties 477

17.2.3.4 Mechanical Properties 477

17.2.3.5 Adsorption 478

17.2.3.6 Cross-Linking Properties of Chitosan 478

17.2.3.7 Antioxidant Properties 479

17.2.4 Applications of Chitosan 480

17.3 Chitosan Derivatives in Wastewater Treatment 481

17.3.1 Carboxymethyl-Chitosan (CMC) 481

17.3.2 Ethylenediaminetetraaceticacid (EDTA) and Diethylenetriaminepentaacetic Acid (DTPA) Modified Chitosan 483

17.3.3 Triethylene-Tetramine Grafted Magnetic Chitosan (Fe3O4-TETA-CMCS) 484

17.3.4 Carboxymethyl-Polyaminate Chitosan (DETA-CMCHS) 486

17.3.5 Tetraethylenepentamine (TEPA) Modified Chitosan (TEPA-CS) 487

17.3.6 Ethylenediamine Modified Chitosan (EDA-CS) 488

17.3.7 Epichlorohydrin Cross-Linked Succinyl Chitosan (SCCS) 489

17.3.8 N-(2 -Hydroxy-3 Mercaptopropyl)-Chitosan 490

17.3.9 Epichlorohydrin Cross-Linked Chitosan (ECH-Chitosan) 490

17.3.10 Quaternary Chitosan Salt (QCS) 492

17.3.11 Magnetic Chitosan-Isatin Schiff ’s Base Resin (CSIS) 492

17.3.12 Chitosan-Fe(III) Hydrogel 493

17.4 Adsorption of Heavy Metals on Chitosan Composites from Wastewater 493

17.4.1 α-Fe2O3 impregnated Chitosan Beads With As(III) as Imprinted Ions 493

17.4.2 Chitosan/Cellulose Composites 494

17.4.3 Chitosan/Clinoptilolite Composite 495

17.4.4 Chitosan/Sand Composite 496

17.4.5 Chitosan/Bentonite Composite 496

17.4.6 Chitosan/Cotton Fiber 497

17.4.7 Magnetic Thiourea-Chitosan Imprinted Ag+ 498

17.4.8 Nano-Hydroxyapatite Chitin/Chitosan Hybrid Biocomposites 498

17.5 Adsorption of Dyes on Chitosan Composites from Wastewater 499

17.5.1 Fe2O3/Cross-Linked Chitosan Adsorbent 499

17.5.2 Chitosan-Lignin Composite 500

17.5.3 Chitosan–Polyaniline/ZnO Hybrid Composite 501

17.5.4 Coalesced Chitosan Activated Carbon Composite 502

17.5.5 Chitosan/Clay Composite 502

17.6 Conclusion 504

References 504

18 Novel Lignin-Based Materials as Products for Various Applications 519
Łukasz Klapiszewski and Teofil Jesionowski

18.1 Lignin – A General Overview 519

18.1.1 A Short History 519

18.1.2 Synthesis and Structural Aspects 521

18.1.3 Types of Lignin 523

18.1.4 Applications of Lignin 528

18.2 Lignin/Silica-Based Hybrid Materials 531

18.3 Combining of Lignin and Chitin 535

18.4 Lignin-Based Products as Functional Materials 540

References 543

19 Biopolymers from Renewable Resources and Thermoplastic Starch Matrix as Polymer Units of Multi–Component Polymer Systems for Advanced Applications 555
Carmen–Alice Teacă and Ruxanda Bodirlău

19.1 Introduction 555

19.2 Thermoplastic Starch Matrix and its Application for Advanced Composite Materials 557

19.3 Biopolymers from Sustainable Renewable Sources 558

19.3.1 Chitin 558

19.3.2 Wheat Straw 559

19.3.3 Spruce Bleached Kraft Pulp 559

19.4 Thermoplastic Starch as Polymer Matrix and Biopolymers from Renewable Resources for Composite Materials 560

19.4.1 Obtainment 560

19.4.1.1 Materials 561

19.4.1.2 Preparation of Composites Based on Plasticized Starch and Biopolymers with Addition of Vegetal Fillers 561

19.4.2 Investigation Methods and Properties 562

19.4.2.1 FTIR Spectroscopy Analysis 562

19.4.2.2 Water Uptake Measurements 563

19.4.2.3 Optical Properties 567

19.4.2.4 Evaluation of the Fillers’ Particle Size 570

19.5 Conclusions 570

Acknowledgements 572

References 572

20 Chitosan Composites: Preparation and Applications in Removing Water Pollutants 577
Mohammad Reza Ganjali, Morteza Rezapour, Farnoush Faridbod and Parviz Norouzi

20.1 Introduction to Chitosan 577

20.1.1 Other Derivatives of Chitin 580

20.1.2 Properties of Chitosan 580

20.1.3 Modification and Derivatization of Chitosan 581

20.2 Chitosan Composites 583

20.2.1 Activated Clay-Chitosan (ACC) Composites 583

20.2.1.1 Attapulgite Clay-Nanocomposite 583

20.2.1.2 Composites of Bentonite, Montmorillonite, and Other Types of Clay 584

20.2.2 Alginate-Chitosan (AC) Composites 589

20.2.3 Cellulose-Chitosan (CC) Composites 589

20.2.3.1 Cotton Fiber-Chitosan Composites 591

20.2.4 Ceramic Alumina-Chitosan Composites 592

20.2.5 Hydroxyapatite-Chitosan Composites 596

20.3 Palm Oil Ash-Chitosan Composites 598

20.4 Perlite-Chitosan Composites 598

20.5 Polymer-Chitosan Composites 599

20.5.1 Polyurethane-Chitosan Composites 599

20.5.2 Polyvinyl Alcohol-Chitosan Composites 602

20.5.3 Polyacrylamide-Chitosan Composites 605

20.5.4 Polymethylmethacrylate-Chitosan Composites 607

20.5.5 Poly(methacrylic acid)-Chitosan Composites 611

20.5.6 Polyvinyl Chloride-Chitosan Composites 612

20.5.7 Molecular Imprinted-Chitosan Composites 613

20.6 Sand-Chitosan Composites 619

20.7 Magnetic Nano-Adsorbents or Micro-Adsorbent 619

20.7.1 Chitosan-Based Magnetic Particles 620

20.7.2 Modified-Chitosan or Chitosan-Polymer Based Magnetic Composites 627

20.7.3 Magnetic Chitosan-Carbon Composites 645

20.7.4 Magnetic Composites of Chitosan with Inorganic Compounds 649

References 652

21 Recent Advances in Biopolymer Composites for Environmental Issues 673
Mazhar Ul Islam, Shaukat Khan, Muhammad Wajid Ullah and Joong Kon Park

21.1 Introduction 673

21.2 Historical Background 674

21.3 Some Important Biopolymers 677

21.3.1 Bio-Cellulose 678

21.3.2 Xanthan and Dextran 679

21.3.3 Poly(hydroxyalkanoates) 680

21.3.4 Polylactide 680

21.3.5 Poly(trimethylene terephthalate) 681

21.4 Biopolymer Composites 681

21.5 Biodegradability of Biopolymers: An Important Feature for Addressing Environmental Concerns 682

21.6 Environmental Aspects of Biopolymers and Biopolymer Composites 684

21.6.1 Catalytic Degradation of Contaminants 684

21.6.2 Adsorption of Pollutants 685

21.6.3 Magnetic Composites 686

21.6.4 Pollutant Sensors 686

21.7 Future Prospects 686

Acknowledgement 687

References 687

Index 693