Skip to main content

An Introduction to Multivariate Statistical Analysis, 3rd Edition

An Introduction to Multivariate Statistical Analysis, 3rd Edition

Theodore W. Anderson

ISBN: 978-0-471-36091-9

Aug 2003

752 pages

Select type: Hardcover

In Stock

£148.00

* VAT information

Description

Perfected over three editions and more than forty years, this field- and classroom-tested reference:
* Uses the method of maximum likelihood to a large extent to ensure reasonable, and in some cases optimal procedures.
* Treats all the basic and important topics in multivariate statistics.
* Adds two new chapters, along with a number of new sections.
* Provides the most methodical, up-to-date information on MV statistics available.

Buy Both and Save 25%!

This item: An Introduction to Multivariate Statistical Analysis, 3rd Edition

Smoothing of Multivariate Data: Density Estimation and Visualization (Hardcover £120.00)

Original Price:£268.00

Purchased together:£201.00

save £67.00

* VAT information

Cannot be combined with any other offers.

Buy Both and Save 25%!

This item: An Introduction to Multivariate Statistical Analysis, 3rd Edition

Multivariate Statistics : High-Dimensional and Large-Sample Approximations  (Hardcover £113.00)

Original Price:£261.00

Purchased together:£195.75

save £65.25

* VAT information

Cannot be combined with any other offers.

Buy Both and Save 25%!

This item: An Introduction to Multivariate Statistical Analysis, 3rd Edition

Linear Model Theory: Univariate, Multivariate, and Mixed Models (Hardcover £114.00)

Original Price:£262.00

Purchased together:£196.50

save £65.50

* VAT information

Cannot be combined with any other offers.

Preface to the Third Edition.

Preface to the Second Edition.

Preface to the First Edition.

1. Introduction.

2. The Multivariate Normal Distribution.

3. Estimation of the Mean Vector and the Covariance Matrix.

4. The Distributions and Uses of Sample Correlation Coefficients.

5. The Generalized T2-Statistic.

6. Classification of Observations.

7. The Distribution of the Sample Covariance Matrix and the Sample Generalized Variance.

8. Testing the General Linear Hypothesis: Multivariate Analysis of Variance

9. Testing Independence of Sets of Variates.

10. Testing Hypotheses of Equality of Covariance Matrices and Equality of Mean Vectors and Covariance Matrices.

11. Principal Components.

12. Cononical Correlations and Cononical Variables.

13. The Distributions of Characteristic Roots and Vectors.

14. Factor Analysis.

15. Pattern of Dependence; Graphical Models.

Appendix A: Matrix Theory.

Appendix B: Tables.

References.

Index.

"…suitable for a graduate-level course on multivariate analysis…an important reference on the bookshelves of many scientific researchers and most practicing statisticians." (Journal of the American Statistical Association, September 2004)

“…really well written. The edition will be certainly welcomed…” (Zentralblatt Math, Vo.1039, No.08, 2004)

"…a wonderful textbook…that covers the mathematical theory of multivariate statistical analysis…" (Clinical Chemistry, Vol. 50, No. 2, May 2004)

"...remains an authoritative work that can still be highly recommended..." (Short Book Reviews, 2004)

"...still a very serious and comprehensive book on the statistical theory of multivariate analysis." (Technometrics, Vol. 46, No. 1, February 2004)

“...remains a mathematically rigorous development of statistical methods for observations consisting of several measurements or characteristics of each subject and a study of their properties.” (Quarterly of Applied Mathematics, Vol. LXI, No. 4, December 2003)