This updated and expanded edition of the bestselling textbook provides a comprehensive introduction to the methods and theory of nonlinear finite element analysis. New material provides a concise introduction to some of the cutting-edge methods that have evolved in recent years in the field of nonlinear finite element modeling, and includes the eXtended finite element method (XFEM), multiresolution continuum theory for multiscale microstructures, and dislocation-density-based crystalline plasticity.

Nonlinear Finite Elements for Continua and Structures, Second Edition focuses on the formulation and solution of discrete equations for various classes of problems that are of principal interest in applications to solid and structural mechanics. Topics covered include the discretization by finite elements of continua in one dimension and in multi-dimensions; the formulation of constitutive equations for nonlinear materials and large deformations; procedures for the solution of the discrete equations, including considerations of both numerical and multiscale physical instabilities; and the treatment of structural and contact-impact problems.

Key features:

• Presents a detailed and rigorous treatment of nonlinear solid mechanics and how it can be implemented in finite element analysis
• Covers many of the material laws used in today’s software and research
• Introduces advanced topics in nonlinear finite element modelling of continua
• Introduction of multiresolution continuum theory and XFEM
• Accompanied by a website hosting a solution manual and MATLAB® and FORTRAN code

Nonlinear Finite Elements for Continua and Structures, Second Edition is a must have textbook for graduate students in mechanical engineering, civil engineering, applied mathematics, engineering mechanics, and materials science, and is also an excellent source of information for researchers and practitioners in industry.

ABOUT THE AUTHOR

Ted Belytschko, Northwestern University, USA

Ted Belytschko is a Walter P. Murphy Professor and McCormick Distinguished Professor of Computational Mechanics at Northwestern University. His main research interest is in computational methods for modeling the behavior of solids, with particular emphasis on failure and fracture. He is currently the Editor-in-Chief of the International Journal for Numerical Methods in Engineering.

Wing Kam Liu, Northwestern University, USA

Wing Kam Liu is a Walter P. Murphy Professor in the Department of Mechanical Engineering at Northwestern University. His main areas of research include nonlinear finite elements, multiscale methods for materials design and engineering simulation.

Brian Moran, Northwestern University, USA

Brian Moran is a Professor in the Department of Mechanical Engineering at Northwestern University. His research interests include computational methods, continuum and fracture mechanics, micromechanics and composites.

Khalil I. Elkhodary, Northwestern University, USA

Khalil I. Elkhodary is a post-doctoral researcher in the Department of Mechanical Engineering at Northwestern University. His research interests focus on theoretical and applied mechanics.

RELATED RESOURCES

Instructor

View Instructor Companion Site
Contact your Rep for all inquiries

To purchase this product, please visit https://www.wiley.com/en-gb/9781118632703